
EGUSPHERE-2023-1071 | BoundaryLayerDynamics.jl v1.0: a modern codebase for atmo-
spheric boundary-layer simulations

Author’s Response to Comments

We thank the reviewers for their thoughtful comments. We have prepared a revised
version of the manuscript based on these comments. Replies to individual comments
have been posted to EGUsphere and are included below.

Community Comment by Zheng Gong

Typo errors exist in the Eqs.(2) and (3) for the viscous term.

Thank you for noticing this error. The second derivatives were indeed not correctly
converted to the GMD formatting, resulting in erroneous diffusion terms in Eq. (1) and
(2). This will be fixed in the submission of the revised manuscript.

Referee Comments by Michael Schlottke-Lakemper

Sec. 3: It is not clear which tests are run automatically, the authors remain
somewhat vague. Since they spent a good part of the section on CI testing,
it would be good to give an overview of all tests (or at least the main test
categories) and which are run automatically.

There is a lot of different nomenclature around software testing, but I under-
stand “automated testing” and “continuous testing/integration” as two dis-
tinct concepts (see e.g. https://en.wikipedia.org/wiki/Test_automation and
https://en.wikipedia.org/wiki/Continuous_testing). The discussion in the paper
is focused on the former and there is currently no continuous integration (CI) set up.
I have removed a potentially misleading use of “continuous testing” in the conclusion
section for the revised manuscript.

When the paper refers to “automated tests”, this is meant to convey that those tests
consist of a computer program that can be run with a simple command and produces a
“pass/fail/error“ result. In practical terms, this means that there is a runtests.jl file
that makes use of the @test and @testset macros to run and verify those test cases. All
test cases described as “automated tests” in section 3 (model validation) are implemented
in that way, i.e. all cases that do not involve turbulent flows.

The model validation section is meant to give an overview of the test categories. As
explained in the first paragraph, the testing includes (a) automated testing of individual
right-hand-side terms for a prescribed velocity field, (b) automated testing of the time

1



integration of ODEs, (c) automated testing of laminar 2D flows, and (d) non-automated
tests of turbulent flow simulations.

Sec. 3: It is not clear where and how the automated tests are run (e.g.,
GitHub Actions, Jenkins, and on which hardware). Also, the number of ranks
used for testing is left unclear. Overall, this part of the manuscript reads
more like a manual for users rather than a scientific paper. I thus recommend
to either remove the more generic content or to be more specific and add
details such that a reader can learn about how CI testing is implemented for
the described code.

Currently there is no continuous integration set up and tests need to be re-run by the
person making or reviewing changes to the code on their own machine. With the current
pace of development this has been working well enough, but we will likely set up some
form of continuous integration in the future. The automated tests do not include any
performance measurements so they should be independent of the hardware on which the
tests are run.

The number of ranks in the automated tests is set to 4 by default, as this includes the
special cases of the lowest and highest process and can be run easily on 4-core CPUs
that are common in consumer hardware. However, that number is a parameter of the
runtests.jl script and can be changed easily to test other process counts.

I think that the impression of a manual-like tone is mostly due to the fourth paragraph in
the validation section. I have reformulated this paragraph in the revised manuscript.

Sec. 3, lines 236 ff.: Are tests included that verify that the result of a
simulation does not change with the number of MPI ranks? Either way, it
would be good if the authors would comment on that since using different
numbers of ranks to verify identical results is a commonly used practice in
codes that support it.

The tests currently do not perform any direct comparison between results that are com-
puted with different numbers of ranks. However, since the tests perform comparisons with
analytical solutions, they do verify that the code produces the same result independent
of the number of ranks.

The reproducibility data was clearly curated in a git repository (inferred from
the presence of git-specific files). However, it is only available as a zip
downloaded from Zenodo. This is both not very user friendly (there is no
online code browsing) and makes it harder to find then necessary (ref. the F
in FAIR). It would be good if the reproducibility data was available as, e.g., a
public GitHub repository that is linked to from the DOI.

Relying on a proprietary commercial platform (that is regularly censored in parts of
the world) as an integral part of open publishing does not seem ideal to me, but I do

2



recognize that the user experience for browsing files on Zenodo is rather lacking. I am not
sure whether findability is affected, as a permanent DOI link seems more reliable than a
GitHub link that can change and disappear at any time, and if the GitHub repository is
linked from Zenodo, the data has already been found. However, having a copy of the
data and code on GitHub should generally make it easier to access and reuse the files.
I have therefore pushed a copy of the repository to https://github.com/mfsch/paper-
boundarylayers.jl-v1.0 and linked this page from the Zenodo entry.

The reproducibility data does not give any explanations on how to use it to
reproduce the results in the manuscript. At the very least a README.md
should be included that describes the contents of the data collection, states
the Julia version that has/can be used to obtain the results in the paper, and
information on how to re-run the experiments, post-process the data etc. As
it is now, even though the reproducibility data seems to be fairly exhaustive,
it is hard to use it without extensive effort (ref. the R in FAIR).

I have added a section to the main README that gives additional information on how
the repository is organized and how different steps can be rerun. The Makefiles include
the exact commands that are needed to run each step.

p. 2, line 34: I think the reference to the new package BoundaryLayerDynam-
ics.jl (Schmid 2023) should appear at its first use in this line.

