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Abstract. We present BoundaryLayerDynamics.jl, a new code for turbulence-resolving simulations of atmospheric boundary-

layer flows as well as canonical turbulent flows in channel geometries. The code performs direct numerical simulation as well as

large-eddy simulation using a hybrid (pseudo)spectral and finite-difference approach with explicit time advancement. Written

in Julia, the code strives to be flexible and adaptable without sacrificing performance, and extensive automated tests aim to

ensure that the implementation is and remains correct. We show that the simulation results are in agreement with published5

results and that the performance is on par with an existing Fortran implementation of the same methods.

1 Introduction

Since Deardorff’s early studies (Deardorff, 1969, 1970a, b), numerical simulations of the three-dimensional, unsteady flow

field have become an integral part of microscale atmospheric boundary-layer (ABL) research. Direct numerical simulation

(DNS) provides an extremely accurate tool to study fundamental properties of turbulent flows and their scaling from low to10

moderate Reynolds numbers (Moin and Mahesh, 1998). Large-eddy simulation (LES) provides a numerical model for a wide

range of ABL flow phenomena at realistic Reynolds numbers while relying on modest, well-supported modeling assumptions

(Meneveau and Katz, 2000; Stoll et al., 2020). Together, DNS and LES constitute the backbone of the computational study of

turbulent flow dynamics and have contributed many insights to our current understanding.

Many different implementation of these methods are in use for ABL research and continue to be actively developed. Projects15

such as PALM (Maronga et al., 2020), OpenFOAM (Chen et al., 2014), and WRF (Skamarock et al., 2021) develop open-

source codes with broad applicability in a community effort. In addition, many research groups have their own codes that have

been developed and extended over decades and are passed person-to-person. Some studies also rely on commercial software

such as Ansys Fluent, although not having access to implementation details is problematic for scientific reproducibility.

Codes differ along many dimensions, perhaps most importantly in the physical models that are implemented. The numerical20

methods used to compute a solution can also lead to important differences, particularly for LES, where the smallest resolved

scales of motion are an integral part of the turbulence dynamics (Kravchenko and Moin, 1997). The performance characteristics

of a code are also central as most turbulence-resolving simulations continue to be limited by their computational cost. Further-
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more, there can be important differences in the effort and model-specific experience required for setting up simulations and

making changes and additions to the source code while ensuring the correctness of the results. When developing a new code25

or selecting an existing model for a simulation, these different qualities have to be weighed against each other and trade-offs

are inevitable.

The advent of the Julia programming language (Bezanson et al., 2017) represents a shift in the landscape of possible trade-

offs between conflicting goals. Publicly launched in 2012 and stabilized with version 1.0 in 2018, Julia promises to combine

the performance of Fortran, C, and C++ with the convenience of Python, Matlab, and R. Automatic memory management,30

dynamic typing with type inference, multiple dispatch, and a built-in modern package manager facilitate rapid development

of clear, concise code that keeps orthogonal functionality separate. At the same time, Julia’s “just-ahead-of-time” compilation

model allows code to run with no or minimal computational overhead.

In this paper, we present and discuss BoundaryLayerDynamics.jl
:::::::::::::
(Schmid, 2023), a new code for turbulence-resolving flow

simulation optimized for ABL research. The code has been written to provide core functionality for DNS and LES of channel-35

flow configurations with a focus on making it easy to use, adapt, and extend the code without jeopardizing the correctness of

the results. To achieve better trade-offs along these dimensions, the implementation relies on the Julia programming language,

on automated testing, and on a modular design.

The suitability of the new code is of course not limited to simulations of ABL turbulence. In fact, none of the current

functionality is specific to ABL applications. However, the choice of physical models and numerical methods is guided by the40

needs of such applications and future developments will similarly prioritize those use cases.

The code solves the incompressible Navier–Stokes equations relying on (pseudo)spectral and finite difference methods for

discretization in the horizontal and vertical directions respectively, making use of the Message Passing Interface (MPI) for

parallelization in the vertical direction, and performing fully explicit time integration. The details of the numerical methods

are described in section 2. The implementation is validated via a number of automated tests as described in section 3, where45

we also present a validation against DNS and LES results computed with different codes. The performance analysis presented

in section 4 shows that the computational cost is comparable to a Fortran implementation of the same numerical approach and

that parallel performance scales favorably up to the maximum supported number of parallel processes.

BoundaryLayerDynamics.jl is open source software and available under the MIT License 1 through the official Julia package

repository and on GitHub1, where the public repository of the package is currently hosted. The version described in this article50

is archived on Zenodo (Schmid, 2023).
1https://opensource.org/licenses/MIT
1https://github.com/efpl-columbia/BoundaryLayerDynamics.jl
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2 Governing equations and numerical methods

The choice of governing equations and numerical methods is guided by the goal of studying the turbulent flow dynamics in the

atmospheric boundary layer. Other turbulent flows in engineering and in the natural environment are also considered insofar as

their requirements do not conflict with those of atmospheric boundary-layer flows.55

It is well-established that the Navier–Stokes equations are an extremely accurate physical model for flows with a Knudsen

number Kn≪ 1 and that compressibility effects are minimal for flows with a Mach number Ma≲ 1/3 (Panton, 2013). Since

these conditions are met for atmospheric boundary-layer flows, the incompressible Navier–Stokes equations,
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are used as the mathematical model for this work, given here with the rotational form of the advection term (Orszag, 1971a),60

for which the total kinematic pressure p= pgauge/ρ+ 1
2uiui includes both the static and dynamic pressure. Quantities are

non-dimensionalized with a length scale L and a velocity U , producing the Reynolds number Re= UL/ν. The Cartesian co-

ordinates xi denote the primary horizontal (i= 1, usually streamwise), secondary horizontal (i= 2, usually cross-stream), and

vertical (i= 3) directions while the corresponding velocity components are given as ui. The term fi denotes the components

of a body force, usually gravity or a constant pressure gradient, and the kinematic viscosity ν and fluid density ρ are assumed65

scalar constants.

