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RC: Reviewer Comment, AR: Author Response

1 Response to Referee 1

RC: The authors present an idealised study of sea-ice fracture in a channel
due to wind forcing, demonstrating that a neural network (NN) is able
to significantly reduce errors of a lower-resolution version of the physical
model with respect to a higher-resolution version of the same model
for 10-minute forecasts. They conclude that the NN has learned the
tendencies from the unresolved scales in the lower-resolution model, and
can therefore be used to parameterise these unresolved scales.
I appreciate the originality of the work and the level of detailed analysis
it provides. It fits well with current efforts in the community to use
machine learning for parameterisation of unresolved scales in geophysical
models. However, given the very idealised setup, I have some concerns
about the wider applicability of the results. Below, I spell that out in
comments which I would like the authors to address before publication:

AR: We thank referee 1 for the constructive feedback on our manuscript, especially with
respect to the bias correction and a possible overfitting. In the following, we discuss
the raised concerns and what we have changed in our revised manuscript.

RC: There are a number of very strong idealisations and restrictions in the
setup of this study: a) it is a so-called ”perfect model” study, i.e. the
performance of the lower-resolution model with/without NN corrections
is assessed against a ”truth” which is a simulation of that same model at
higher resolution, without involving any observations or simulations from
a different model; b) The forecast lead times considered are extremely
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short for most real-life weather and climate applications (only up to
1h); c) spatial domain is a simple rectangular channel; d) no treatment
of sea-ice thermodynamics. Given these very strong idealisations and
restrictions, one would hope for results that are a bit more convincing
than the ones presented. I have concerns about whether the methods
presented will be useful in a more realistic context, where each of the
above assumptions will need to be relaxed. Can the authors please
add some in-depth discussion (or even preliminary analysis) about what
they think will happen if their methods are applied in a more realistic
context?

AR: Our study is designed to be a proof-of-concept. As sea ice imposes novel challenges
for neural networks, it was previously unknown if model error corrections in this
form are possible at all for sea-ice modelling. We think this study shows that
there is indeed a huge potential for hybrid modelling of sea ice. Given the limited
scope of this study, we have decided to apply such simplified settings, far from
settings in operational forecasting or projections. For example, we have used the
twin experiment setting to prove our points and to cheaply generate a known truth.
If realistic model error corrections would be trained with twin experiments, the
neural network would learn to emulate the fields from the higher resolution, so,
instantiations of already known processes. Consequently, we believe that the true
potential lies in the possible learning of model error corrections from observations,
which is beyond the scope of our proof-of-concept. Furthermore, the model error
correction is designed to correct model errors as soon as possible, before they have a
too large impact on the forecast. This is why we concentrate on such short forecast
lead times of up to one hour, although they might be far from operational settings.
In further studies, with more realistic setups, we will investigate the impact of the
model error corrections in longer forecast lead times in more realistic settings.
To take this concern into account, we have strengthened the proof-of-concept
character of the study in the introduction. Additionally, we have extended the
section ”Summary and Discussion” by few paragraphs about next steps that might
follow towards more generalised and realistic settings. We added more discussion
about the apparent model drift, about a possible application to other resolutions
and model settings, and about applying twin experiments for learning in more
operational settings.

RC: Figure 7 and the corresponding text makes me wonder how much of
the error reduction achieved by the NN is actually due to correcting the
bias (i.e. mean error) of the low-resolution simulation w.r.t. the high-
resolution simulation. Can the authors please provide some analysis to
quantify the contribution of bias to the overall errors, with and without
the NN corrections? For instance, one could just decompose the mean
squared errors shown in the manuscript into squared bias and variance
of the errors. I am asking this because there is a range of other methods
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to treat biases (e.g. a-priori by tuning the model, and a-posteriori
by subtracting them from the forecast before further analysis). These
methods are often simpler than the machine-learning approach and are
in wide use in the weather and climate community. Utilising a complex
and costly machine-learning approach only pays off it is clearly superior
to other available methods.

AR: As shown in Appendix B, Table B1, we made tests where we simply correct the
constant model bias. The performance of this bias corrected model is almost the
same as for the raw model without any correction. Most of the model error is
hence temporally and spatially variable and cannot be corrected by a simple bias
correction. Additionally, we made the tests with a rather small neural network,
where only one multi-scale convolutional layer is used. We expect that even simpler
methods, e.g., a linear regression, perform worse than this small neural network.
Additionally, there are many possibilities with neural networks that we have not
taken into account, e.g., generating stochastic parametrisations with correlations
learned from data. Therefore, we believe that this study indicates the potential for
hybrid modelling, which would be otherwise unachievable.
In Sect. 5.1, ”Performance on the test dataset”, we have added a reference to
the appendix, showing that correcting the bias has almost no impact on the
performance on the test dataset. In Sect. 6, ”Summary and Discussion”, we
have partially streamlined the language to clarify further possibilities with neural
networks, which makes our point of using neural networks hopefully clearer.

RC: Following up on the previous comment, I would like the authors to
comment on potential overfitting of the NN in their methods. If I
did the maths correctly, there are about 4500 degrees of freedom in
the lower-resolution physical model (9 variables times 500 grid points).
As stated on line 197, the NN has 1.2 million trainable parameters.
So one could argue the NN has orders of magnitude more degrees of
freedom than features it is learning from or results it is predicting. I
am not an expert on machine learning, but that strikes me as odd -
could the authors please comment on that? I would also like to see some
quantitative analysis on the risk of overfitting.

