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Abstract. Large-ensemble modelling has become an increasingly popular approach to study the mean climate and the climate

system’s internal variability in response to external forcing. Here we present the KNMI Large ENsemble TIme Slice (KNMI-

LENTIS): a new large ensemble produced with the re-tuned version of the global climate model EC-Earth3. The ensemble

consists of two distinct time slices of 10 years each: a present-day time slice and a +2K warmer future time slice relative to

present-day. The initial conditions for the ensemble members are generated with a combination of micro and macro perturba-5

tions. The 10-year length of a single time slice is assumed to be too short to show a significant forced climate change signal, and

the ensemble size of 1600 years (160×10 years) is assumed to be sufficient to sample the full distribution of climate variability.

The time slice approach makes it possible to study extreme events on sub-daily timescales as well as events that span multiple

years such as multi-year droughts and preconditioned compound events. KNMI-LENTIS is therefore uniquely suited to study

internal variability and extreme events both at a given climate state and those resulting from forced changes due to external10

radiative forcing. A unique feature of this ensemble is the high temporal output frequency of the surface water balance and

surface energy balance variables, which are stored in 3-hourly intervals, allowing for detailed studies into extreme events. The

large ensemble is particularly geared towards research in the land-atmosphere domain. EC-Earth3 has a considerable warm bias

in the Southern Ocean and over Antarctica. Hence, users of KNMI-LENTIS are advised to make in-depth comparisons with

observational or reanalysis data especially if their studies focus on ocean processes, on locations in the Southern Hemisphere15

or on teleconnections involving both hemispheres. In this paper, we will give some examples to demonstrate the added value

of KNMI-LENTIS for extreme and compound event research and for climate-impact modelling.
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1 Introduction

Climate change is a topic of high societal interest due to its influence on weather (impacts) around the world. Further scientific

understanding of the changing nature of the relationship between weather and society is required to design adequate local40

adaptation and mitigation strategies. Not only the climatic mean, but also the variability around the mean is subject to change.

Recent studies have shown that long-term trends in climate variability can differ substantially from trends in mean climate

(Brown et al., 2017; Pendergrass et al., 2017; Bintanja et al., 2020; van der Wiel and Bintanja, 2021), because physical processes

that govern changes in variability can differ from those that affect changes in the mean state. The effects on climate extremes

can even be of the opposite sign (Schaeffer et al., 2005; van der Wiel and Bintanja, 2021), depending on for example the45

climate variable and the region. Climate models are important tools to examine the Earth system’s response to greenhouse

gas forcing and the associated uncertainties. Model simulations extend and complement the comparatively short observational

records. Further, simulations allow for experiments to test the impacts of specific climate feedback mechanisms, which would

not be possible in the real world.

Single-model initial-condition large ensemble (SMILE) climate model simulations are uniquely suited for the study of un-50

certainties in (changing) climate variability and of climate extremes (Deser et al., 2020a; Maher et al., 2021; Wood et al., 2021).

SMILEs consist of many repetitions of the same climate modelling experiment that only differ in their initial conditions. The

different initial conditions lead to divergence due to the chaotic nature of the climate system, i.e. unpredictable internal vari-

ability. This results in various model realisations within the internal variability of a certain average climate state. The use of

SMILEs has become increasingly popular in climate science, and very recently also started to find its way into other related55

geosciences, (e.g. in hydrology, van der Wiel et al., 2019c; Champagne et al., 2020; Poschlod et al., 2020). Typically, large

ensemble simulations are set up following transient climate forcing scenarios, e.g. those designed for the Coupled Model Inter-

comparison Projects (CMIP). The choices for emission scenario, simulation length, horizontal and vertical model resolution,

and the number of ensemble members (e.g. Milinski et al., 2020) are often an optimisation between the available computational

resources and the need or wish for more detailed simulations. Various climate modelling centres have produced large ensembles60

and have made efforts to make them openly available for research. Examples are the seven CMIP5-class transient ensembles

collated in a centralized archive (MMLEA, Deser et al., 2020a), GCM ensemble experiments based on CMIP protocol (e.g.

Kay et al., 2015; Kirchmeier-Young et al., 2017; Maher et al., 2019; Deser et al., 2020b; Rodgers et al., 2021; Wyser et al.,

2021) and ensembles of regional climate model runs (e.g. Lenderink et al., 2014; Massey et al., 2015; Leduc et al., 2019).

In this manuscript we present and describe a recently produced large ensemble following a time slice protocol: the Royal65

Netherlands Meteorological Institute (KNMI) Large ENsemble TIme Slice (KNMI-LENTIS). The time slice protocol is differ-

ent from the transient ensemble simulations mentioned above. We ran many simulations of a decade long for a climate state of

interest rather than a number of multi-decadal or multi-centennial transient simulations. The KNMI-LENTIS ensemble consists

of two time slices: a present-day period and a future period 2 K warmer than present-day. Each time slice has 160 members of

10 simulation years each.70
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We made the following assumptions in the design of the ensemble, which we test in Section 3: the 10 year segments are

assumed to be too short to show a significant forced climate change signal, 1600 years of data is sufficient to sample the full

distribution of climate variability, and differences between the two time slices can be attributed to forced climate change. With

these assumptions, a single time slice can be used to investigate internal climate variability of a certain climate state, whereas

the two time slices together can be applied to study differences in the mean state and the differences in variability between the75

two climate states.

The KNMI-LENTIS design protocol is inspired by a previous time slice large ensemble produced at KNMI (van der Wiel

et al., 2019c) though improved based on earlier experience: longer simulation length (10 years vs. 5 years), higher temporal res-

olution (sub-daily vs. daily output of surface hydrology and surface energy variables), improved method of micro-perturbations

(perturbed initial conditions vs. stochastic perturbed physics tendencies) using the latest release of EC-Earth (CMIP6 genera-80

tion vs. CMIP5) with higher resolution and improved physics in many aspects (Döscher et al., 2021). The previous large en-

semble has been widely used, for example contributing to analyses of climate variability and forced trends therein (Blackport

et al., 2019; van der Wiel and Bintanja, 2021; Sperna Weiland et al., 2021), analyses of changing climate extremes (Bonekamp

et al., 2021; Nanditha et al., 2020), and climate attribution research (e.g. Philip et al., 2019, 2020; Kew et al., 2021). Derived

simulations, in which the ensemble was used to drive models from other geosciences disciplines, e.g. hydrological modelling85

(e.g. van der Wiel et al., 2019c; van Kempen et al., 2021), vegetation modelling (e.g. Tschumi et al., 2021, 2022), crop mod-

elling (e.g. Vogel et al., 2021; Goulart et al., 2021; Zhang et al., 2022) or energy modelling (e.g. van der Wiel et al., 2019a, b),

were used to assess the influence of (changing) climate variability on various natural and societal systems. Finally, the large

ensemble was used to develop and test scientific methods (e.g. van Kempen et al., 2021; van der Wiel et al., 2021; Boulaguiem

et al., 2022).90

The way the ensemble is set-up and generated is described in Section 2. In Section 3 we provide a description of the data

and discuss the advantages and limitations of the underlying assumptions. In addition, we show examples of possible analyses

using time slice large ensembles, including their value for compound event research as well as for climate-impact modelling

(Section 4). Finally a short conclusion is provided (Section 5).