While this formulation can serve as a reasonable representation of a neutrally stratified atmospheric boundary layer, there

are many important ABL processes that are not included. Coriolis forces, temperature, and humidity in particular are of cen-

tral importance for many applications. The current code is meant to provide the core functionality necessary for ABL flow

simulations and serve as a foundation for a more comprehensive set of physical and numerical models that can be added over70

time.

For flows with a moderate to high Reynolds number, current computational capabilities generally do not permit resolving

the full range of scale of motions. In this case, the filtered Navier–Stokes equations,
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∂ũi

∂xj
− ∂ũj
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are used as the computational model, where ũi represents the spatially filtered velocity field, i.e. ũi =
∫
G(r,x)ui(x− r)dr75

with G defining the filtering operation. The subgrid-scale stress tensor τ sgsij = τRij − 1
3τ

R
ii δij represents the anisotropic compo-

nent of the residual stress tensor τRij = ũiuj−ũiũj and has to be modeled as a function of the resolved velocity ũi. The modified

pressure p̃= p̃gauge/ρ+ 1
2 ũiũi+

1
3τ

R
ii now includes contributions from the filtered gauge pressure p̃gauge, the resolved kinetic

energy, and the unresolved kinetic energy. The forcing term f̃i is simply the spatially filtered fi. In the following, the same

notation is used to represent both the unfiltered (DNS) and filtered (LES) equations to simplify the notation.80

The past decades have seen several efforts to develop a suitable model for τ sgsij (Smagorinsky, 1963; Schumann, 1975;

Bardina et al., 1980; Germano et al., 1991; Meneveau et al., 1996; Porté-Agel et al., 2000; Bou-Zeid et al., 2005). The current

3



implementation includes the static Smagorinsky (1963) subgrid-scale model

τ sgsij ≈=
:
− 2l2SSSij , (3)

where Sij = 1/2
(

∂ui

∂xj
+

∂uj

∂xi

)
is the resolved strain rate, S =

√
2SijSij is the characteristic or total strain rate, and lS is the85

Smagorinsky lengthscale, taken to be the product of the filter width ∆ and a constant Smagorinsky coefficient CS.

Specifying boundary conditions for turbulent flows remains a challenging research problem, since chaotic velocity fluctu-

ations have to be prescribed in a physically accurate manner. To avoid these difficulties, turbulence-resolving simulations are

often run with periodic boundary conditions. While this requires that the problem is formulated such that it can be approx-

imated with a periodic flow field, unphysical border regions are avoided and accurate results can be obtained in the whole90

domain as long as the domain is large enough to accommodate all relevant scales of motion. Furthermore, the flow field can

then be expressed in terms of periodic basis functions. For a horizontally-periodic domain of size L1 ×L2, the velocity field

can be written as

ui(x1,x2,x3) =
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ûκ1κ2
i (x3)e

iκ12πx1/L1 eiκ22πx2/L2 . (4)

With similar expressions for the pressure p and the forcing fi, we can rewrite the governing equations for a single mode with95

wavenumber κ1 in x1-direction and κ2 in x2-direction,
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(5)

where D̂κ1κ2
1 = 2πiκ1

L1
, D̂κ1κ2

2 = 2πiκ2

L2
, and D̂κ1κ2

3 = ∂
∂x3

are the differential operators, with i denoting the imaginary unit. For

direct numerical simulations the subgrid-scale term is omitted. The continuity equation becomes

D̂κ1κ2
i ûκ1κ2

i (x3) = 0 . (6)100

In the vertical direction, turbulence is not homogeneous for ABL flows and periodic boundary conditions are not applicable.

For a channel geometry, boundary conditions have to be specified for ui(x3 = 0) and ui(x3 = L3) with the constraint that

L2∫
0

L1∫
0

u3(x3 = 0)−u3(x3 = L3)dx1dx2 = 0 , (7)

which can be obtained from integrating the continuity equation over the whole domain. A number of engineering flows such as

smooth-wall open and closed channel flows can be modeled with Dirichlet and Neumann boundary conditions. The complex105

boundaries of atmospheric flows can require significant modeling effort and simulations generally have to partially resolve

surfaces (e.g. immersed boundary method, terrain-following coordinates) or represent their effect with a wall model for τ sgsi3 ,
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usually formulated for the discretized equations (Piomelli and Balaras, 2002). The current implementation includes an algebraic

equilibrium rough-wall model defined similar to Mason and Callen (1986) with

τ sgsi3 (x3 = 0)≈=
:

−κ2
√
u1(xref

3 )2 +u2(xref
3 )2

log(xref
3 /z0)2

ui(x
ref
3 ) (8)110

for i= 1,2 and τ sgs33 (x3 = 0) = 0, where z0 is the roughness length, κ≈ 0.4 is the von Kármán constant, and xref
3 > z0 is a

reference height at which the (resolved) velocity is obtained, usually chosen as the first grid point. To improve the near-wall

behavior of the subgrid-scale model, the Smagorinsky length scale is adjusted to l−n
S = (CS∆)

−n
+(κx3)

−n as proposed by

Mason and Thomson (1992), with n= 2 as the default value.

