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Abstract. We introduce a scalable approach to parametrise
::::::::::::::
proof-of-concept

::
to

:::::::::::
parameterise the unresolved subgrid-scale of

sea-ice dynamics with deep learning techniques. We apply this
:::::
Instead

:::
of

::::::::::::
parameterising

::::::
single

:::::::::
processes,

:
a
::::::

single
::::::
neural

:::::::
network

::
is

::::::
trained

::
to

::::::
correct

:::
all

::::::
model

::::::::
variables

::
at

:::
the

:::::
same

:::::
time.

::::
This

:
data-driven approach

:
is

:::::::
applied to a regional sea-

ice model that accounts exclusively for dynamical processes with a Maxwell-Elasto-Brittle rheology. Our channel-like model

setup is driven by a wave-like wind forcing , which
::::::::::::::::::
Maxwell-elasto-brittle

::::::::
rheology.

::::::
Driven

:::
by

::
an

:::::::
external

:::::
wind

::::::
forcing

::
in

::
a5

::::::::::::::
40 km× 200 km

:::::::
domain,

:::
the

:::::
model

:
generates examples of sharp transitions between unfractured and fully-fractured sea ice.

Using
::
To

:::::::
correct

::::
such

:::::::::
examples,

:::
we

:::::::
propose a convolutional U-Net architecture , the parametrising neural network extracts

multiscale and anisotropic features and, thus, includes important inductive biases needed for sea-ice dynamics. The neural

network is trained to correct all nine model variables at the same time. With the initial and forecast state as input into the neural

network, we cast the subgrid-scale parametrisation as model error correction, needed to correct unresolved model dynamics. We10

test the here-proposed
:::::
which

:::::::
extracts

:::::::
features

::
at

:::::::
multiple

::::::
scales.

::::
We

:::
test

:::
this

:
approach in twin experiments, where forecasts

of a
:
:
:::
the

:::::
neural

::::::::
network

:::::
learns

:::
to

::::::
correct

::::::::
forecasts

::::
from

:
low-resolution forecast model are corrected

:::::::::
simulations towards

high-resolution truth states for a forecast
:::::::::
simulations

:::
for

::
a lead time of about 10 min

::
10

:::::::
minutes. At this lead time, our ap-

proach reduces the forecast errors by more than 75 %, averaged over all model variables. The neural network learns hereby

a physically-explainable input-to-output relation. Furthermore, cycling the subgrid-scale parametrisation
::
As

::::
most

:::::::::
important15

::::::::
predictors,

:::
we

:::::::
identify

:::
the

::::::::
dynamics

::
of

:::
the

::::::
model

::::::::
variables.

:::::::::::
Furthermore,

:::
the

:::::
neural

:::::::
network

:::::::
extracts

:::::::
localised

::::
and

:::::::::
directional

::::::::
dependent

::::::::
features,

:::::
which

:::::
points

:::::::
towards

:::
the

:::::::::::
shortcomings

:::
of

:::
the

::::::::::::
low-resolution

::::::::::
simulations.

:::::::
Applied

::
to

::::::
correct

:::
the

::::::::
forecasts

::::
every

:::
10

:::::::
minutes,

:::
the

::::::
neural

:::::::
network

::
is

:::
run

:
together with the geophysical model

::::::
sea-ice

::::::
model.

::::
This improves the short-term

forecast up to one hour. We
::::::::
forecasts

::
up

::
to
:::

an
:::::
hour.

:::::
These

::::::
results

:
consequently show that neural networks can parametrise

::::::
correct

:::::
model

:::::
errors

:::::
from the subgrid-scale for sea-ice dynamics. We therefore see this study as an important first step towards20

hybrid modelling to forecast sea-ice dynamics on an hourly to daily timescale.
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1 Introduction

Sea-ice models with Elasto-Brittle rheologies (e.g. Rampal et al., 2016) reproduce
:::::::::::
elasto-brittle

::::::::
rheologies

::::::::::::::::::::::
(e.g., Rampal et al., 2016)

:::::::
simulate the dynamics of sea ice at an unprecedented resolution and accuracy

::::
with

::
an

::::::::::::
unprecedented

::::::::
accuracy

:::
for

::::::::::
Arctic-wide

:::::::::
simulations

::
in
:::
the

:::::::::
mesoscale

::::
with

:::::::::
horizontal

::::::::::
resolutions

::
of

::::::
around

:::::
10km

:
(Rabatel et al., 2018; Bouchat et al., 2022; Boutin25

et al., 2022). These models represent
::::::::
reproduce

:
the observed temporal and spatial scale-invariance of the sea-ice deformation

and drift across multiple scales, up to the resolution of a single grid cell at the mesoscale (Dansereau et al., 2016; Rampal et al., 2019; Ólason et al., 2021)