2 Set-up95

KNMI-LENTIS consists of two time slices with each 160 simulations of 10-year length. The time slices represent the present-

day climate (2000–2009) and a +2 K warmer future climate (2075–2084 in SSP2-4.5 in EC-Earth3) (Figure 1a). Each time

slice thus consists of 1600 years of model data. In this section we describe the climate model, we elaborate on the choice

of the periods and their forcing scenario, and we describe the initial conditions of the individual simulations and how they

have been generated. All simulations have a unique ensemble member label that reflects the forcing, the parent and the seed.100

Further, all simulations are labeled per the CMIP6 CMOR convention of variant labelling. In Appendix A, both the ensemble

member label and the CMIP6 variant label of KNMI-LENTIS simulations are explained. The initial conditions (ICs) of the

ensemble members can be characterized by two aspects: the parent simulation from which each member is branched off (macro
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perturbation), and the seed number which relates to a particular micro-perturbation in the initial three-dimensional atmosphere

temperature field.105

2.1 Model description

KNMI-LENTIS is generated with the model EC-Earth3. EC-Earth3 is a fully coupled, state-of-the-art global Global Climate

Model that is maintained by a consortium of European weather and climate centers (Döscher et al., 2021). The model runs at a

80 km nominal resolution and has prognostic component models for atmosphere, ocean, sea ice, and land hydrology processes.

The atmosphere is simulated with ECMWF’s IFS cy36r4. The horizontal resolution is the TL255 spherical harmonics field,110

which is linearly reduced in the post processing stage to a Gaussian grid equivalent of 512 x 256 grid cells in longitude/latitude.

The vertical resolution is 91 levels with the top level at 0.01 hPa. The ocean model NEMO3.6 uses a tripolar grid ORCA1 which

primarily has 1◦ horizontal resolution with meridional refinement down to 1/3◦ in the tropics. The grid dimensions are 362

x 292 longitude/latitude in the horizontal and 75 levels in the vertical with the top grid cell in the 0-1 m layer. The sea-ice

model is LIM3, which shares the ORCA1 grid. The internal time step for both atmosphere and ocean is 45 minutes. The115

coupling frequency between atmosphere and ocean is equal to the internal time step. Further details on the EC-Earth3 model

are provided in Döscher et al. (2021).

The land surface model of EC-Earth is H-TESSEL: Hydrology - Tiled ECMWF Scheme for Surface Exchanges over Land,

with revised land surface Hydrology (van den Hurk et al., 2000; Balsamo et al., 2009; Dutra et al., 2010). H-TESSEL computes

the land surface water and energy balance at the interface of the soil and the atmospheric boundary layer. The model uses a120

tiling approach to calculate the surface energy fluxes, the skin temperature and soil parameters. It divides each grid box into

homogeneous fractions (tiles) representative of vegetated, bare soil, frozen water, and liquid water surfaces. The grid box

fluxes and skin temperature values are generated as weighted averages of the tiles. Soil properties and parameterizations are

not tile-specific but instead they apply to the entire grid cell, such that H-TESSEL simulates soil moisture per grid cell.

The EC-Earth3 version that is used for the simulations of KNMI-LENTIS is the knmi23-dutch-climate-scenarios project125

branch (physics index p5), from now on referred to as the ‘ECE3p5 version’. The ECE3p5 version is a re-tuned version of the

EC-Earth 3.3. release for CMIP6 (Döscher et al., 2021). EC-Earth 3.3 has a warm bias in the Southern Ocean and a cold bias

in the Northern Hemisphere. The KNMI re-tuning effort focused on reducing the Northern Hemisphere cold bias. This has

been successful with the trade-off of increasing the Southern Ocean warm bias, therefore introducing a positive global mean

surface temperature (GMST) bias (see also Section 3.2). As the main research aims of KNMI-LENTIS are oriented towards130

the Europe region, we have accepted this trade-off.

The re-tuning used a subset of the atmospheric cloud tuning parameters that were selected in earlier work of atmospheric

tuning of EC-Earth3 (see section 2.2.1 in Döscher et al., 2021, for further details). Two tuning parameter values have been

changed in the ECE3p5 version compared to the EC-Earth 3.3.3.2 release: RVICE (fall speed of ice particles) and RLCRIT-

SNOW (critical autoconversion threshold for snow in large-scale precipitation). RVICE is set to 0.1328 in the re-tuning; (0.137135

in EC-Earth 3.3.; 0.15 in IFS cy36r4) and RLCRITSNOW is 4.6× 10−5 (4.0× 10−5 in EC-Earth 3.3.; 5.0× 10−5 in IFS

cy36r4). The other tuning parameters remain the same as in Table 6 of Döscher et al. (2021).
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Spinning up the model was done in parallel with the re-tuning process. The spin-up runs of the differently tuned models have

been combined, because the slow ocean spin-up is believed to benefit from running more years with a set of parameter values

that is very close. The initialization of the ECE3p5 version pre-industrial (PI) run was done with the restart files of year 2750140

from the EC-Earth3 physics index p2 PI run. The ECE3p5 version PI ran from model year 2750 to 4585. The 16 historical

simulations are branched with intervals in the initial conditions of 25 years, starting with member 1 in year model 4550, then

going backwards with member 2 in 4525, member 3 in 4500, ... member 16 in 4175. This means for the member with shortest

spin-up time with the ECE3p5 version, this is 4550− 2750 = 1800 years. Additional spin-up has taken place prior, albeit via

runs with a slightly different tuning parameter sets p2 and p1 (Reerink et al., in prep). All added together, the trajectory of145

the ECE3p5 version spin-up covers about 6000 years. With this version of EC-Earth, the KNMI has produced an ensemble of

16 transient simulations with CMIP6 forcing for 1850-2100 (historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). Details of

these simulations and of the re-tuning procedure of ECE3p5 version are described in Reerink et al. (in prep).