For the numerical solution of equations (5) and (6) we limit ourselves to N1 ×N2 wavenumbers at N3 vertical grid points.115

The wavenumbers are selected symmetrically around κi = 0, i.e. |κ1| ≤ (N1 − 1)/2 and |κ2| ≤ (N2 − 1)/2. This results in

an odd number of wavenumbers in each direction and avoids the need for a special treatment of Nyquist frequencies. Since

ϕ̂−κ1−κ2 = ϕ̂κ1κ2∗ for any real-valued ϕ, we only need to explicitly solve for half the modes and can obtain the others through

complex conjugation. In vertical direction, equidistant grid points are selected from the interval [0,1], which is then mapped

to the domain with a function x3 : [0,1]→ [0,L3], ζ 7→ x3(ζ). This function can be used for grid stretching in the vertical120

direction; the choice of x3 : ζ 7→ L3ζ defines a uniform grid. A staggered arrangement of grid points with ζC at the center of

the N3 segments and ζI at the N3 − 1 interfaces between them, i.e.,

ζC ∈
{
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,
3/2

N3
, . . . ,
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}
for u1,u2,p,f1,f2, τ
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ii , τ sgs12 ,

ζI ∈
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1

N3
,
2

N3
, . . . ,

N3 − 1

N3

}
for u3,f3, τ

sgs
13 , τ sgs23 ,

(9)

avoids the need to specify boundary conditions for the pressure field, prevents odd–even decoupling, and results in a smaller

effective grid spacing (Ferziger et al., 2020). When running large-eddy simulations, the discretization implicitly defines the125

spatial filter G and the filter width ∆ is taken to be ∆= 3
√
∆1∆2∆3 (Scotti et al., 1993) with ∆1 = L1/N1, ∆2 = L2/N2, and

∆3 = 1/N3dx3/dζ.

The horizontal derivatives D̂κ1κ2
1 and D̂κ1κ2

2 can be computed exactly. For the vertical derivative D̂κ1κ2
3 , we use central

second-order finite differences on the staggered ζ-nodes (Moin and Verzicco, 2016) as well as the analytical derivative of

x3(ζ), i.e.130
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δζ
+O
:::

(
δζ2
::

)
(10)

for any field ϕ, where δζ ≡ 1/N3 is the grid spacing in the ζ coordinate. Vertical derivatives are therefore evaluated at the

opposite set of grid points to the ones where ϕ is defined, as typical for staggered grids. At the boundary, one-sided second-

order stencils are employed. This approximation of the vertical derivatives results in a truncation error of order O
(
δζ2

)
.

The non-linear
::::::::
advection term of Eq. (5) requires further approximations. First, some of the terms (e.g. i= 1, j = 3) are eval-135

uated at the opposite set of vertical grid points than where they are required and have to be interpolated. With the simple inter-

polation ϕ̂(ζ)≈ 1/2
(
ϕ̂(ζ − δζ/2)+ ϕ̂(ζ + δζ/2)

)
:::::::::::::::::::::::::::::::::::::::::::
ϕ̂(ζ) = 1/2

(
ϕ̂(ζ − δζ/2)+ ϕ̂(ζ + δζ/2)

)
+O

(
δζ2

)
, the truncation error
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generally increases but remains of order O
(
δζ2

)
. Furthermore, the double sum can only be computed over the resolved range

of wavenumbers, i.e. |κ′
1| ≤ (N1−1)/2 and |κ′

2| ≤ (N2−1)/2, producing another truncation error that decreases exponentially

with the number of resolved wavenumbers. The same applies to the non-linear expressions involved in the evaluation of τ sgsij .140

::::
This

:::::::::::
discretization

::
of

:::
the

::::::::
advection

:::::
term

::
in

::::::::
rotational

::::
form

:::::::::
conserves

::::::
kinetic

::::::
energy

::
in

:::
the

:::::::
absence

::
of

:::::::::::::
time-integration

::::::
errors

::::::::::::::::::
(Mansour et al., 1979)

::
as

::::
long

::
as

:::
the

::::
grid

::
is

:::::::
uniform.