. Elasto-Brittle
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dansereau et al., 2016; Rampal et al., 2019; Ólason et al., 2021)

:
.
:::::::::::
Elasto-brittle rheologies parametrise the un-

resolved subgrid-scale processes associated with brittle fracturing through a progressive damage framework (Tang, 1997; Ami-

trano et al., 1999; Girard et al., 2011). Such framework connects the elastic modulus of the material at the grid cell level to the30

degree of fracturing at the subgrid-scale. Comprised between 0, undamaged, and 1, completely damaged material, the fractur-

ing is represented by the level of damage. When the internal stress locally exceeds a given damage criterion
:::::
locally, the level of

damage increases and the elastic modulus decreases, thereby reducing the local effective stress. Excessive stress is elastically

redistributed throughout the material, causing overcritical stress elsewhere. Hence, the damage is highly localised and progres-

sively propagated through the material, which also leads to a strong localisation of the deformation. The Maxwell-Elasto-Brittle35

::::::::::::::::::
Maxwell-elasto-brittle rheology (Dansereau et al., 2016) adds to this framework the concept of an "apparent" viscosity. Cou-

pled to the level of damage, the added viscosity allows accounting for the relaxation of stresses by all permanent deformations

within a fractured sea-ice cover. Although models with such rheologies successfully simulate
::::::::
reproduce the observed scaling

properties of sea-ice deformation, they locally underestimate very high convergence and shear rates in some instances (Óla-

son et al., 2022). Thus, some important, possibly subgrid-scale, processes are still unresolved at the mesoscale
::::::::
resolutions

:::
of40

::::::
around

:::::
10km or unrepresented in Elasto-Brittle

::::::::::
elasto-brittle rheologies and their damage parametrisations.

To exemplify the impact of these unresolved subgrid-scale processes on the sea-ice dynamics, and to see how deep learning

can remedy these issues, we perform twin experiments with a
:::::::
regional sea-ice model that depicts exclusively the dynamics

in a Maxwell-Elasto-Brittle
::::::::::::::::::
Maxwell-elasto-brittle rheology (Dansereau et al., 2016, 2017, 2021). By imposing a wave-like

atmospheric wind forcing in a channel-like setup, we generate marginal ice zones with
:
In

::
a

::::::::::::::
40 km× 200 km

::::::::::::::
(x× y-direction)45

:::::::
domain,

:::
we

:::::::
impose

::
an

:::::::
external

::::
wind

:::::::
forcing

::::
with

:
a
:::::::::
sinusoidal

:::::::
velocity

::
in

::::::::::
y-direction.

::::
This

::::::
forcing

::::::::
generates

:
sharp transitions

from undamaged sea ice to almost totally damaged
:::::::::
unfractured

::
to

::::::
almost

::::::::::
completely

::::::::
fractured sea ice. Starting two model

simulations at different resolutions from the same , possibly projected , initial conditionscan lead to different trajectories.
::::
Such

::
an

:::::::
instance

::
of

:::::
sharp

:::::::::
transitions

::
is
:::::::::
exemplary

::::::
shown

::
in

::::
Fig.

::
1a

:::
for

::
a
:::::::::
simulation

::::
with

::
a

::::
4 km

:::::::::
horizontal

:::::::::
resolution

:::
and

::
a
::::
lead

::::
time

::
of

:::
one

:::::
hour.

::::::::
Initialised

:::::
with

:::
the

::::
same

:::
but

::::::::
projected

::::::
initial

:::::::::
conditions,

:
a
::::::::::

simulation
::
at

:
a
:::::
8 km

::::::::
horizontal

:::::::::
resolution

:::::
leads50

::
to

:
a
:::::::
different

:::::::::
trajectory,

::::
Fig.

:::
1b.

:
Such different instances of sea-ice dynamics are caused by differently integrated processes.

Consequently, the sea-ice damage can already significantly differ after one hour of simulation, as shown in Fig. 1. Here, the
:
.

::::
Here,

::
in
:::
the

::::::::
transition

::::::
zones,

:::
the low-resolution simulation (b) misses the rapidly developed opening of sea ice in

:::::::
fractures

:::
the

:::
sea

::
ice

:::
too

:::::::
strongly

:::::::::
compared

::
to the high-resolutionsimulation (a). In this study, we introduce a baseline hybrid modelling

::::
deep
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Figure 1. Snapshot of sea-ice damage after
::
for a one-hour forecast with the here-used

::::::
regional

:
sea-ice dynamics only-model

:::::
model. The

initial conditions of
:::::
Shown

::
are

:
the high-resolution truth

::::::::
simulations (a, 4 km resolution)

:::
and

:::::::::::
low-resolution

::::::
forecasts

:::
(b,

::
c).