The SMHI has generated a Large ENSemble (SMHI-LENS) with EC-Earth3 version 3.3.1 (‘ECEp1 version’ for short)

(Wyser et al., 2021). This large ensemble is a transient ensemble of 50 members for the period 1970 to 2100 (historical, SSP1-150

2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). The model version of SMHI-LENS is the CMIP6 release version of EC-Earth3: it was

tuned, among other things, to have the smallest possible GMST bias with respect to reanalyses and observational records. The

ECE3p5 version on the other hand was tuned to have the smallest possible Northern Hemisphere-MST bias. Therefore, the

difference between SMHI-LENS and KNMI-LENTIS/the KNMI transient simulations is that they have a different equilibrium

climate: this affects the climate in the pre-industrial, historical and SSP simulations (Meehl et al., 2020). The transient cli-155

mate response (TCR) is 2.1 for ECE3p5 (2.3 for ECEp1 en 2.0 for CMIP6 multimodel mean). The model’s effective climate

sensitivity (ECS) is 4.0 for ECE3p5 (4.3 for ECEp1 en 3.7 for CMIP6 multimodel mean). Other than that, there are very few

differences between the models: the model version used for KNMI-LENTIS (the atmosphere & ocean dynamical core, the

land- and sea-ice models) is the same as EC-Earth3.3.1 that is used for SMHI-LENS. For the overlapping years and scenario

forcing, KNMI-LENTIS can be compared to SMHI-LENS like any two other large ensembles with common ancestry, see160

Knutti et al. (2013) for examples.

2.2 Time slice choices: period and forcing scenario

The design of the ensemble required four choices. Two choices in the ensemble design were made a priori: the simulation

length and the climatic states of interest. The length of each time slice was chosen at 10 years. Limiting the simulations to

10 years avoids having any appreciable trend. This approach allows for studying extreme events on subannual timescales as165

well as events that span multiple years (e.g., multi-year droughts, preconditioned compound events as in Pascale et al. (2021);

van der Wiel et al. (2022)). The climatic states of interest are the present-day (named ‘PD’), and a future world that is +2K

warmer than present-day in the annual GMST (named ‘2K’).

The other two choices were: 1) which years would represent the PD and 2K periods, and 2) which SSP scenario would we

used to force the 2K period. The criterion to make this decision was based on the decadal climate change trend. To be able to170

analyse forced changes in climate variability between PD and 2K, it is important that the forced signal within a time slice is
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as small as possible. This way we can accept each individual year as a suitable representative of the respective climatic state.

Given that the decadal trend cannot be zero because there is a (observed) climate change signal in the present-day, we aim to

choose a +2K period that has a similar decadal climate change trend as PD. Choosing the years to represent the PD and 2K

periods was further limited by the availability of initial condition files: they are available every 10 years. In the historical period175

that is in 1990, 2000, 2010; and for the scenario-forced period that is 2015, 2025, 2035 etc. Finally, from a technical point, we

decided not to allow mixed forcing within a period (i.e., combining historical and SSP forcing). This prohibits the PD period

to be defined beyond 2014, as CMIP6 historical forcing covers the years 1850–2014.

We have taken the years 1985–2014 from the 16 transient historical simulations with the ECE3p5 version (described in

Section 2.1) to calculate the present-day GMST. This period is exclusively forced by historical forcing, meaning we avoid180

blending in a SSP scenario after 2014 and push our analysis in a particular direction. The mean 1985–2014 GMST of the 16

members µ= 15.47◦C, with an ensemble standard deviation of σ = 0.15◦C.

Next, we consider the future SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 scenario simulations which each have 16 members.

We calculate in what year the annual mean GMST reaches 15.47+2.00◦C in the scenario simulations, and the 10-year GMST

changes around this year. We find that the SSP1-2.6 scenario does not reach this target value before 2100. Between the SSP2-185

4.5, SSP3-7.0 and SSP5-8.5 scenarios, the SSP2-4.5 scenario shows relatively the smallest forced signal in the 10-year period

around the target GMST value, therefore we chose to initialize the 2K time slice from the SSP2-4.5 scenario.

Because the forced signal is comparatively small, the SSP2-4.5 scenario shows a relatively larger spread in the timing of

reaching the warming target (σ = 9.5 year). The 16 member ensemble-mean simulated year when the forced signal leads to a

mean state of 15.47+2.00 is year 2073. Given the constraints on the availability of initial conditions and given of the large190

spread in timing when SSP2-4.5 reached our desired GMST increase, our best estimate of years to represent the PD and

2K climates are the years 2000–2009 simulated using historical forcing and the years 2075–2084 of the SSP2-4.5 scenario.

Figure 1a shows the timing of the two time slices in the 16 transient simulations: the PD time slice is marked by the left pink

band and the 2K time slice is marked by the right pink band.

2.3 Initial conditions195

There are several ways to generate multiple unique ensemble members. These include applying micro and macro perturbations

to the initial-conditions (Deser et al., 2020a). A micro perturbation refers to adding a round-off level perturbation to an input

field of the GCM, which generally is the three-dimensional atmosphere temperature field. The perturbation propagates due to

the chaotic behaviour of the atmosphere model. As such this method produces a unique ensemble member for each unique

micro perturbation. Macro perturbations refer to initial conditions that are more fundamentally different among each other.200

Usually such initial conditions are acquired by branching from a different point in the parent run (such as the initialization of

the historical simulations described in Section 2.1). This way, the initial state is different not only in the atmosphere but in all

model components. Another method to create different members is to make use of uncertainty in parameter space, for example

using stochastic perturbed physics tendencies (SPPT, as used in the operational ECMWF forecast ensemble (Ollinaho et al.,

2017; Lock et al., 2019) and in the previous KNMI time slice ensemble by van der Wiel et al. (2019c)).205
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For KNMI-LENTIS we use a combination of micro and macro perturbed initial conditions. We realise this may impact the

ensemble variability of for example the first year; this is investigated in Section 3.5. The parents from which the simulations

are branched can be considered as macro perturbed initial conditions, given that all parents are rooted in the same PI spin-up.