:

To simplify the computation of non-linear terms and avoid evaluating expensive convolutions, those terms are computed on

NPD
1 ×NPD

2 equidistant grid points in the physical domain, relying on the fast Fourier transform (FFT) algorithm for forward

and backward transforms (Orszag, 1969, 1971b). In principle, NPD
1 and NPD

2 are parameters that can be chosen independently145

of N1 and N2, but the choice of NPD
i ≥ 1+3κmax

i avoids introducing aliasing errors for a simple product of two variables

such as the resolved advection term (Patterson and Orszag, 1971). In this case, the physical-domain evaluation is equivalent

to a true spectral Galerkin method computing the convolution of Eq. (5) over all resolved wavenumbers. Contributions from

wavenumbers |κi|> (Ni − 1)/2 are discarded upon return to the Fourier domain and vertical derivatives can be computed

before or after the horizontal Fourier transforms as the two operations commute.150

For the more complex non-linear expressions introduced by the SGS model, full dealiasing is generally not feasible and

physical-domain evaluations incur aliasing errors in addition to the truncation errors. This approach, dubbed the pseudospectral

method by Orszag (1971b), can achieve similar accuracy to a Galerkin method (Orszag, 1972). While it is common to set

NPD
i =Ni for pseudospectral approximations and only discard the Nyquist wavenumber, NPD

i can in principle be chosen

freely for more control over truncation errors. Furthermore, it can be beneficial to choose different values of NPD
i for each155

non-linear term, since computing the resolved advection requires only nine transforms and is known to be sensitive to aliasing

errors (Kravchenko and Moin, 1997; Margairaz et al., 2018) while the evaluation of the SGS model requires 15 transforms.

Combining the velocity components into a single vector û of length N1×N2×(3N3−1), the spatially discretized momentum

equation can be written as

dû

dt
≈=

:
Adv(û)+

1

Re
∆û+

1

Re
b̂∆ −G p̂+ f̂ . (11)160

Here, Adv(·) is the non-linear advection operator that includes both resolved and subgrid-scale contributions. ∆ is the linear

operator that computes the Laplacian of each velocity component, with b̂∆ denoting the contributions from vertical boundary

conditions. G is the linear operator that computes the gradient of the pressure, discretized as a vector p̂ of size N1×N2×N3.

The forcing term f̂ , a vector of the same length as û, can be constant in time and space (e.g. pressure-driven channel flow), vary

in time only (e.g. constant-mass-flux channel flow), vary in space only (e.g. baroclinic flow), or even vary in time and space165

as a function of û, which can be used to model vegetation drag or to represent complex geometry with an immersed-boundary

method. The discrete continuity equation,

D û+ b̂D≈=
:
0 , (12)

contains the linear divergence operator D with the contributions b̂D from the vertical boundary conditions of u3.

This hybrid approach, relying on spectral approximations in horizontal direction (pseudospectral for the evaluation of τ sgsij )170

and second-order-accurate finite differences in vertical direction, has long been employed for computational studies of turbu-
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lent flows in channel geometries (Moin and Kim, 1982; Moeng, 1984; Albertson and Parlange, 1999a, b). It combines the fast

convergence and low dissipation of spectral methods (Giacomini and Giometto, 2021) with the ease of parallelization and sim-

ple handling of boundary conditions of finite differences. Conversely, handling complex domains and non-periodic boundaries

can be problematic, though still possible (Chester et al., 2007; Schmid, 2015; Li et al., 2016).175

Following Perot (1993), we obtain the expressions for time integration through a block LU decomposition of the fully-

discretized equations. This results in expressions in the style of the fractional step method (Chorin, 1968; Temam, 1969), but

avoids the need for boundary conditions for the intermediate velocity and the pressure on a staggered grid and can easily be

adapted when new terms are included or different numerical methods are employed.

Adams–Bashforth methods solving ordinary differential equations of the form du/dt= f(u), u(t0) = u0 can be written as180

u(n+1) = u(n)+∆t
∑s−1

i=0 βif(u
(n−i)), where βi are the coefficients of the method, s is the order of accuracy, and superscripts

denote the time step (Hairer et al., 1993). With β0 = 1 this corresponds to the forward Euler method (s= 1) while β0 =

3/2,β1 =−1/2 gives second-order accuracy (s= 2). Applied to the momentum equation (12), this can be written as

û(n+1) = û(n) +∆t

s−1∑
i=0

βi

(
F(û(n−i))−G p̂(n−i)

)
, (13)

where terms are grouped with the definition F(û)≡Adv(û)+ 1
Re∆û+ 1

Re b̂∆+ f̂ to simplify the notation. Together with the185

continuity equation (12), the fully-discretized equations become

û(n+1) +Gφ̂(n+1) = û(n) +∆t

s−1∑
i=0

βiF
(
û(n−i)

)
and

D û(n+1) =−b̂D

(14)

if we group the pressure contributions with φ̂(n+1) ≡∆t
∑s−1

i=0 βi p̂
(n−i).

Similarly, explicit s-stage Runge–Kutta methods can be written as u(n,i) =
∑i−1

k=0

(
αiku

(n,k) +∆tβikf(u
(n,k))

)
for i=

1, . . . ,s, with u(n,0) = u(n) and u(n+1) = u(n,s) (Gottlieb et al., 2009). This is referred to as the Shu–Osher form (Shu and190

Osher, 1988), where the coefficients αik and βik are not uniquely determined by the Butcher tableau of the method and can be

chosen to minimize storage requirements. In this case, the fully discretized equations can be written as

û(n,i) +Gφ̂(n,i) =

i−1∑
k=0

(
αikû

(n,k) +∆tβikF
(
û(n,k), t(n,k)

))
and

D û(n,i) =−b̂D

(15)

with the definition φ̂(n,i) ≡∆t
∑i−1

k=0βik p̂
(n,k).