I have added the reference in the revised manuscript.

Referee Comments by Cedrick Ansorge

The formulation of the vertical grid, evaluating the function x3 on the center
point in terms of ζ introduces additional truncation errors that depend on
dx3/dζ. (Values are approximated as arithmetic means – for instance in Eq.
(10) or line 137), but for large stretching, this is not exact). These errors
should be taken into account when the order of accuracy is discussed and
they will result in a constraint on the grid mapping function x3(ζ) that limits
stretching. This is of particular relevance for the choice of grid taken here
with b η = 0.97 which for n=96 yields stretching from grid point to grid point
of more than 50%.

The truncation error always has a prefactor that depends on derivatives of the approxi-
mated function, e.g. df/dx3. If we apply a coordinate transform, this prefactor becomes
df/dζ, which can also be expressed as dx3/dζdf/dx3. The order of convergence is un-
affected, as these factors do not change with the grid spacing. Whether the prefactor
increases or decreases the truncation error depends on the functional form of both f(x3)
and x3(ζ)x and cannot be stated in general. Indeed, the goal of grid stretching is generally
to select a coordinate transform that reduces the maximum value of this prefactor.

3



Typo in Eq. 1 (need second derivative for viscous term)

The second derivatives in Eq. 1 and 2 have been fixed.

l. 110 / Eq. (8): How can the model include an approximate formulation for
τ?

Eq. (3) & (8) were using the “approximately equal” sign to indicate that the relation is
a modeling assumption rather than a mathematical identity. I have now replaced those
with the regular “equal” sign to avoid confusion, along with a number of other potentially
confusing occurrences of the “approximately equal” sign.

l. 147: The commutation of operators precludes their linearity; the truncation
is, however, non-linear such that, in their descrete representation, the opera-
tors do not commute. The choice might impact on stability and conditioning
properties of the algorithm and needs to be motivated / detailed here.

I am not sure if I understood the reviewer’s concern correctly, especially the statement “the
commutation of operators precludes their linearity”, but I hope the following explanations
address any doubts.

The commutativity properties we rely on apply to the discrete operators and are exact to
floating-point precision. Computing vertical derivatives in the physical domain as opposed
to the frequency domain can sometimes be used to reduce the number of necessary FFTs,
but it should not affect the results any more than the other ways floating-point math is
inexact (e.g. non-associativity of addition).

The claim that vertical derivatives commute with horizontal FFTs (forward and
backward) corresponds to the Julia expression rfft(diff(x, dims = 3), (1, 2)) ≈
diff(rfft(x, (1, 2)), dims = 3), which can be verified with e.g. x = rand(8, 8,
8) (and similarly for inverse transforms). If there are non-zero contributions from the
boundary conditions, these have to be transformed as well of course, but they should not
affect the commutativity of the operations.

If the truncation that the reviewer is concerned about is when the high-wavenumber
contributions are discarded, we do actually rely on the fact that this operation also
commutes with the vertical derivatives, although we could just as easily always do the
vertical derivatives before the truncation. This commutativity is also exact and does
not even have floating-point errors (e.g. diff(x[1:3,1:3,:], dims = 3) == diff(x,
dims = 3)[1:3,1:3,:] for x = rfft(rand(8, 8, 8), (1, 2))). It also happens to
be a linear operation, although that alone neither guarantees nor precludes commutativity.
Both linear and non-linear operations can be commutative (trivially with themselves or
with the identity function) or non-commutative (e.g. two matrix–vector multiplications
with random matrix coefficients).

How is the advection discretized? Directly, in flux-form, or skew-symmetric?
Has Energy conservation been checked?

4



The advection term is discretized in the rotational form that is used throughout the
paper (see Eq. 1, 2, and 5). This form of the advection term, in combination with the
spatial discretization we use, conserves kinetic energy to machine precision as long as
the products are computed with 3/2-dealiasing and there is no grid stretching. In the
absence of viscosity, any change in kinetic energy is therefore due to time-differencing
errors. Below is a figure that shows that this error does indeed follow the order of the
time-differencing scheme, except for the SSPRK22 method that happens to be third-order
in this case.

In flow simulations, energy conservation is subject to numerical errors (from time dif-
ferencing and grid stretching), but those errors should be small enough that they do
not materially affect the results. While we do not show the full energy budget for the
validation cases, we show that the production and dissipation terms as well as energy
spectra closely match the reference solution. We can therefore be fairly confident that
the energy dynamics are reproduced correctly by the simulations.

Fig.4: The new implementation has a few percent (~5%?) larger mean velocity
in the wake region which is quite a bit for a technical test. Is there a reason
for this deviation? More or less dissipative numerics? Different grid / vertical
resolution? Would these differences drop when an identical set-up was used
in terms of the horizontal and vertical resolution?

The mismatch in the upper part of the LES domain can be attributed to incomplete
convergence of flow statistics. I have updated Fig. (4) with a 2.5× longer simulation run
for a better match of the profiles in the revised manuscript. The numerical methods and
grid resolutions are the same for both simulations.

5


	Author’s Response to Comments
	Community Comment by Zheng Gong
	Referee Comments by Michael Schlottke-Lakemper
	Referee Comments by Cedrick Ansorge