The parents are sixteen full transient historical and SSP2-4.5 simulations made using the ECE3p5 version. The 16 historical

simulations start in 1850, branched off the PI spin-up simulation. The 16 SSP2-4.5 simulations start in 2015, from the end of210

their respective historical simulation in 2014 (Figure 1a).

Micro perturbations are applied to the initial three-dimensional temperature field of the atmosphere as in Haarsma et al.

(2020). Each value in the input field is multiplied by a number from a random uniform distribution of values between −5×
10−5 K and +5×10−5 K to yield the perturbed field. We have created nine different random distributions, using a seed from 1

to 9 to assure reproducibility. For one parent, that yields nine sets of micro-perturbed ICs. Including the original set this is ten215

sets of ICs in total, for ten members (visualized in Figure 1b). Figure 1c visualizes the full ensemble set-up with all members:

ten micro perturbations for sixteen historical and scenario macro perturbations, each simulation is run for ten years.

3 Limitations

In this section, we evaluate and discuss several aspects of the ensemble that are important for users to consider. We quantify

the ensemble temperature difference between the present-day time slice and the +2K time slice for different seasons and for220

several subsections of the world. We discuss the magnitude of the near-surface temperature biases in the model by making a

comparison with ERA5 reanalysis data (Hersbach et al., 2020). Further, we discuss the validity of two critical assumptions:

1. Within a time slice, the 10 year segments are too short to show a significant forced climate change signal,

2. The ensemble size, 1600 years for both time slices, is sufficient to sample the full distribution of climate variability.

If true, this means that a single time slice can be used to investigate internal or natural climate variability at a given climatic225

state, and that any differences between the two time slices can be attributed to forced climate change. Finally, we comment on

the micro and macro initialization method and the legacy effect of a common parent on variability.

3.1 Temperature difference between the time slices

The 2K time slice is designed to be 2K warmer than the GMST of the present-day time slice, as detailed in Section 2.2. Here

we quantify the ensemble spread of the surface temperature difference (∆T2m) between the two time slices. The annual global230

mean ∆T2m is close to the GMST+2K target: 1.95 K on average (Table 1).The spread in GMST is shown in Figures 3a and 3c.

Given that global climate change has specific local and regional imprints, the temperature difference is season and region

dependent. The 2K time slice shows enhanced warming in the Northern Hemisphere, Europa and North America. South and

Southeast Asia is closer to the global value (Table 1).
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Figure 1. Overview of KNMI-LENTIS ensemble set-up. (a) Global Mean Surface Temperature (GMST) of the 16 ECE3p5 ensemble

members forced with CMIP6 historical and SSP2-4.5 forcing. Pink shading shows the two time slices in KNMI-LENTIS. (b) Part of the

time slice set-up. From each of the 16 parent runs (grey), 10 KNMI-LENTIS simulations (pink) are branched using unique seeds to make a

micro-perturbation in the atmospheric initial conditions. (c) The full ensemble consists of two time slices of 10 years with 1600 years of data

each: present-day (PD) and present-day +2K global warming (2K). The parents are visualized by the grey (historical) and blue (SSP2-4.5)

lines. The KNMI-LENTIS simulations are visualized by the pink lines.
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Table 1. Temperature difference between the time slices. Ensemble mean of the near-surface air temperature difference [K] between the

2K time slice and the PD time slice. The regions used to compute Europe, N. America and S.&SE. Asia means are shown in figure 2.

ANN DJF MAM JJA SON

Global 1.95 2.02 1.83 1.90 2.06

N.Hemisphere 2.52 2.67 2.29 2.42 2.72

Europe 2.55 2.40 2.29 2.81 2.69

N. America 2.46 2.63 2.18 2.50 2.53

S. & SE. Asia 1.94 2.00 1.95 1.91 1.90

3.2 Quantification of model bias235

The re-tuned EC-Earth3 ECE3p5 version has a known warm bias in the Southern Hemisphere (Section 2.1). In this section

we quantify the magnitude of this bias and evaluate its spatial and temporal properties. The near-surface temperature of the

present-day time slice of the ensemble is compared to ERA5 (Hersbach et al., 2020). We have chosen the WMO defined

Climatological Standard Normals reference period 1991–2020, to have sufficient present-day climate variability to compare

with. The ERA5 data is re-gridded to the coarser EC-Earth grid using nearest neighbour interpolation.240

The global annual mean surface temperature bias in the PD time slice of KNMI-LENTIS with respect to ERA5 is 1.30 K

(Table 2). This is largely due to a strong warm bias in the Southern Ocean and over Antarctica (Figure 2a). The temperature

bias over land is generally smaller in magnitude and more often insignificant compared to the ocean bias. The near-surface

temperatures in the North Atlantic gyre and the North Pacific gyre are significantly underestimated.

The integrated annual mean temperature bias of the Northern Hemisphere is 0.23 K, which is much smaller than the global245

bias (Table 2). Further, we see a stronger seasonal pronunciation of the bias in the Northern Hemisphere, with a larger bias

in the summer and fall, and a smaller bias in winter and spring. There are regional differences, with generally cold bias in

mountainous regions with steep orography. In all cases in the Northern Hemisphere the bias is much smaller than the global

bias. See Figures 2b-d and Table 2 for specifications for the regions of Europe, North America and South & South-East Asia.

This outcome is in line with the expectations of using the re-tuned ECE3p5 version, of which the global warm bias is larger250

than that of the EC-Earth3 released version in Döscher et al. (2021), but much improved for the Northern Hemisphere. Future

users of KNMI-LENTIS are advised to make in-depth comparisons with observational or reanalyses data especially if their

study focuses on ocean processes, on locations in the Southern Hemisphere or on teleconnections involving both hemispheres.

3.3 Forced climate signal within a time slice

To quantify the relative size of the forced climate change signal to the interannual variability within the time slices (assump-255

tion 1) we investigate the linear trend of GMST (Figure 3a,c). Both time slices have an interannual ensemble standard deviation

of 0.17 K for the annual mean GMST value on the 10 time slice years average. The linear trend over the 10 year simulation

period is only slightly larger than this, at 0.20 K per 10 year for the PD ensemble and 0.22 K per 10 year in the 2K ensem-
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Figure 2. Model bias. Near-Surface Air Temperature bias [K] for the annual-average, ensemble-mean of the KNMI-LENTIS present-day

time slice [160×(2000–2009)] compared to ERA5 [1991–2020]. For (a) Global, (b) Europe, (c) North-America, (d) South and Southeast

Asia. In panels (b-d) grid cells with a non-significant difference are dotted (p<0.01).