Each step or stage requires the solution of a system of equations in the form û+Gφ̂= â and D û= b̂. This can be solved195

with the LU-decomposition I G

D 0

û

φ̂

=

 I 0

D −DG

I G

0 I

û

φ̂

=

 I 0

D −DG

û⋆

φ̂

=

â

b̂

 , (16)
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where û⋆ ≡ û+Gφ̂ has been introduced. The steps to compute the solution are therefore

û⋆ = â ,

DGφ̂=D û⋆ − b̂ , and

û= û⋆ −Gφ̂ ,

(17)

where the second step requires solving a linear system. Since the operator (DG) has no coupling between different wavenum-200

bers, Eq. (17) can be decomposed into N1 ×N2 tridiagonal systems of size N3. For κ1 = κ2 = 0 the system is singular due to

the fact that the governing equations only include the gradient of the pressure and do not place any restrictions on the absolute

magnitude of the pressure variable. This system therefore has to be solved iteratively or the equations have to be regularized,

e.g. by specifying an arbitrary value for one element of φ̂. The current implementation relies on the Thomas algorithm (Quar-

teroni et al., 2007) to solve the tridiagonal systems and includes the forward Euler and second-order Adams–Bashforth methods205

for time integration as well as the strong stability preserving Runge–Kutta methods SSPRK (2,2) and SSPRK (3,3) (Gottlieb

et al., 2009). Adding other explicit methods is straightforward, provided they can be formulated in a similar fashion.

The simulation code is written in the Julia programming language, relying on the Julia bindings to the FFTW library (Frigo

and Johnson, 2005) for fast Fourier transforms. For parallelization, the domain is vertically split into up to N3 blocks that are

computed by separate processes exchanging information through the Message Passing Interface (MPI).210

3 Model validation

The validation efforts presented in this section aim to confirm that the numerical methods are implemented faithfully and that

these methods produce physically relevant results. To maintain this confidence as the code is inevitably modified, a focus is

placed on automated tests that can be rerun after every change. A set of automated unit tests verifies the expected order of

accuracy when computing individual terms of the discretized equations for prescribed velocity fields and when applying the215

time-integration algorithms to ordinary differential equations. A set of automated integration tests verifies that the solution to

canonical transient two-dimensional laminar flows can be simulated with the expected order of accuracy. Finally, fully turbulent

flow solutions are computed and compared to published results produced with different codes. These tests are not automated

since they require significant computational resources and have no analytical solution to compare against so there is some

degree of judgment required to evaluate the quality of the solution.220

The automated tests of individual terms make use of the fact that the implemented numerical methods are exact for certain

velocity fields. The diffusion term and the pressure solver are exact for a function that is the product of truncated Fourier series

along horizontal dimensions and a quadratic polynomial in vertical direction. The advection term is only exact for a linear

function in vertical direction due to linear interpolations, although the term is still second-order accurate. By constructing

such a function with randomized parameters, each term can be computed numerically as well as analytically and matching225

values give a high degree of confidence in the correctness of the implementation. Furthermore, we can verify the order of

convergence when computing the terms at different grid resolutions for a velocity field that cannot be handled exactly by the
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Figure 1. Error convergence for transient two-dimensional laminar flows. The left panel shows second-order convergence as the vertical grid

resolution is refined for flows set up along the vertical direction and a randomly chosen horizontal direction. The other panels show first-,

second-, and third-order convergence as the time resolution is refined for a Taylor–Green vortex set up along the two horizontal directions,

in which case the spatial discretization is exact and the order of convergence of the time integration methods is measured. Grid lines show

the formal order of convergence for each case.

implemented methods. The time integration methods are verified in a similar way by solving ordinary differential equations

that have analytical solutions with different time steps. We also verify that the tridiagonal solver is exact for random inputs.

To test the full solver including time integration, the automated tests include a number of laminar flow problems, currently230

the transient Poiseuille and Couette flows as well as decaying Taylor–Green vortices. Numerical solutions computed at different

resolutions are then compared to the analytical solution to ensure that the order of convergence corresponds to formal order of

the numerical methods, as shown in Fig. 1. Dimensional parameters such as domain sizes and velocity scales are again chosen

randomly since parameters that are zero or unity can mask errors in the solution. For Poiseuille and Couette flows, this includes

the horizontal direction of the flow. The two-dimensional Taylor–Green vortices are oriented both in horizontal and vertical235

planes. For the former, the spatial discretization is exact so the test case verifies the order of convergence of the time integration

method.