AR: We agree that a single low-resolution field has only 2558 degrees-of-freedom (DOFs).
Compared to this number, the number of parameters in the neural network (1.2×106)
seems to be very high. However, the training dataset has 2558 × number of samples
DOFs. In the end, this sums up to around 12.3× 106 million DOFs, an order of
magnitude larger than the parameters in the neural network. During training, the
scores in the validation dataset have been smoothly improving without a sign of
overfitting. Furthermore, we have made new experiments (Fig. 1), where we have
only used a fraction of the data for training. Even in our most extreme case with
only 10 % of the data (480 samples), the model is not overfitting with smoothly
decreasing MSE and MAE, and we achieve a nice scaling of the performance with
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the number of samples. We attribute this behaviour to the projection into Cartesian
space and to the strategy of learning a correction for all variables at the same
time. Caused by the projection from Cartesian to triangular space, the information
content of the extracted features is reduced. Additionally, learning for multiple
outputs at the same time acts as a type of regularisation for a single output, the
network has to find features that suits all outputs.
In Sect. 4 ”Data generation and training”, we have introduced a paragraph where
we discuss the number of training samples and a possible overfitting, caused by the
degrees-of-freedom in the neural network. Additionally, we have introduced a new
subsection (Appendix D1), where we discuss Fig. 1, which shows the influence of
the number of training samples on the results in the testing dataset.

RC: Please revise the presentation of the methods, this is not sufficient in
some places, and difficult to follow in others. See technical comments.

AR: Based on this raised concern and the other review, we have decided to rearrange the
presentation of the methods. The sea-ice model and the neural network is discussed
in a hopefully easier language, explaining rather the reasoning behind different
components, instead of the technical details. The more technical explanations
are moved into Appendix A for the sea-ice model and Appendix B for the neural
network. We have introduced a new Sect. 2, where we introduce the model error
correction problem from a mathematical standpoint (previously Section 3.1), a
shortened explanation of the sea-ice model, and, finally, an introduction to twin
experiments. Furthermore, we have streamlined Sect. 3 about the neural network
and focussed more on the reasoning behind the different components in the pipeline.

RC: I am afraid I do not quite understand the motivation why a projection
to a Cartesian grid is needed (Section 3.2). It seems to complicate the
methods unnecessarily. Can the authors please clarify the motivation
for doing this, and what the feasibility/implications would be of doing
the analysis on the original triangular grid? Is this just a reflection of
the fact that the standard machine-learning libraries for spatial analysis
cannot deal with non-Cartesian grids?

AR: Compared to more “classical” neural networks, so-called multilayer perceptrons, by
construction, convolutional neural networks (CNNs) are biased towards localised
features, motif extraction across all grid points, and a directional dependency.
Additionally, the backend libraries e.g., TensorFlow and PyTorch, are optimised for
image processing. CNNs are hence especially efficiently implemented for Cartesian
spaces. Although there are different convolutional architectures better suited for
unstructured grids, e.g., graph neural networks, they are usually more computa-
tionally heavy and more difficult to implement. Given the limited scope of our
proof-of-concept, we have thus decided to make use of “normal” convolutional
neural networks. Additionally, the variables are different at different positions on
the triangles. Consequently, we interpolate from triangular space to a common
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Cartesian space where the features are extracted. Combined with projecting the
features back into triangular space and linearly combining them therein, this archi-
tecture turns out to be very efficient and can act as a baseline approach for further
studies.
In our rewritten Sect. 3, we have dedicated a full paragraph to the use of why
a projection step is necessary for convolutional neural networks. As motivation,
we have specifically written:”Convolutional NNs are optimised for their use on
Cartesian spaces, where they can easily exploit spatial autocorrelations. The model
variables are additionally defined on different positions at the triangles: the velocities
are defined on the nodes of the triangles, whereas all other variables are constant
across a triangle”.

RC: Figure 1: Please specify which physical variable that is displayed (dam-
age?). Could the authors find a more convincing ”showcase” example?
By visual inspection, it looks to me like there is still substantial errors
in the ”hybrid” field, which seems at odds with the claim of an 75 %
error reduction. Please quantify the error reduction for the case shown.

AR: There was a technical issue to correctly render the file on Copernicus’ side. This
should be fixed now, and the missing labels etc. should be there now. The shown
damage fields are for a lead time of 60 minutes. Given your feedback, we have
decided to change the snapshot of the sea-ice damage (Fig. 1 in the manuscript)
to a more representative case (Fig. 2). There, the improvement is 62%, and the
hybrid model is able to correctly represent the fracturing processes such that not
too much damage is produced as in the low-resolution forecast without correction.

RC: l. 35f. (and elsewhere): I am not sure what ”wave-like” and ”channel-
like” - please be more precise.

AR: In the revised manuscript, we are more specific and have replaced ‘channel-like’ by
specifying the domain dimensions and ‘wave-like’ by ”an external wind forcing with
a sinusoidal velocity in y-direction”.

RC: Line 76 & 89: a 10 minute (or even 1 hour) forecast is extremely short
both for main-stream earth system models and real-world applications.
Can you please comment on that and justify looking at these very short
time scales?

AR: On the one hand, we want to correct the model error after each integration step,
which would be in our case 16 seconds. On the other hand, the neural network
is not perfect, and the more signal during training, the better. Furthermore, the
neural network is trained without taking interactions with the sea-ice model into
account. The missing interactions lead to a distribution shift during the application
of the model error correction. Consequently, using a correction time of 10 minutes
is already a compromise. Given the limited scope of this proof-of-concept and an

5



already visible distribution shift (Table 8 in the manuscript), we have restricted
the forecast time to one hour.

RC: The introduction in ll. 80-92 already gives too much technical detail
about the methods. This belongs elsewhere.

AR: We have reduced the amount of technical information in the introduction, especially
at its end.

RC: In Figure 2 and the corresponding text, the authors need to help the
reader to get a physical understanding of the situation that causes the
ice to fracture. Please add arrows indicating the wind field, and refer to
Equation (1). Please specify which direction is x and which is y.
Also Figure 2: Please use other colours than black and red to indicate
the two grids, otherwise it is difficult to see for color-blind people.