Table 2. Quantification of model bias w.r.t. ERA5 1991–2020. Ensemble mean of the near-surface air temperature bias [K] of the KNMI-

LENTIS present-day 2000–2009 time slice w.r.t. ERA5 1991–2020. The regions for Europe, N. America and S.&SE. Asia are shown in

figure 2.

ANN DJF MAM JJA SON

Global 1.30 1.22 1.20 1.43 1.33

N. Hemisphere 0.23 0.18 -0.28 0.41 0.60

Europe 0.35 -0.14 -0.06 0.87 0.71

N. America 0.38 -0.26 -0.25 0.46 1.04

S. & SE. Asia -0.10 -0.26 -0.35 0.15 0.06
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Figure 3. Quantification of assumption 1: size of forced trends within a time slice. (a,c) Ensemble spread of annual mean values of

Global Mean Surface Temperature (GMST, shaded colours, percentile values denoted on the left). Ensemble interannual standard deviation

and ensemble linear trend of GMST over 10 years shown in bottom right corner, including the 80% spread of this value for individual

members. The black bar in the centre shows the relative size of this linear trend to the ensemble spread. (b,d) Global map of the ratio between

the ensemble linear trend in near-surface temperature and the ensemble standard deviation in near-surface temperature. (a,b) show the PD

time slice, (c,d) the 2K time slice.

ble (black error bars in Figure 3a,c), approximately 1.25 times larger than the interannual ensemble standard deviation. At

the global scale, we therefore conclude this assumption holds. Locally, or for other variables, forced trends may exceed the260

respective trends.

In Figure 3b,d we show the ratio of the 10 yr linear trend of near-surface temperature (TAS) and the ensemble standard

deviation at grid point level. Low values of this quantity are preferred. In most parts of the world, the value is smaller than one,

indicating a smaller forced trend than ensemble internal variability. We acknowledge that interannual variability is different for

different variables. We therefore advise future users of KNMI-LENTIS to check the validity of assumption 1 on a case-by-case265

basis.

3.4 Range of sampled internal variability

To test whether or not the full distribution of climate variability has been sampled in a 1600 year time slice (assumption 2) we

investigate daily temperature variability in a single grid point (52.3◦N, 4.9◦E; nearest point to De Bilt, the Netherlands). We
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Figure 4. Quantification of assumption 2: sampling internal variability within a time slice. (a) Distribution of daily 2 m temperature

(TAS) data at 52.3◦N, 4.9◦E, in two halves of the PD ensemble (blue and green shading and lines, each based on 800 years) and 2K ensemble

(red dotted line, based on 1600 years). (b) GEV fit distribution (lines) and modelled data (dots) value plot for the warmest day of the year,

using the same colours as in (a).

cannot test how different the distribution would be in a second set of 1600 years. Therefore we investigate differences between270

two halves of the PD ensemble, each of 800 simulation years. The shape of the distribution in Figure 4a shows two peaks,

which is a known phenomenon in The Netherlands due to the fairly rapid transition between the summer and winter season.

The distribution of all daily temperature values in the two smaller ensembles are indistinguishable from each other, suggesting

that variability has been adequately sampled in these half ensembles (see full blue line and dotted green line in Figures 4a

and b). Sampling adequately in the tail of the distribution, e.g. for the warmest day of the year, requires larger sampling sizes.275

However, also here the two halves of the PD ensemble are statistically similar (Fig 4b, differences between the generalized

extreme value (GEV) fitted distributions are well within the associated error bars). Comparing the PD distributions to the

distribution of the 2K ensemble, we note that forced climate change does significantly impact the shape of the distribution.

We also note that variability beyond the scope of the climate model (e.g. at scales smaller or larger than resolved, missing

processes) is not captured by these ensembles.280

3.5 Legacy of micro perturbations in simulated variability

The way that the members of an ensemble are initialized impacts climate variability of that ensemble in the initial stages.

Specifically, when multiple initialization methods are combined, like the micro and macro perturbed initial conditions in the

case of KNMI-LENTIS, there can be a too large degree of similarity at the beginning between similarly initialized members.

Therefore, we need to assess the differences in variability between and among members of a common macro perturbation285

(parent) at the beginning of the simulations, and assess the time it takes to converge to a similar level of variability.

In KNMI-LENTIS, the initial conditions from a common parent of the ocean state are completely the same; only in the

atmosphere state there are small differences due to the micro perturbation. The legacy of information from the initial conditions
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has consequences for the estimated variability. This may show a spurious peak at this (early) year 1 value. The effect of the

shared parent on variability differs per location and variable. We test this with a subset of parents for local near-surface290

temperature (TAS) variability in De Bilt, The Netherlands, and for El Niño–Southern Oscillation (ENSO) variability. The TAS

variability in De Bilt seems to have lost the initial-condition information after around 20 simulation days (Figure 5). For the

ENSO signal it takes 2 or 3 years to lose the initial-condition information (Figure 6).

An important goal of large ensemble modelling is to be able to separate the part of the model outcome that can be attributed

to a forced signal (climate change) from the part that comes from internal variability (climate variability). With this knowledge,295

we can reduce uncertainty in climate projections. There is a part of uncertainty that cannot be reduced, which is due to the

chaotic nature of the climate system, (i.e. irreducible uncertainty, see Hawkins et al., 2016; Marotzke, 2019; Singh et al., 2023).

This can be sampled with the micro perturbations. For the members of different macro perturbations, the signal of common

ancestry has to dissipate first. The above examples show how quickly the chaotic nature of the Earth system model takes over the

initial condition micro-perturbation. However, the speed of dispersion varies spatially and is variable dependent. We therefore300

advise future users to quantify this effect for their variables of interest, and if necessary remove the first days/months/year of

each simulation to ensure that estimates of variability do not suffer from this effect.
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(a) Time series in first part of LENTIS-PD time slice
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Figure 5. Test of influence of parent on variability: local TAS. (a) Time series, coloured by parent, of TAS at a grid point (52.3◦N, 4.1◦E)

for the first 31 days of the simulations. (b) Time series of variability (estimated as the standard deviation of TAS of all members with a certain

parent, then averaged over the parents) different years in the time slice.