The automated tests can be re-run whenever changes are made. By default, tests are run
:::::
above

:::
test

:::::
cases

::::
have

::::
been

:::::::
verified

in single-process (serial) mode as well as in multi-process (parallel) modeand multi-process
:
.
:::::::::::
Multi-process

:
tests are run both

with a vertical resolution greater than and equal to the number of processes since those configurations sometimes rely on240

different code paths. The tests can be run
:::::
Since

:::
the

::::
tests

:::
are

:::::::::
automated

:::
and

:::
run

::::::
within

:::::::
minutes on consumer hardwareused for

code development, although it is recommended to have at least four CPU cores as some MPI implementations struggle when

cores are oversubscribed,
:::::

they
:::
can

::
be

:::::
rerun

:::::::::
whenever

:::::::
changes

:::
are

:::::
made

::
to

:::
the

::::
code

:::
to

:::::
ensure

::::
that

:::
any

::::::
future

::::::
version

:::
of

:::
the

::::
code

:::
still

:::::::
satisfies

:::
all

:::
the

:::::
tested

::::::::
properties.
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Figure 2. Direct numerical simulation (DNS) of a turbulent channel flow at Reτ ≈ 180, validated against data published by Lee and Moser

(2015). Mean profiles are shown for the streamwise velocity u+
1 , the advective transport u+

1 u
+
3 , the diffusive transport ∂u+

1 /∂x
+
3 , as well

as the production P+ and (pseudo)dissipation ε+ of turbulent kinetic energy. The last panel shows contours of the premultiplied turbulent

kinetic energy spectra E+
ii along the streamwise (k+

1 = 2πκ1/L
+
1 ) and cross-stream (k+

2 = 2πκ2/L
+
2 ) direction. The superscript + marks

values in inner units, i.e. non-dimensionalized with the friction velocity uτ and the kinematic viscosity ν.

Turbulence-resolving flow simulations require substantially more computation and are therefore not included in the auto-245

mated tests that are meant to be run routinely during code development. The validation cases presented below are chosen

such that they represent scientifically relevant flow systems while keeping the computational cost moderate. Each case can be

simulated in about two hours using 32 MPI processes on a single compute node of the Intel Skylake generation.

The results of direct numerical simulations are not supposed to depend on the exact method used for modeling the flow, at

least for lower-order flow statistics. For relatively low Reynolds numbers, simulations have been run with many different codes250

and with a wide range of parameters such as domain sizes, aspect ratios, and grid resolutions, so the expected simulation results

are well-established and have been validated against wind-tunnel measurements (Kim et al., 1987; del Álamo and Jiménez,

2003; Lee and Moser, 2015).

In Fig. 2, we show a comparison of a closed-channel flow at Reτ ≈ 180 with data published by Lee and Moser (2015). The

friction Reynolds number Reτ = uτδ/ν is based on the half-channel height δ and the friction velocity u2
τ = ν ∂u1

∂x3

∣∣
x3=0

here.255

The simulation is run with a bulk Reynolds number of Reb = Ubδ/ν = 20000/7, where the vertically averaged bulk velocity

Ub is held constant by a dynamically adjusted pressure forcing. The solution is computed in a domain of size 4πδ in streamwise

and 2πδ in cross-stream direction. The velocity field is discretized with 255×191 Fourier modes at 96 vertical grid points that

are spaced according to a sinusoidal grid transform x3(ζ) = δ+ δ sin((2ζ − 1)ηπ/2)/sin(ηπ/2) with η = 0.97. The mean

statistics computed over ∼17.5 large-eddy turnover times Tτ = δ/uτ after a spin-up time of ∼3.5Tτ closely match the results260

from Lee and Moser (2015).
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Figure 3. Large-eddy simulation (LES) of a turbulent channel flow at Reτ = 108 with an aerodynamically rough wall and a channel height

of h/z0 = 104, validated against a tried and tested Fortran code with the same numerical approach (Giometto et al., 2017). All values are

non-dimensionalized with the friction velocity uτ and the roughness length z0. Mean profiles are shown for the streamwise velocity u1, the

resolved transport u1u3, the subgrid-scale transport τ sgs
13 , as well as the production P and (pseudo-)dissipation ε of resolved turbulent kinetic

energy. The last panel shows contours of the resolved turbulent kinetic energy spectra Eii along the streamwise direction, premultiplied with

the wavenumber k1 = 2πκ1/L1.

For large-eddy simulation, validation is not as straightforward since results remain relatively sensitive to differences in the

modeling approach and in the grid resolution. To validate the new implementation, we limit ourselves to a comparison with a

pre-existing Fortran implementation of the same physical and numerical models (Giometto et al., 2017) and refer to previous

publications for validation studies and discussions of limitations of the modeling approach (Porté-Agel et al., 2000; Yue et al.,265

2007, 2008; Giometto et al., 2016).

In Fig. 3 we show the results of this comparison for an open channel flow at Reτ = 108 driven by a constant body force

f1. The friction Reynolds number Reτ = uτh/ν is based on the channel height h and the friction velocity u2
τ = hf1 here.

The lower surface is characterized by a roughness length z0 that results in a non-dimensional channel height of h/z0 = 104.

The solution is computed in a domain of size 2πh in streamwise and (4/3)πh in cross-stream direction. The velocity field270

is discretized with 63× 63 Fourier modes at 64 equidistant vertical grid points. The mean statistics computed over 80
:::
200

large-eddy turnover times Tτ = h/uτ after a spin-up time of 20Tτ ::::
50Tτ:

closely match for the two separate implementations.

Combined, these validation efforts provide ample evidence that the implementation matches the mathematical formulation

of the methods and that those methods are capable of accurately simulating flow physics, within the limitations of the physical

models. A comprehensive set of easily repeatable validation tests serves both to verify the current implementation and to ensure275

that future developments do not jeopardize correctness. This should not only facilitate adding new functionality but also help
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making changes to existing functionality and avoid getting locked into design decisions that might prove suboptimal for future

developments.

