Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-1342
https://doi.org/10.5194/egusphere-2022-1342
02 Jan 2023
 | 02 Jan 2023

Deep learning of subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell-Elasto-Brittle rheology

Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau

Abstract. We introduce a scalable approach to parametrise the unresolved subgrid-scale of sea-ice dynamics with deep learning techniques. We apply this data-driven approach to a regional sea-ice model that accounts exclusively for dynamical processes with a Maxwell-Elasto-Brittle rheology. Our channel-like model setup is driven by a wave-like wind forcing, which generates examples of sharp transitions between unfractured and fully-fractured sea ice. Using a convolutional U-Net architecture, the parametrising neural network extracts multiscale and anisotropic features and, thus, includes important inductive biases needed for sea-ice dynamics. The neural network is trained to correct all nine model variables at the same time. With the initial and forecast state as input into the neural network, we cast the subgrid-scale parametrisation as model error correction, needed to correct unresolved model dynamics. We test the here-proposed approach in twin experiments, where forecasts of a low-resolution forecast model are corrected towards high-resolution truth states for a forecast lead time of about 10 min. At this lead time, our approach reduces the forecast errors by more than 75 %, averaged over all model variables. The neural network learns hereby a physically-explainable input-to-output relation. Furthermore, cycling the subgrid-scale parametrisation together with the geophysical model improves the short-term forecast up to one hour. We consequently show that neural networks can parametrise the subgrid-scale for sea-ice dynamics. We therefore see this study as an important first step towards hybrid modelling to forecast sea-ice dynamics on an hourly to daily timescale.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

21 Jul 2023
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023,https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We combine machine learning with a simplified regional sea-ice model to correct errors in...
Share