4 Demonstration

In this section, we demonstrate the ensemble by giving examples of interesting cases. This ensemble has the unique feature of

high frequency output, allowing for detailed studies into extreme events. The surface water balance and surface energy balance305

variables are stored at 3-hourly intervals. Atmospheric variables (relative humidity, specific humidity, temperature, eastward

wind, northward wind, omega) are saved daily on eight pressure levels (1000, 850, 700, 500, 250, 100, 50, 10 hPa). Additionally,

a number of land, ocean, atmosphere variables is stored monthly. The variables are post processed and standardized to CMIP6
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(b) Average variability among members of same parent

Figure 6. Test of influence of parent on variability: Niño-3.4. (a) Distribution of the annual mean Niño-3.4 index, separated by parent and

simulation year. (b) Time series of variability (estimated as the standard deviation of Niño-3.4 of all members with a certain parent, then

averaged over the parents) throughout the time slice.

convention. The full overview of the output variables can be found in Appendix B. More information on the variables and

their output dimensions is accessible via the following search tool: https://clipc-services.ceda.ac.uk/dreq/mipVars.html, last310

accessed September 19, 2022.

4.1 Climatological context of observed extreme events

Weather extremes usualy take place in a point in time. This often raises questions about the climatological context of such an

event and about the climate change aspects of similar events. KNMI-LENTIS can be used to determine, for example, the return

interval of specific type of events. With this information we can infer the range of frequency and magnitude that can occur315

within the climate’s variability, and what the influence of climate change is on this (van Oldenborgh et al., 2021; van der Wiel

et al., 2021).

The effect of the forced climate difference can be seen in other variables throughout the Earth system since EC-Earth is a fully

coupled climate model. Figures 7a 7c highlight some extreme weather/climate events that have occurred in recent past. The

Greenland Ice Sheet (GrIS) has seen unprecedented melt events in the recent years (e.g. [http://nsidc.org/greenland-today/2021/320

08/large-melt-event-changes-the-story-of-2021/], last accessed: Oct 3, 2022). Figure 7a shows the simulated return intervals

of July average snow melt rates for a grid point in the eastern part of the Greenland Ice Sheet (72◦N, 30◦W). The higher return

intervals in the 2K time slice are due to a projected increase in future July melt event frequency.

The Southern England railroad organisation introduced speed restrictions during the 2022 heat wave in response to drying

and shrinking of the clay soils, which made the train tracks prone to movement (e.g. [https://www.networkrail.co.uk/stories/325

soil-moisture-deficit-on-the-railway/], last accessed: Oct 3, 2022). Figure 7b shows simulated surface air temperatures in July

for a grid point in Southern England (51◦N, 2◦W) against column integrated soil moisture content, for the PD and 2K time
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Figure 7. Ensemble climatology examples. For PD in blue and 2K in red: (a) return interval in years of surface snow melt rates in East

Greenland Ice Sheet grid point (72◦N, -30◦E), (b) scatter plot of total column integrated soil moisture content and near-surface temperature in

Southern England grid point (51◦N, -2◦E) with the cloud mean as dot and 2 standard deviations in the ellipse, (b) annual cycle of precipitation

in Horn of Africa grid point (8◦N, 48◦E), with box plots for the ensemble spread defined as box: first Quartile - Median - third Quartile (

Interquartile Range (IQR)), whiskers: first Quartile - 1.5×IQR and third Quartile + 1.5×IQR and outliers: values outside of these limits.

slices. The upward-leftward shift of the scatter cloud indicates more co-occurrences of hot temperature - soil moisture deficit

events in the warmer climate.

Finally, the World Meteorological Institute foresees “a strong chance of drier than average conditions in most parts of the330

Horn of Africa, making this the fifth consecutive failed rainy season” for the October-December 2022 season (e.g. [https:

//www.africanews.com/2022/08/26/horn-of-africa-5th-consecutive-rainy-season-missed/], last accessed: Oct 3, 2022). Fig-

ure 7c shows the simulated seasonal cycle of precipitation in a grid point in the Horn of Africa (8◦N, 48◦E). In contrast to

the news item, the simulated warmer climate appears to become generally wetter, with shifts in the start and intensity of the

rain season. However, further analysis is required to draw conclusions on the occurrence of droughts.335

4.2 Added value for extreme meteorological event research

Grey and blacks swans are terms for the types of extreme events that are yet unobserved or cannot even have been anticipated,

respectively (Watkins, 2013; Aven and Renn, 2015). These type of events by definition have no evidence in historical obser-

vations. Robust statistical analyses are often not possible due to their sparsity, not even with large ensemble data. A recently

developed technique into swan-type events is using story lines (Shepherd et al., 2018; Lloyd and Shepherd, 2021; Sillmann340

et al., 2021). By composing a story line the extreme event can be understood in terms of its spatial and temporal meteorological

context. This can also help to gain understanding of such events in a different climate. KNMI-LENTIS provides a physically

16

https://www.africanews.com/2022/08/26/horn-of-africa-5th-consecutive-rainy-season-missed/
https://www.africanews.com/2022/08/26/horn-of-africa-5th-consecutive-rainy-season-missed/
https://www.africanews.com/2022/08/26/horn-of-africa-5th-consecutive-rainy-season-missed/


coherent set of simulations that allows for story-line type of research into possible extreme meteorological events in the present

day and in a 2K warmer climate (van der Wiel et al., 2021).

In this example we identify the hottest day in De Bilt (52.3◦N, 4.9◦E), the Netherlands in the PD time slice and its me-345

teorological circumstances. The daily maximum near-surface air temperature reaches 39◦C on this day. The hottest day

to date in the observed records at the KNMI was measured on 2019-07-25, with a peak temperature of 37.5 ◦C (https:

//www.knmi.nl/over-het-knmi/nieuws/warmste-dag-van-het-jaar-nu-4-c-warmer-dan-rond-1900, last accessed: Oct 4, 2022),

demonstrating that the ensemble can indeed be used to study events beyond the observed record. Figure 8a shows very high

maximum temperatures in a large area of west and central Europe and across the Mediterranean. The physical drivers of such350

an extreme event can be both large scale warm air advection and local land-atmosphere processes. The evolution of surface

energy balance components in De Bilt (Figure 8b) do not suggest that local land-atmosphere processes are a main contributor

to this heat event. The sea level pressure field over the Northern Hemisphere points to advection of hot air from the south

(Figure 8c). A small low-pressure system west of the British Isles seems important in directing the flow northward. We note

that temperatures in northern America are anomalously high as well (not shown). Further analysis is needed to assess whether355

the extremely hot weather is related to the specific configuration of high and low pressure systems that is seen in earlier studies

in connection with simultaneously occurring heat waves in the Northern Hemisphere (Kornhuber et al., 2019).