4 Performance and scaling

Defined in a broad way, performance can be understood as the time required to obtain a solution at the required quality given280

the available computational resources. We can examine how the time changes as a function of the required quality and the

available resources (relative performance) or how fast different methods arrive at a solution for fixed quality and resources

(absolute performance). However, it is difficult to measure the overall quality of a turbulent flow simulation in a quantitative

way since the system is chaotic and analytic solutions are not available. Furthermore, there is a great diversity of computational

resources that vary along important dimensions such as floating point operations per second (FLOPS), memory bandwidth and285

latency, network bandwidth and latency, and many more. We therefore narrow the scope of the performance analysis to the

question of the time required to obtain a solution given the specified simulation parameters and the number of compute nodes,

as measured on a fairly typical high-performance computing (HPC) system.

For the implemented explicit time integration schemes, the computational cost of a single evaluation of the right-hand side

of du/dt= f(u) fully characterizes the overall cost of a simulation, which is a simple function of the number of steps and290

the evaluations per step (i.e. stages of a Runge–Kutta method). The computational cost of a single evaluation of f(u) depends

primarily on the number of Fourier modes and vertical grid points and whether a subgrid-scale term is modeled (LES) or

not (DNS). The impact of other parameters such as the type of pressure forcing (constant-flux vs. constant-force), boundary

conditions, and grid transformations is imperceptible.

To assess relative performance, Fig. 4 shows the time required to compute the advection, diffusion, and pressure terms295

for different numbers of compute nodes and vertical grid points. The figure displays both strong scaling, where the number

of processes is varied for a problem of fixed size, and weak scaling, where the problem size is varied in proportion to the

computational resources. These results shows that the advection term contributes most to the overall cost while the pressure

term exhibits the most problematic scaling behavior.

Computing the advection term is a global operation in horizontal direction but only involves neighboring nodes in vertical300

direction. The bulk of the computational work consists of computing discrete Fourier transforms, which are local to each

MPI process and scale as O(N logN) where N is the number of modes. It appears that this cost dominates over the cost

of communication, resulting in near-perfect strong and weak scaling. When computing subgrid-scale stresses with a static

Smagorinsky model, additional transforms are required and the cost increases to almost twice as much without affecting the

scaling behavior.305

Computing the pressure term has no data dependency between horizontal modes but is a sequential, global process in vertical

direction (Thomas algorithm). Horizontal modes can be processed in batches to stagger the sequential passes up and down

the domain, where the size those batches is a tuning parameter that represents a trade-off between maximizing parallelism

and minimizing per-batch overhead. The resulting performance shows imperfect weak and strong scaling. Scaling appears to
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Figure 4. Performance and scaling of individual terms and full time step, as measured on Intel Xeon Ice Lake nodes of the Stampede2 system

at the Texas Advanced Computing Center. Individual terms are computed at a resolution of 256× 256×λNp, where λ ∈ {1,2,4,8,16} is

the number of vertical grid points per MPI process and Np is the total number of MPI processes. Dotted lines indicate weak scaling, dashed

lines indicate strong scaling, and the grid lines correspond to perfect scaling. The last panel shows the overall performance for the resolution

256× 256× 1280 (highlighted in orange on other panels) in comparison to a pre-existing Fortran implementation of the same numerical

approach (Giometto et al., 2017). DNS performance is shown with the symbol +, LES performance with the symbol ×.

improve when there are more vertical grid points per process, increasing the work-to-communication ratio. While the overall310

cost appears to remain at most about a quarter of the cost of the advection term, it is possible that the two costs are even closer

for some combinations of hardware configurations and simulation parameters, in which case it could be worth optimizing the

batch size parameter of the pressure solver.

Computing the diffusion term only involves neighboring vertical grid points and has no global data dependencies. This

results in near-perfect weak scaling. Strong scaling is not quite perfect, which is explained by the fact that there is very little315

work to do for each grid point so the work-to-communication ratio is low. This has no discernible effect on the overall scaling

behavior however, as computing the diffusion term is always at least an order of magnitude less work than computing the

advection term.

To assess absolute performance, Fig. 4 includes a comparison with a Fortran code that implements the same numerical

methods (Giometto et al., 2017). While such a comparison does not answer the question of whether either code is making320

optimal use of the computational resources, it does respond to the practical question of whether there are any performance

trade-offs when substituting the new code for a codebase that has been actively used for turbulence research for over two

decades. The comparison shows that the overall performance of both implementations is of a similar order of magnitude, with

the new Julia implementation showing somewhat better scaling and significantly faster DNS performance.

It appears that the new Julia code has avoided introducing excessive overhead without much effort devoted to performance325

optimization. That it even surpasses the performance of the Fortran implementation is likely explained by two factors. First,

the new code is formulated with the Fourier domain representation at its center, which makes it easier to avoid unnecessary
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Fourier transforms than in the physical-space formulation of the Fortran implementation. Second, the new code makes different

trade-offs between work and communication which appear to be more suitable for modern hardware. Some of these insights

will flow back to the Fortran implementation, reducing the performance discrepancy between the two codes.330

Overall, the performance characteristics of the new code are as expected. The computational cost is dominated by the Fourier

transforms necessary to compute the non-linear term while the pressure solver shows the least favorable scaling properties, and

the overall performance is comparable to a Fortran implementation of an equivalent numerical scheme. The analysis shows that

for the implemented numerical scheme and current HPC hardware, performance is optimized by reducing the number and size

of Fourier transforms and choosing an efficient implementation of the fast Fourier transform algorithm. Other details matter335

less as long as the computational cost can be kept significantly below the cost of the non-linear term.