AR: We have added the forcing field with arrows for this specific case in Figure 2b, as
shown in Fig. 3. Furthermore, we have changed the colour of the coarse grid in
Figure 2a to a lighter blue tone, which should make the figure easier to read.

RC: Line 134: I do not know what ”wave-like” means. Please be more
precise, and provide the equation with the wind forcing at the earliest
possible place in the text.

AR: We have introduced the equation for the wind forcing in the new shortened de-
scription of the regional sea-ice model in Sect. 2.2, and have avoided the term
‘wave-like’.

RC: Figure 6: I much appreciate the sensitivity testing in Section 5.2,
very good! However, I am puzzled by the very weak cross-variable
coupling in the permutation feature importance. It seems contradictory
to your claim that the NN has ”learned the dynamics” of the physical
model. For instance, for damage as an output variable, it seems that
the NN only extracts information from the damage itself, all other
input variables are unimportant! Could you please provide some more
explanation/clarification/analysis on this?

AR: The input variables are naturally coupled to each other, e.g., the forcing and
the velocities, the area and thickness, or the stress components. Therefore, by
destroying the information of a single variable, almost the same information might
be still available to the neural network by another variable. Additionally, the
shuffling of a single variable can lead to unphysical instances. Consequently, we
have introduced a new subsection, Appendix D6, where we discuss the impact of
permuting variable groups.
By permuting variable groups (Table 1), we find, e.g., a sensitivity of the sea-ice area
and thickness on the stress components. Such additional sensitivities indicate an
underestimation of the feature importance across different variables. Furthermore,
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we show that the generation of unphysical instances has a large impact on the
feature importance. If they are shuffled alone, the stress components have a larger
importance on the predictions of the stress components than shuffled together.
The neural network works with relative features that take the difference between
different variables, which is artificially large if only a single variable is shuffled.
Nevertheless, the permutation feature importance indicates clearly that the neural
network uses the dynamics of the output variables as basis for such relative features.

RC: Figure 7: It is striking that the low-resolution model is much worse
than simple persistence. This makes me wonder whether the NN is
just correcting biases (see general comment #2). Please provide some
discussion on this.

AR: Dynamical processes of below 8 km are in the subgrid-scale of the low-resolution
model setup and parametrised with the damaging process. These processes are
nevertheless included in the truth fields on which basis the low-resolution forecasts
are initialised. The mismatch between resolved and parameterised processes results
into a strong drift for the dynamical variables (velocities, stresses, damage) within
the first minutes of forecast. This drift is not a simple bias but a dynamical process,
because otherwise the bias-corrected forecast would perform better. Contrary to the
low-resolution model, the persistence forecast has no drift, and for the dynamical
variables a better score for the shown lead time of up to one hour.
We have added to the discussion of the results in Sect. 5.3, ”As correcting the bias
has almost no impact on the performance in the test dataset (Appendix C), this
drift is not caused by model biases”..

RC: Lines 516 - 519: This is a good start, but a much more in-depth
discussion is needed here of the implications and wider applicability of
the work presented (see general comment #1).

AR: As written for comment #1, we emphasised the proof-of-concept character of the
study, and we added paragraphs about next steps towards a generalization.
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2 Response to Referee 2

RC: In this manuscript, the authors present a novel machine-learning method
to correct unresolved sea-ice dynamics in simulations with low resolu-
tion. From the comparison of high and low-resolution simulations in
an idealized domain neural networks are trained to predict the residual
between both simulations at a certain lead time, which demonstrate
promising performance. This approach aligns with recent developments
in climate research, where machine learning is used to parameterize
unresolved processes in low-resolution simulations. The study presents
several innovative approaches to sea-ice science and provides a thorough
evaluation of the performance of the trained ML algorithms. To the best
of my knowledge, this paper is one of the most advanced works employing
machine learning in the field of sea-ice dynamics. The presented analysis
is sound and requires only a few modifications that I list below. The
authors need, however, to improve the paper’s presentation of the paper
as it can be difficult to follow in major parts. The manuscript is overly
packed with information and details that can be challenging to grasp,
even with a background in sea-ice dynamics and machine learning. I
strongly recommend the manuscript for publication in The Cryosphere
after the authors have addressed the issues mentioned and detailed
below.

AR: We thank you for the constructive feedback on our manuscript, especially on the
presentation of the methods and the many detailed specific comments. In the
following we will discuss the raised concerns and what we have changed in our
revised manuscript.

RC: Target audience: I think the authors should keep two audiences in
mind that will be interested in this work: sea-ice scientists and ML
experts. The manuscript in its current form describes the ML part,
network design, and thorough evaluation of the performance of the NN
in great detail. I appreciate this for reproducible science, but am also
afraid that the amount of detail makes the manuscript hard to follow
for readers with a sea-ice background and limited knowledge of ML.
This could be addressed by shortly introducing the many ML concepts
before discussing them in length and/or reducing or reorganizing the
information content of the paper (which I will explain in the next point).
I highly recommend reading and editing the paper through the lenses of
both audiences.

AR: Exactly as you have proposed, we have both audiences in mind. Based on your
review and comments of referee 1, we have seen that we might have missed the fine
line between both communities by giving too much technical details. To improve
the presentation for both communities, we have moved the technical parts into
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Appendix A for the sea-ice model, and into Appendix B for the neural network.
We have introduced more concise explanation of the sea-ice model in Sect. 2.2 and
of the neural network in Sect. 3. There, we rather discuss the reasoning behind
different components of the model and neural network pipeline. We hope that these
changes make the manuscript more accessible for a more general audience.