4.3 Added value for compound event research

The multivariate nature of compound events, events where combinations of climate drivers and/or hazards contribute to societal

or environmental risk (Zscheischler et al., 2018), requires a bottom-up approach in which all data are physically consistent.360

Output from climate models is by definition physically consistent, though when bias corrections or statistical extrapolations

are applied this consistency may be broken (i.e., broken consistency between variables or lost consistency in time due to e.g.

a no longer closed water budget). Time slice large ensembles are very suitable for the analysis of rare or extreme compound

events (e.g., Kelder et al., 2022), owing to the physical consistency of the data, and the explicitly resolved extreme events due

to the size of the ensemble. In this section we demonstrate this using a case study on the extreme wheat yield loss in France.365

The 2016 winter wheat harvest in France was exceptionally low (28% lower than the expected value) and Ben-Ari et al.

(2018) showed that this was caused by the “compound interaction between temperature in the late autumn/early winter and

precipitation in the spring”. 2016 was unique in the combination of low exposure to cold days in autumn (‘vernalizing days’,

days with maximum temperatures between 0 and 10◦C) followed by wet spring conditions (high precipitation). The historic

record, here shown through ERA5 reanalysis data (Hersbach et al., 2020; Bell et al., 2021), shows how exceptional the year370

2016 was in terms of these variables and especially in their multi-variate combination (Figure 9).

The KNMI-LENTIS PD ensemble provides many more samples of winter-wheat growing conditions (1440 simulated sea-

sons) than the observed historical record. The simulated data includes some seasons with similar or even more extreme com-

pounding conditions than the 2016 observed event (Figure 9). This provides an opportunity to better understand the relationship

between the governing variables, and investigate (remote) drivers of compounding conditions. Note that biases in the simulated375
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(b) Surface Energy Balance in De Bilt, Netherlands
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Figure 8. Hottest day in De Bilt, The Netherlands, in the PD ensemble. (a) Europe Maximum surface air temperature over Europe on

the hottest day (colors) and sea level pressure (contours every 5 hPa). (b) Surface energy balance components in De Bilt, The Netherlands,

during the days around the hottest day (pink shading) with the latent heat flux (hfls), sensible heat flux (hfss), downwelling shortwave

radiation (rsds), upwelling shortwave radiation (rsus), downwelling longwave radiation (rlds) and upwelling longwave radiation (rlus). (c)

Northern Hemisphere Sea level pressure in colors and in contours every 5 hPa.

data (here we find the model has a low bias in the number of vernalizing days) can impact estimates of event likelihood and

process understanding.

This case study highlights the strength of time slice large ensembles in compound event research. Also for other types of

compound events (pre-conditioned events, multi-variate events, temporally compounding events and spatially compounding

events; Zscheischler et al., 2020) large ensemble data can help to, for example, quantify event likelihood and identify drivers380

and modulators of events (Bevacqua et al., 2021).

4.4 Added value for climate-impact modelling

Climate science, apart from aiming to improve our scientific understanding of the physical Earth system, also aims to inform

society and policy makers of (future) risks caused by adverse weather. It is during extreme events that such risks are highest.

However, extreme weather events (e.g. the hottest or wettest days) do not necessarily link 1-to-1 to extreme impact events385

(highest heat stress or biggest floods, e.g. van der Wiel et al., 2020). This is due to the complex non-linear relationships

between weather and impacts. In this section we demonstrate this phenomenon and show that an approach of ‘ensemble
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Figure 9. Example compound event research. Analysis of meteorological circumstances that lead to extreme wheat yield loss in France

after (Ben-Ari et al., 2018). Presented values are the area average of the Northern part of France (47-50◦N, 0-7◦E). (a) Scatter plot of number

of vernalizing days in autumn (October-December) versus daily average precipitation in spring of the next year (April-July). Large black dots

are ERA5 values (1950-2021), where 2016 is marked as a red dot. Small blue dots are KNMI-LENTIS-PD values, horizontal and vertical

lines correspond to the average (solid lines) ± 1 standard deviation (dotted lines). (b) Box plots of the number of vernalizing days and the

daily average precipitation for both KNMI-LENTIS PD and ERA5.

climate-impact modelling’, as for example proposed by van der Wiel et al. (2020), enhances our understanding of the weather-

impact relationship and improves estimates of (changing) societal risk.

For this case study, we simulate electricity production from solar radiation (Photovoltaics, PV) with a relatively simple model390

that considers incoming solar radiation, near-surface temperatures and near-surface wind speeds (Jerez et al., 2015; van der

Wiel et al., 2019b). We use daily data at a single grid point in the Netherlands (De Bilt, 52.3◦N, 4.9◦E). Higher values of

incoming radiation in summer (sunnier conditions and relatively long daylight hours) lead to higher values of PV generation,

but the heating of solar cells negatively impacts generation (heating mostly related to high temperatures, some cooling provided

by wind). We computed PV potential for all days in the KNMI-LENTIS PD ensemble (1600 years, > 0.5 million days). Here,395

we investigate the relationship between meteorological variables and PV potential, and the timing of extreme production days.

As expected, PV potential is strongly related to incoming solar radiation (Figure 10a). The histogram shows a cluster for

both DJF and JJA, indicating that solar cells work more efficiently in winter. This is due to differences in solar cell heating

and daylight hours: for 100 W/m2 incoming solar radiation, the PV potential in DJF is approximately 27% whereas in JJA it

19



0 100 200 300
Incoming solar radiation [W/m2]

0

10

20

30

40

50

60
PV

 p
ot

en
tia

l [
%

]

DJF

JJA

(a) Scatter density plot showing relationships between PV potential and input variables

30 20 10 0 10 20 30
Solar cell temperature [ C]

0

10

20

30

40

50

60

DJF

JJA

0 5 10 15 20
Daylight hours [h/d]

0

10

20

30

40

50

60

DJF

JJA

0

1000

2000

3000

4000

5000

6000

co
un

ts

J F M A M J J A S O N D J F M A M J J A S O N D
Time [months]

0

10

20

30

40

50

60

PV
 p

ot
en

tia
l [

%
]

(b) Example time series PV potential and incoming solar radiation
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Figure 10. Example ensemble climate-impact modelling. (a) Scatter-density plots showing the relationships between Photovoltaics (PV)

potential and other variables in DJF and JJA. From left to right: incoming solar radiation, solar cell temperature, and daylight hours. (b)

Example time series of PV potential and incoming solar radiation. Triangles at the top show timing of annual maxima.

is approximately 18%. On the other hand, the large seasonal difference in incoming radiation at this latitude makes summers400

about 5 times more productive in terms of PV (Figure 10b). Therefore, extreme production events, i.e. days with extremely

high PV potential, are expected to occur in late sping – early summer. Indeed the annual maximums of PV potential occur in

early JJA, and they do not coincide with the annual maximum of incoming solar radiation (Figure 10b) which occur later.