Future improvements are likely to focus on parallelism along horizontal coordinate directions, either through multi-threaded

CPU code or through GPGPU computation, allowing the code to scale to larger systems. There is also room for optimization in

how communication is handled, which might become important if the work-to-communication is decreased through additional

parallelism. However, performance optimizations always have to be weighed against their impact on code simplicity and ease340

of adaptation. Since the computational cost of flow simulations is a strongly non-linear function of the grid resolution, large

performance differences are required for a practical difference in the scientific problems that can be tackled.

4.1 On the suitability of Julia for high-performance computation

Conceptually, there are two main differences in the performance characteristics of Julia compared to languages like Fortran,

C, and C++. The first difference concerns the handling of types. For a statically typed language like Fortran, the type of every345

variable is specified and therefore available to the compiler, which can use the information to generate efficient machine code.

In Julia, machine code is generated when a function is called for the first time, at which point the types of the function arguments

are known. For subsequent function calls with the same argument types, the compiled code is reused while a new copy of the

function is compiled for calls with different argument types. If the types of all variables inside a function can be derived from

the type of function arguments, the compiler has access to the same information as for a statically typed language and can in350

principle generate the same or equivalent machine code. The second difference concerns the handling of memory allocations.

For a language with (semi-)manual memory management like Fortran, memory is allocated and freed either manually with

explicit commands or following deterministic rules. In Julia, memory is automatically allocated whenever required for the

operation that is performed and the program is periodically interrupted to examine which of the memory is still in use and

which memory can be freed (garbage collection). Vectorized Julia code written in a naive way often allocates large amounts355

of memory for intermediate results, but writing Julia code that operates in-place and avoids such allocations is relatively easy

with experience. Therefore, there is no a priori reason that code written in Julia should be significantly slower (or faster) than

code written in Fortran, C, or C++, although Julia does make it much easier to accidentally include expensive operations that

result in poor performance.

Julia was chosen as implementation language for this code with the goal of improving the ease of development, hoping that360

the negative effect on performance could be kept minimal. However, the experience so far has shown that the net impact on
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performance might even be positive. Performance optimizations can be seen as a continuum from low-level (e.g. vectorized

CPU instructions, optimal use of CPU cache) to high-level (e.g. choice of algorithms, speed–accuracy trade-offs). At the lower

end of this range, Julia relies on the LLVM compiler framework and a number of pre-existing libraries, making use of countless

hours of optimization work, but Julia also makes it rather easy to write code it cannot optimize very well. Maintaining close-to-365

optimal performance therefore requires regular measurements and occasional fixes. High-level optimizations on the other hand

require understanding the performance characteristics of different approaches and choosing the right one, often by measuring

the performance of different implementations. This type of optimization work benefits from the Julia language features and the

ease of integrating packages from a growing ecosystem. The impact of language choice on performance depends not so much

on what optimizations are theoretically possible but which ones are simple enough that they are done in practice. It is therefore370

possible that the choice of Julia will be a benefit rather than a drawback for the performance of this code over its lifetime.

5 Conclusions

Turbulence-resolving ABL flow simulations are subject to a number of competing requirements that have to be considered

when developing simulation code. Availability of physical and numerical models, performance and scalability, ease of use

and ease of modification, safeguards against implementation and usage errors, as well as license terms may vary considerably375

and trade-offs are often inevitable. The Julia programming language is promising more favorable trade-offs by offering the

ergonomics of a modern high-level language without sacrificing performance.

In this paper, we have introduced a new code for turbulence-resolving flow simulations, designed for the requirements of

atmospheric boundary-layer research and written in Julia. The performance is shown to be in line with a Fortran implemen-

tation of the same modelling approach. In fact, it even appears that easier experimentation with algorithmic approaches and380

implementation trade-offs might have a stronger impact on performance than the remaining computational overhead compared

to highly optimized Fortran compilers.

The code also places a focus on continuous
:::::::::
automated testing and minimizing the chances for errors both during development

and usage. This is particularly important in exploratory research, where the expected behavior of a new model or flow system

is not known a priori and it is difficult to discern between inconspicuous errors and novel results.385

The code provides the core functionality for both direct numerical simulation and large-eddy simulation in channel-flow

geometries. In the future, we expect to expand the scope by adding functionality such as more advanced subgrid-scale models,

support for temperature, humidity and transport of passive scalars, and partially resolved complex terrain.

Code and data availability. BoundaryLayerDynamics.jl is open source software and available under the MIT License 2 through the official

Julia package repository and on GitHub2, where the public repository of the package is currently hosted. The version described in this article390

2https://opensource.org/licenses/MIT
2https://github.com/efpl-columbia/BoundaryLayerDynamics.jl
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is archived on Zenodo (Schmid, 2023). The data and code required to reproduce this paper are
:::
also

::::
made

:
available in Schmid et al. (2023)

::
on

:::::
Zenodo

::::::::::::::::
(Schmid et al., 2023).
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