RC: Readability: I had a hard time following the first half of the paper on
my first read. After reading the entire manuscript and knowing the
subject, I could follow it better on a second read. Therefore, I would
suggest editing and maybe restructuring this part of the manuscript
thoroughly. In general, the manuscript holds a lot of information in part
to describe the set-up, analysis, and results in detail, but also information
that is only linked but not strictly necessary for the understanding or
interpretation of the paper. Especially the latter makes it hard to stay
focused on the storyline. I recommend going through the paper and
reconsidering which information is necessarily required. This would
also give the authors more space to explain important concepts in more
detail. Section 3.1 helped me a lot to understand what you are after and
I definitely recommend moving it further up in the manuscript, maybe
even into the introduction. I would also consider moving the description
of the data generation (Section 4) before the description of the ML,
which would help to understand the network design etc. Section 2 is
rather long and I would consider shortening it and eventually merging
it with Section 4 as both discuss the sea ice model and the simulations.
Up to Section 5, I had a hard time finding a storyline to follow. Please
try to emphasize your storyline there stronger and try to guide readers
better.

AR: To improve the readability of the manuscript, and as you have proposed, we have
decided to change the structure in presenting the methods. We have introduced a
new Sect. 2, ”Twin experiments for deep learning a model error correction”. First,
we formulate our problem in mathematical terms (former Sect. 3.1). Secondly, we
rather shortly introduce the regional sea-ice model and the used forcing. Thirdly,
we explain the twin experiments and how they are used to learn the model error
correction. In the rewritten Sect. 3, ”A convolutional U-Net baseline”, we have
rather superficially explained the neural network. As the explanation of the forcing
and twin experiments is moved into Sect. 2, Sect. 4 is more disentangled and more
restricted to data generation and the training of the neural networks. Additionally,
we have tried to be more consistent in the use of ‘subgrid-scale parameterisation’
and ‘model error correction’. We believe that these changes have significantly
increased the readability of the manuscript, especially for non-specialists. Thank
you for this suggestion.

RC: Lead time for update: The authors use a lead time of 10 min 8 s
to update the coarse resolution model. While all other design choices
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have been explained in detail, this is not the case for the lead time.
Why did you choose this lead time? Wouldn’t you expect a shorter
lead time to improve the results? With the existing twin simulations,
it is straightforward to extract the residual between the truth and
forecast model also at other lead times. Therefore, I strongly suggest
studying also the effect of different lead times here. I would be especially
interested to see if shorter lead times improve the seesaw patterns of
the trajectories of the hybrid model in Figure 7.

AR: Originally, we have selected the update time quite early in the research based on
considerations about the signal-to-noise ratio. In the best case, the neural network
corrects model error before they have a too large influence on the forecast, which
would be after each integration step. However, the neural network is not trained to
take interactions between correction and sea-ice model into account. Furthermore,
the predictable error is corrected by the neural network, such that the unpredictable
error accumulates over time. As the network is only trained on the first correction
step, this leads to a distribution shift (cf. Tab. 8 of the manuscript).
This distribution shift becomes important the more update steps we take. To
underline these pros and cons, we have now made tests where we vary the update
time (16 s, 80 s, 20min), as can be seen in Figure 4 of this response (the results for
16 s are not shown, as they are even worse than for 80 s). The seesaw pattern gets
hidden behind more update steps. Nevertheless, the distribution shift outweighs
that model errors are corrected earlier, which makes the forecasts less performant
for smaller update times. This might be a specific concern in our model setup,
but is likely to be an issue related to hybrid modelling in general. As these results
underline the limitations of the NN caused by the distribution shift, we have added
a Subsection in Appendix D2, where we show and shortly discuss Figure 4.

RC: Generalization: The neural networks presented in the paper are trained
on a specific (idealized) model configuration, which is also a good choice
for this proof of concept. There is, however, only limited discussion
of what steps are needed to use the same approach in other model
configurations, especially realistic ones: do users need to train different
NNs for each new model configuration, which will get very expensive
as high-resolution truth simulations are required? Or can the trained
weights of the kernel be applied also to different grid geometries in
different configurations or could be used as starting weights to reduce
the amount of training data? A discussion of these considerations would
be helpful to get an impression of how feasible and flexible this approach
can be applied in other model set-ups.

AR: This study has a very limited scope of giving a proof-of-concept. For us, it is evident
that the way towards operational settings is rather long, given the issues of the
distribution shift and stochasticity. Additionally, if neural networks are trained
with twin experiments, they “only” learn to imitate the model that was used to
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generate the truth. We rather see the potential for model error corrections coming
from the inclusion of observations into the learning process, which complicates
model error correction even more. To give some hope, especially related to the
question of the reusability, we might be lucky in sea-ice modelling: as sea-ice
exhibits multifractality/self-similarity, the same model error correction might be
usable across spatial scales, or at least a good starting point for retraining on a
different resolution or domain.
In the revised version of the manuscript, we have extended Sect. 6, ”Summary and
Discussion”, by few paragraphs about next steps that might follow towards more
generalised and realistic settings. We added more discussion about the apparent
model drift, about a possible application to other resolutions and model settings,
and about applying twin experiments for learning in more operational settings.

RC: L1: ”of”
Remove “of” as “subgrid-scale” is an adjective.

AR: We have removed “of” from the title, now ”Deep learning subgrid-scale parametrisa-
tions for short-term forecasting of sea-ice dynamics with a Maxwell-elasto-brittle
rheology”.

RC: Abstract: I would consider rearranging the abstract, maybe shortening
sentences. Might be a matter of taste, but I had a hard time following
it reading it the first time.

AR: We have rewritten the abstract, trying to simplify the language and shorten the
sentences. We hope that the abstract is easier to read and follow now.

RC: L5: includes important inductive biases needed for sea-ice dynamics.
Unclear what is meant by these biases.

AR: As the abstract is rewritten, we have removed this subordinate clause from the
abstract.

RC: L7: we cast the subgrid-scale parametrisation as model error correction.
Unclear, please rephrase.

