Preprints
https://doi.org/10.5194/egusphere-2022-1378
https://doi.org/10.5194/egusphere-2022-1378
02 Feb 2023
 | 02 Feb 2023

The KNMI Large Ensemble Time Slice (KNMI-LENTIS)

Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel

Abstract. Large-ensemble modelling has become an increasingly popular approach to study the mean climate and the climate system’s internal variability in response to external forcing. Here we present the KNMI Large ENsemble TIme Slice (KNMI-LENTIS): a new large ensemble data set produced with the re-turned version of the global climate model EC-Earth3. The ensemble consists of two distinct time slices of 10 year each: a present-day time slice and a +2 K warmer future time slice relative to present-day. The initial conditions for the ensemble members are generated with a combination of micro and macro perturbations. The 10-year length of a single time slice is assumed to be too short to show a significant forced climate change signal, and the ensemble size of 1600 years (160 x 10 years) is assumed to be sufficient to sample the full distribution of climate variability. The time-slice approach makes it possible to study extreme events on sub-annual timescales as well as events that span multiple years such as multi-year droughts and preconditioned compound events. KNMI-LENTIS is therefore uniquely suited to study internal variability and extreme events both at a given climate state and those resulting from forced changes due to external radiative forcing. A unique feature of this ensemble is the high temporal output frequency of the surface water balance and surface energy balance variables, which are stored in 3-hourly intervals, allowing for detailed studies into extreme events. The data set is particularly geared towards research in the land-atmosphere domain. EC-Earth3 has a considerable warm bias in the Southern Ocean and over Antarctica. Hence, users of KNMI-LENTIS are advised to make in-depth comparisons with observational or reanalysis data especially if their studies focus on ocean processes, on locations in the Southern Hemisphere or on teleconnections involving both hemispheres. In this paper, we will give some examples to demonstrate the added value of KNMI-LENTIS for extreme and compound event research and for climate-impact modelling.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Aug 2023
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023,https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The KNMI-LENTIS dataset is a large ensemble of global climate model simulations with model...
Share