This case study highlights some of the possibilities of ensemble climate-impact modelling. Though extreme PV production

days are not likely to put society at risk, the (temporal) disconnect between weather extremes on the one hand and impact405

extremes on the other hand is obvious. As shown in earlier sections, large-ensemble climate modelling can considerably

contribute towards understanding events in the tail of the distribution. This is true for meteorological extremes (e.g. Section 4.2)

but equally so for climate-impact extremes that are more closely related to possible natural or societal impacts/risk.
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5 Conclusions

We have presented the KNMI Large ENsemble TIme Slice (KNMI-LENTIS): a new large ensemble produced with the re-410

tuned version of the global climate model EC-Earth3. The time slice approach is different from the more traditional transient

ensembles available from other institutions. The advantage is that the signals of natural variability and climate change are not

mixed, due to our assumption that the forced change in a slice is small. Therefore, the variability we see in a time slice is

only natural variability at a given GMST level, and does not include a climate change signal. This renders our large ensemble

specifically suitable to study climate variability and changes therein between the present-day climate and a warmer future415

climate. Furthermore, the large ensemble is particularly geared towards research into land-atmosphere interface, with 3-hourly

output of the surface water balance and surface energy balance variables.

The ensemble consists of two distinct time slices: a present-day time slice and a +2K warmer future time slice relative to

present-day. The present-day time slice is represented by the years 2000–2009 and forced with CMIP6 historical forcing. The

+2K time slice is represented by the years 2075–2084 and forced with CMIP6 SSP2-4.5 forcing. Each time slice consists of420

1600 simulated model years in 160 segments of 10 years.

The initial conditions for the ensemble members are generated with a combination of micro and macro perturbations. We

have quantified the assumptions underlying the set-up, which are that the time slice simulation length is small enough so that

a forced climate change signal is minor is most cases, and that the ensemble size is sufficient to sample the full distribution of

climate variability. We have provided examples of how this ensemble can be used to demonstrate its added value for extreme425

and compound event research and for climate-impact modelling. The model and thus our simulations has a considerable warm

bias in the Southern Ocean and over Antarctica. Future users of KNMI-LENTIS are advised to make in-depth comparisons

with observational or reanalysis data especially when their studies focus on ocean processes, on locations in the Southern

Hemisphere or on teleconnections involving both hemispheres.

Code availability. The KNMI-LENTIS production scripts are recorded on Zenodo (Muntjewerf et al., 2023b).The EC-Earth model is re-430

stricted to institutes that have signed a memorandum of understanding or letter of intent with the EC-Earth consortium and a software license

agreement with the European Center for Medium-Range Weather Forecasts (ECMWF). Confidential access to the code and to the data used

to produce the simulations described in this paper can be granted for editors and reviewers.

Data availability. The KNMI-LENTIS dataset description is recorded on Zenodo (Muntjewerf et al., 2023a), providing details of the layout

of dataset, where it is located, how it is stored and how one gains access. At a later stage, (part of) the data may be made publicly available435

from the Earth System Grid Federation (ESGF) data portal.
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Table A1. Naming convention of LENTIS members. The simulations are named with a 4 digit name: kllm. ‘k’ is a placeholder to denote

the start year. Options are ‘h’ for 2000-historical and ‘s’ for 2075-SSP2-4.5. ’ll’ is a placeholder to denote the parent. Parents run from 01

to 16, from which full transient simulation the initial conditions are taken. ’m’ is a placeholder to denote the seed. Seeds run from 0 to 9,

corresponding with the randomising seed of the micro-perturbation.

ll (parent) (→)

m (seed) (↓)
k01m k02m ... k16m

kll0 k010 k020 ... k160

kll1 k011 k021 ... k161

... ... ... ... ...

kll9 k019 k029 ... k169

Appendix A: Ensemble label and CMIP6 variant label of KNMI-LENTIS simulations

All ensemble simulations have a unique name that reflects the start year and forcing, the parent and the seed (Table A1). The

start year is noted in the first digit of the KNMI-LENTIS simulation name: ‘h’ for the PD time slice and ‘s’ for the 2K time

slice. The parent is reflected in the second and third digit. The seed is reflected in the fourth digit.

Further, all KNMI-LENTIS simulations are labeled per the CMIP6 convention of variant labelling. A variant label is made635

from four components: the realization index r, the initialization index i, the physics index p and the forcing index f. Further de-

tails on CMIP6 variant labelling be found in The CMIP6 Participation Guidance for Modelers: https://pcmdi.llnl.gov/CMIP6/

Guide/modelers.html, last accessed September 20, 2022).

In the KNMI-LENTIS simulations, the forcing is reflected in the first digit of the realization index r of the variant label. For

the historical simulations, the one thousands (r1000-r1999) have been reserved. For the SSP2-4.5 the five thousands (r5000-640

r5999) have been reserved. The parent is reflected in the second and third digit of the realization index r of the variant label

(rX01X-rX16X). The seed is reflected in the fourth digit of the realization index r: (rXXX0-rXXX9), The seed is also reflected

in the initialization index i of the variant label (i0-i9), so this is double information. The physics index p5 has been reserved

for the ECE3p5 version, so all KNMI-LENTIS simulations have the p5 label. The forcing index f of the variant label is kept at

1 for all KNMI-LENTIS simulations. As an example, variant label r5119i9p5f1 refers to: the 2K time slice with parent 11 and645

randomizing seed number 9. The physics index is 5, meaning the run is done with the ECE3p5 version of EC-Earth3.
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Appendix B: List of output fields

The list below contains all output variables of KNMI-LENTIS simulations, sorted per output frequency. See the Supplementary

file Appendix_request-overview-CMIP-historical-including-EC-EARTH-AOGCM-preferences.pdf
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