AR: In the revised abstract, we have moved this sentence up and have rewritten it to:
”Instead of parameterising single processes, a single neural network is trained to
correct all model variables at the same time”.

RC: L11: cycling
What do you mean by cycling?

AR: In the revised abstract, we have reformulated the sentence to: ”Applied to correct
the forecasts every 10 minutes, the neural network is run together with the sea-ice
model.”. Additionally, we have avoided the word cycling in the whole manuscript
now.
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RC: L11: physically-explainable input-to-output relation
It is not clear what is meant by “physically-explainable”, please clarify.

AR: In the revised abstract, we have avoided the use of ”physically-explainable” and
have rewritten the sentence to: ”Furthermore, the neural network extracts localised
and directional dependent features, which points towards the shortcomings of the
low-resolution simulations.”, integrating one of your suggestions to analyse the
physical meaning of the learned features.

RC: L16: dynamics of sea ice at an unprecedented resolution and accuracy.
Please clarify what unprecedented means with respect to the resolution.
All three papers use simulations with a resolution of 10km or lower,
while much higher resolution sea-ice simulations have been presented.
Do you mean unprecedented accuracy at the given resolution?

AR: We have rephrased the sentence to: ”with an unprecedented accuracy for Arctic-wide
simulations in the mesoscale with horizontal resolutions of around 10 km”.

RC: L16: Elasto-Brittle. Why capitalized? Here and elsewhere

AR: We have rewritten elasto-brittle in lowercase letters everywhere.

RC: L17: represent
Reproduce?

AR: We have changed to “reproduce” as this is indeed a better wording. Thank you for
the suggestion.

RC: L19: single grid cell at the mesoscale. What is meant by mesoscale here?
Please clarify

AR: In the revised manuscript, we have defined mesoscale in the first sentence by
specifying it to resolutions of around 10 km.

RC: L31: the mesoscale. See comment above
please define the length scale mesoscale refers to here.

AR: Same as before, mesoscale is now defined in the introduction.

RC: Figure 1. Please clarify that (a) shows the high-resolution initial
conditions, but (b) and (c) the low-resolution forecasts one hour later.
Why not show for all the damage after 1h forecast, so that the reader
actually gets an impression if the hybrid model in (c) is closer to the
high-resolution “truth” or not?

AR: The Figure shows the field for all simulations after a lead time of one hour, even in
the high-resolution case. As this was not clear in the caption, we have clarified it,
as shown in Fig. 2. Additionally, given the feedback from Referee 1, this Figure
has been changed to a different sample from the test dataset.
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RC: L37: possibly projected
What is meant by this? Please clarify

AR: We wanted to state that we cannot use the same initial conditions across different
resolutions, so we must project them. We have rephrased the sentence to: ”Initial-
ised with the same but projected initial conditions, a simulation at a 8 km horizontal
resolution leads to a different trajectory”.

RC: L39-40: Here, the low-resolution simulation 40 (b) misses the rapidly
developed opening of sea ice in the high-resolution simulation (a).
Does this refer to the upper or the lower opening in the figure? Please
clarify in the text.

AR: The shown snapshot has been changed. Consequently, the text is changed to: ”in
the transition zones, the low-resolution simulation fractures the sea ice too strongly
compared to the high-resolution”.

RC: L54-59: paragraph about marginal ice zone:
Does your regional model include the MIZ? To me, it looks more like
pack ice with cracks. Also along leads there are sharp transitions that
the NN needs to handle, so I think it is justified to present this issue
here. However, please frame it in a way that fits your problem at hand.

AR: You are right that our problem is more about cracks/leads with such sharp trans-
itions. As the model is unable to represent ice-free cases, it cannot simulate ”real”
marginal ice zones. We have changed the description here and elsewhere in the
text to ?”leads”, being more consistent with the actual problem represented by our
model.

RC: L56: jump
Step function?

AR: Step function is indeed the more accurate wording, thanks.

RC: L98: as well
Remove?

AR: “As well” has been removed.

RC: L123-124: As the nodes are shared in the first-order elements, there
are more grid points for all variables that are defined as zeroth-order
elements than for the velocity and forcing components.
What is the relevance of this? Could you elaborate if this is an important
point needed to be considered to interpret the presented results?

AR: This reference to more grid points for variables defined by a zeroth-order discontinu-
ous Galerkin discretisation is relevant to explain the need of a common space for
the neural network. As this Section have been rewritten in the revised manuscript,
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and this more technical description have been moved into an Appendix, we have
removed the sentence.

RC: Section 3: A deep learning based subgrid-scale parametrisation
The presentation of the machine learning tools is done very thoroughly,
which I appreciate and see as valuable for reproductivity. Given that ML
applications in this field of science are just emerging and there are many
geophysical and climate scientists interested in advancing in this field, I
am afraid that the description is presented too high level for an audience
with limited knowledge of ML. To also target this part of the scientific
community and broaden the audience for this paper, I recommend
summarising the main parts and ideas behind it more comprehensively
for readers with limited ML background at the beginning of this section.
While I see this recommendation as optional, as all necessary information
is given in the current draft, I want to emphasize the large beneficial
value I see in adding a summary like this.

AR: As previously written, we have rewritten this Section in the main manuscript and
moved the more technical description to Appendix B. Thank you very much for
this constructive comment.

RC: L147-149: There, linear functions combine pixel-wise (i.e., processing
each element defining grid point independently) the extracted features.
Each linear function is shared across all grid points for each predicted
residual variable.
The linear transformation from features to residuals is not clear to me.
Does this involve combining different features for each grid point, where
the weights of these combinations are learned in the training? Or is it a
fixed combination? Please clarify the text accordingly.

AR: We have been more specific what we mean by linear functions, as they are learnable:
”Back in the triangular space, the extracted features are combined by learnable
linear functions. These linear functions process each element-defining grid point
independently but using the same weights across all grid points. To estimate their
own model error correction out of the features, each of the nine model variables has
its own linear function”.

RC: Figure 3.
Does the red, blue, and grey color code for arrows, boxes, and labels
have a specific meaning (trainable vs fixed or similar)? If so please give
some explanation.

AR: We have revised the figure and have marked the learnable and fixed parts by
consistent colours, as shown in Fig. 5.

RC: L154: 3.1 Problem formulation
This section helps to understand our approach’s goal, and I strongly
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suggest moving it further up (maybe even the introduction) to give the
reader a better understanding of what you try to achieve before going
into the details of the model or the pipeline.

AR: Thank you for the suggestion. We have moved this part to the newly introduced
Sect. 2.1, before explaining any other method.

RC: L180-182: Note, for coarse Cartesian spaces, the mapping from Cartesian
space to triangular space can be non-surjective, meaning that not all
triangular elements are covered by at least one Cartesian element: the
pseudo-inverse is in this case rank deficient.
This is unclear to me: why should the bigger triangles of the coarse
resolution simulations not be covered by the higher resolution Cartesian
elements? If at all, I imagine that should be an issue of the high-resolution
grid with smaller triangles. Please clarify.

AR: As the Cartesian elements are rectangular, there are cases where not every triangular
element has an associated Cartesian element in the forward interpolation. Con-
sequently, taking the pseudo-inverse of the interpolation operator for the projection,
there are some triangular points that get no information, even if the triangular
resolution is around 8 km and the Cartesian resolution around 4 km. This is specific
to our choice of taking the pseudo-inverse instead of defining a new projection
operator. This technical detail has been moved to an Appendix.

RC: L196: complete U-net architecture
Do I understand the architecture correctly that you downscale only
once in your U-Net? If that is the case, the illustration in Figure 3 is
misleading, as 4 down scaling steps are shown. Please clarify this and
adapt the figure potentially.

AR: Yes, indeed in the shown architecture there is only one downscaling operation, we
have adapted the figure, as shown in Fig. 5.

RC: Section 4: Experimental setup
This section describes how data to train the NN is created. Consider
renaming this section to e.g. “training data generation” or similar. I
also would consider moving this section before the details on the ML
algorithms as I feel it helps to know the data before getting introduced
to the detailed methods.

AR: We have renamed the section to “Data generation and training”. We have moved
the explanation of the twin experiments into the newly introduced Sect. 2.3. The
ordering should be clearer now and Sect. 4 more disentangled.

RC: L305: their expectation
their expected value?
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AR: We have changed to ”expected value”, as this seems to be a more common name.

RC: Table 3 - Caption: MAE
Is the MAE computed at high or low resolution?
A score of one would correspond to the performance of the geophysical
model forecast in the training dataset.
Do you mean the coarse resolution geophysical model forecasting the
high resolution run? Please clarify.

AR: We have been more specific about low- and high-resolution in the caption and
written: ”Normalised MAE on the test dataset, estimated in low-resolution, and
averaged over ten NNs trained with different seeds”.

RC: Table 3 - Caption: the afterwards used architecture and the best scores
If this refers to the hybrid model or online use of the correction, please
write this. Also, consider writing “that shows” instead “and”.

AR: We have clarified the caption and written: ”Bold scores are the best scores in a
column”.

RC: L320: persistence forecast performs
Could you for clarity once define what you use as a persistence forecast?
It might be obvious to you, but for readers outside the field, it will be
helpful.

AR: We have been more specific about the persistence forecast and have defined it in
the beginning of the results section by: ”As baseline method, we use a persistence
forecast with the initial conditions as constant prediction”.

RC: L335: Such localised features
Consider adding the length scale in km if you think this finding is
generalizable or holds valuable information for other processes related
to sea-ice deformation.

AR: In our case, we know that the missing processes lie between the 8 km and the
4 km, but if learned from observations, it might be indeed interesting to see the
length-scale of the learned model error correction. We have tried to extract specific
length-scales but had problems to properly define them. Instead, we have tried to
be more specific.

RC: L340: a generally smoother background pattern
What is meant by this? Please clarify and rephrase.

AR: We have clarified the discussion of the feature map.

RC: Figure 6
I) What colormap uses a)?
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II) I am wondering if also the concentration maps in the initial and
forecast step would be helpful here to interpret the gradients?

AR: The colormap of (a) is somewhat arbitrary as the normalized field like used for the
input into the NN is shown. Instead, we will change to the unnormalized area and
show a colorbar.
We have redesigned the Figure, as shown in Fig. 6, and added colormaps, and more
useful information about the sea-ice area fields.

RC: L378: either
Isn’t it to both instead of either or?

AR: Has been changed to “and”.

RC: L380: Table ??
correct reference

AR: The reference has been corrected.

RC: L382-383: Additionally, the sensitivity is directional dependent, Fig.
6g, and exhibits localised features, Fig. 6c and i
Could you discuss these results also in the light of physical understanding
that we can gain from the gradients? From both the gradients along
initial and difference, we can learn about the shortcomings of the coarse
resolution simulations that the NN tries to compensate for.

AR: Thank you for this nice suggestion. Our goal was to prove the point of localised
features and representation of anisotropy, neglecting its physical meaning. We have
added a paragraph, discussing the physical meaning along the suggested lines.

RC: L391: −1× 10−3 and 1× 10−3

Units?

AR: This sentence was a remnant of an older version of the manuscript. As there is no
longer a restriction to the correction of the sea-ice thickness, the sentence has been
removed. Thank you for spotting this typo.

RC: L392: Related to optimal control theory in dynamical systems,
This is not very helpful for readers with limited background knowledge.
Please elaborate more or rephrase.

AR: We have changed the sentence to ”We change the performance metric to be the
RMSE, a commonly used metric to evaluate forecast performances”.

RC: L405-408: Additionally, for the velocity, stress, and damage, the drift
towards . . . the ”Initial + Forecast” experiment in these variables and
averaged over all nine model variables.
Unclear, please rephrase.
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AR: We have simplified Sect. 5.3 and moved the results and discussion for the ”Ini-
tial+Difference” experiment to Appendix D6. There, we have simplified this
sentence.

RC: L412: As the initial condition error increases with each update, the
network corrects less and less forecast errors.
Could this effect be dampened by updating at higher frequencies?

AR: As discussed for your comment # 3, there is a trade-off. It seems that the cons
outweigh the pros, and more updates even hurt the performance. As we have added
the Figure to Appendix D2, we have referenced to these results:”This effect has an
larger impact on the forecast if the lead time between two corrections with the NN
is further reduced (Appendix D2)”.

RC: L413-419:”To show the effect of this error distribution shift, . . . An
averaged correlation of 1 would indicate a perfect pattern correlation.”
This paragraph is hardly understandable with no background knowledge
of the method “centred spatial pattern correlation”. I suggest describing
the principle of the method and its interpretation at the beginning of
the paragraph in 1-2 sentences, before describing its specifics.

AR: We have added a short description of the centred spatial pattern correlation:”we
centre all fields by removing their mean, and estimate Pearson’s correlation coeffi-
cient between the prediction and the residual in space”.

RC: L422: especially for the divergent stress
From the previous paragraph, it sounds as if a value close to 1 is favorable,
but this statement reads as if a high value close to 1 for divergent stress
shows a weakness of the NN. Please clarify.

AR: Considering the results for the sea-ice area, we have clarified that this shows a
deficiency of the neural network but of the forecast model and written:”Caused by
the drift towards the attractor, the sea-ice model forgets parts of the previous error
correction for the velocity and divergent stress component, and these forgotten parts
get corrected again in the fifth update”.

RC: L434-435: However, the parametrisation misses the development of new
strains and positions the main strain at the wrong place.
This suggests that the corrections of the NN violate the brittle model
physics, as highly damaged areas are usually linked to high deformation
rates. Is this correct? If so, please comment on this also in the text,
and if there is a way to design a network that computes corrections in
accordance with the physical laws of the model.

AR: In the hybrid model, the field is damaged beyond a given deformation threshold,
shown for the damaging process in the south, as in the high-resolution simulation.
Only, the high deformation rates in already damaged areas are striking in the case
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of the hybrid model. As such high rates are unobserved for the high resolution
simulation, it remains unknown if this is an unphysical behaviour or not. Because
the last correction of the neural network is already more than 9 minutes ago, we
would speculate and say that the model would have had time to adapt to the new
situation such that the rates are physical explainable.

RC: L456-457: Therefore, using such a mapping into Cartesian space, we can
apply CNNs, which can efficiently scale to larger, Arctic-wide, models.
Are you talking about Arctic-wide models on unstructured grids? Or
why is the mapping needed? Please clarify the text.

AR: We have clarified that we mean Arctic-wide simulations on unstructured grids and
written: ”Therefore, using a mapping into Cartesian space, we can apply CNNs to
Arctic-wide models with unstructured grids, like neXtSIM”.

RC: L462-463: As processes have no discretized resolution in realworld, we
would have difficulties to find the right resolution for the projection in
such cases.
Isn’t that only an issue if you would aim to train a correction with
observations? If it is a model, then you would always know the resolution
of resolved scales. Please clarify

AR: Indeed, this is only an issue if we train with observations. We have disentangled
this paragraph and removed the reference to learning from observations.

RC: L462: truth
Please clarify what is meant by truth: the high-resolution simulation or
something different

AR: We have replaced by ”targetted simulations”.

RC: L464: this argument
What argument?

AR: The argument that the optimal resolution is linked to the resolution of the processes
in the targetted simulations. We have clarified that we mean this link.

RC: L503: The only way is therefore to improve the forecast model, thereby
changing its attractor.
What about updating the forecasting model at higher frequencies? Please
comment.

AR: In the most extreme case, we would correct after each integration time step, which
could be seen as integrated form of a subgrid-scale parameterisation. In this case,
we would change the attractor, as each forecast is now a corrected forecast. The
problem is rather to define the attractor of the hybrid model; one could define only
the corrected states as attractor. We have added: ”e.g., by directly parametrising
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the subgrid-scale processes with a tendency correction.” to make the link to the
next paragraph more explicit.

RC: L530-532: Mapping the input data into a Cartesian space that has a
higher resolution than the original space, such scalable convolutional
neural networks can be applied for feature extraction in sea-ice models
defined on a triangular or unstructured grid.
Something is wrong with this sentence, please correct it.

AR: This sentence does make indeed no sense, we have rephrased it to: ”For sea-ice
models defined on a triangular or unstructured grid, such scalable convolutional
neural networks can be applied for feature extraction by mapping the input data
into a Cartesian space that has a higher resolution than the original space”.

RC: L543: total deformation
On which Figure or result is the statement that the total deformation is
improved? From Fig. 8 ,I would agree that the damage in the hybrid
model looks closer to the high-resolution run than the uncorrected low-
resolution simulation, but for total deformation, it is the other way
around in my eyes.

AR: We agree that the point-wise error for the hybrid forecast in the total deformation is
higher. Hence, we have rephrases it into: ”The deterministic model error correction
leads to an improved representation of the fracturing processes”.

RC: L552: Appendix
Table?

AR: The Table number should be fixed.

RC: L562-564: Caused by their limited capacity, the NNs have to focus on
some variables, creating an imbalance between variables, which harms
the performance for other variables, like the stress in the case of ”Conv
(×5)”.
Have you tried to train individual networks for each variable, which
could balance this effect?

AR: In the initial phase of the research, we have seen that one big neural network with
shared parameters performs better than nine small neural networks. Consequently,
we have concentrated the research on a single big neural network. As one big
network shares the features for all variables, it has to learn more general features
than networks for single variables. The shared features act as regularisation which
can help to reduce the overfitting. Hence, learning one network for all variables
can enable the use of larger neural networks. We have run a test for the ”Conv
(×1)” architecture with multiple networks and added the results to Table C1. In
Appendix C, we additionally added a discussion for these results.
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RC: L565: fast NN
Is the speed of the trained U-NeXt NN an issue compared to the
computational costs of the geophysical model? Or does this refers to
training speeds?

AR: Compared to the geophysical model, the neural network is fast, if correctly imple-
mented into the model, e.g., using the C++ libraries of PyTorch or TensorFlow.
However, such kind of model error correction sits on top of a geophysical model,
its runtime is additive to the runtime of the geophysical model. Consequently, the
faster and lightweight the model, the better. So, it is in some sense a trade-off
between additional runtime and additional gain, and, for some purposes, the Conv
(×1) architecture might be enough. We have added ”Such a fast NN can be helpful
if the additional latency time impacts its application in a sea-ice model”.

3 General changes in the manuscript

For the most of our result tables, we have found that we had mistakenly misordered
the variable names (column heads). To match the order of the variable names, we have
changed the order of the values. Consequently, we have recomputed all numbers. This
has only a minor impact on the results and has not changed any of the conclusions.
To streamline the results part for the forecasting with the model error correction, we

have removed the results of the ”Initial+Difference” experiment from Fig. 7 and Table 6.
Instead, we have introduced a new subsection in Appendix D6, where we compare the
”Initial+Forecast” and ”Initial+Difference” experiment.

During proofreading of the revised manuscript, we have found and fixed some ortho-
graphic mistakes. Additionally, we have improved the consistency in the wording.
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Figure 1: The negative log-likelihood for a Laplace distribution, proportional to the
mean absolute error (MAE), with a fixed weighting in the validation dataset
as function of epochs for different fractions of training data, the brighter the
colour, the less training data is used. The smaller Figure shows the averaged
MAE in the test dataset as function of the fraction of training data. A fraction
of 1.0 corresponds to around 12.3 × 106 degrees-of-freedom in the training
dataset.
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Figure 2: Snapshot of sea-ice damage for a one-hour forecast with the here-used regional
sea-ice model. Shown are the high-resolution simulations (a, 4 km resolution)
and low-resolution forecasts (b, c). To initialise the low-resolution forecasts,
the initial conditions of the high-resolution are projected into a low-resolution
space with 8 km resolution. Started from these projected initial conditions, the
low-resolution forecast (b) generates too much damage compared to the high-
resolution field. Running the low-resolution model together with our learned
model error correction (c) leads to a better representation of the damaging
process, which improves the forecast by 62% in this example.
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Figure 3: (a) The model domain with the high- (red) and low-resolution (blue) grid;
(b) snapshot of the surface wind velocity in y-direction in m s−1, used as wind
forcing for the shown case, the white arrows indicate the main movement
direction; (c) snapshot of the stress, σxy in Pa, where the arrows correspond
to von Neumann boundary conditions on all four sides; (d) snapshot of the
damage, where the arrows correspond to an inflow of undamaged sea ice on
all four sides. All snapshots are taken at an arbitrary time and represent a
typically encountered case in our dataset.
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Table 1: Permutation feature importance of different variable groups. The colouring
is the same as in Table 6 of the original manuscript. SIU stands for velocity
in x-direction, SIV for velocity in y-direction, F for wind forcing, σ for all
stress variables, DAM for damage, SIA for sea-ice area, and SIT for sea-ice
thickness. The reference is the permutation feature importance of the dynamics
for a specific variable.
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Figure 4: Normalised RMSE for (a) the velocity in y-direction, (b) the divergent stress
in y-direction, (c) the damage, and (d) the sea-ice area as function of lead
time on the test dataset, normalised by the expected RMSE on the training
dataset for a lead time of 10 min and 8 s. In the hybrid models, the forecast is
corrected after each specified lead time in brackets.
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Figure 5: In our deep learning approach (a), the input fields are projected by a fixed
linear projection operator P from their triangular space into a Cartesian space
that has a higher resolution, where the learnable U-Net extracts features. Back-
projected into triangular space by the pseudo-inverse of the linear projection
operator P†, these features are combined by learnable linear functions to obtain
the output. In our case, the U-Net consists of multiple ConvNeXt-like blocks
(b) that have a branch path and a fixed skip connection (i.e., the output of an
identity function): in the branch path, a learnable convolutional layer extracts
depth-wise, i.e. without mixing the channels, spatial features with a kernel
size of 7 × 7. The resulting features are layer-normalised and combined by
two consecutive learnable convolutions with a 1 × 1 kernel and a Gaussian
error linear unit (Gelu) activation function in-between. In the end, the features
are added to the output of the skip connection. Throughout the Figure, blue
coloured connections indicate a fixed function, red colours a learnable function,
and dotted lines in the U-Net and ConvNeXt block represent skip connections.
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(a) Initial (b) Dynamics (c) Error (d) Prediction
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Figure 6: Snapshots at an arbitrary time of (a) sea-ice area at initial time, (b) the
difference in area between forecast time and initial time, (c) difference in area
between projected truth and forecast at forecast time, and (d) prediction of the
NN for the area. In the lower part, we show the sensitivity of the prediction
for the area at a chosen grid point, indicated by a white or black dot, on (e)
the thickness at initial time, (f) the difference in area, (g) the difference in
damage, and (h) the difference in velocity in y-direction. The black arrow in
(h) indicates the main sea-ice movement direction.
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