::
To

:::::::
initialise

:::
the

::::::::::
low-resolution

::::::::
forecasts,

::
the

:::::
initial

::::::::
conditions

::
of

:::
the

:::::::::::
high-resolution

:
are projected into a low-resolution space with 8 km resolution. Started

from these projected initial conditions, the low-resolution forecast (b) is unable
::::::
generates

:::
too

:::::
much

::::::
damage

::::::::
compared

:
to reproduce the

dynamics of the truth
:::::::::::
high-resolution

::::
field. Running the low-resolution forecast in a hybrid mode

:::::
model

::::::
together

:::
with

:::
our

::::::
learned

:::::
model

::::
error

:::::::
correction

:
(c) together with a subgrid-scale-parametrising neural network leads to a better representation of the sea-ice dynamics

:::::::
damaging

:::::
process, which improves the forecast , tested up to one hour

::
by

::::
62%

::
in

:::
this

::::::
example.

:::::::
learning approach to correct the missing processeswith deep learning. By parametrising the subgrid-scale, the hybrid model55

better reproduces
:::
can

:::::
better

:::::::::
reproduce the temporal evolution of high-resolution simulations at the lower resolution(,

:
Fig. 1c).

Subgrid-scale parametrisations with machine learning have already been proved useful for other Earth system components

(Brenowitz and Bretherton, 2018; Beucler et al., 2021; Irrgang et al., 2021). In the atmosphere, cloud processes can be learned

from emulating super-parametrised or super-resolved models within a lower-resolution model (Gentine et al., 2018; Rasp et al.,

2018; Seifert and Rasp, 2020). Additionally, machine learning can parametrise turbulent dynamics in the atmosphere (Beck60

and Kurz, 2021; Cheng et al., 2022) and in the ocean (Zanna and Bolton, 2020; Guillaumin and Zanna, 2021).

To predict the sea-ice concentration, purely data-driven surrogate models can replace geophysical models at daily (Liu et al.,

2021) and seasonal forecast horizons (Andersson et al., 2021). Furthermore, multi-layer perceptrons
::::
small

::::::
neural

:::::::
networks

:
can

emulate granular simulations of ocean-sea-ice interactions, allowing to parametrise the effect of ocean waves onto the sea ice

(Horvat and Roach, 2022). In this study, we take another point of view and show more generally that subgrid-scale processes65
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for sea-ice dynamics can be parametrised with deep learning, correcting all forecast
::::::::
prognostic

:
model variables at the same

time.

The dynamics of sea-ice impose hereby new challenges for neural networks (NNs) that should parametrise the subgrid-scale:

– The marginal ice zone characterises a rapid spatial transition from open water to thick sea ice within a few kilometres

(Horvat, 2021; Bennetts et al., 2022). As current
::::::
Current

:
sea-ice models represent the marginal ice zone

::::
leads in a band70

of few pixels, the zone
:::
and

:::::
sharp

::::::::
transition

:::::
zones

:
can appear as a non-continuous jump

:::
step

:
function within the data.

For such discrete-continuous mixture data distributions, NNs that simply learn to regress into the future tend to diffuse

and blur the target (Ayzel et al., 2020; Ravuri et al., 2021), caused by their
:
if

::::::
trained

:::
by

:
a
:
pixel-wise loss function. A

correct representation of the marginal ice zone
::::
sharp

:::::::::
transitions can thus induce problems within the training of the NN,

resulting into a diffusion of the normally concentrated zone
::::::::
transition

:::::
zones.75

– In Elasto-Brittle
::::::::::
elasto-brittle models, the handling of the internal stress depends on the fragmentation of sea ice. This

dependency also leads to different forecast error distributions for different fragmentation levels, even for variables only

indirectly related to the stress, like the sea-ice thickness. Consequently, a NN that should correct the forecast error
:::
for

:::::
model

:::::
error

:::::::::
correction,

::
a

:::
NN

:
has to be trained across a range of fragmentation levels and should be able to output

multimodal predictions in the best case.80

– As sea ice is scale-invariant up to the kilometre-scale, fragmentation of sea-ice propagates from small, unresolved, scales

to the larger, resolved, scales. Because the small scales are unresolved, the appearance of linear kinematic features seems

to be stochastic from the resolved macro-scale point of view. Additionally
::::::::::
Furthermore, such features are inherently

multifractal and propagate in an anisotropic medium (Wilchinsky and Feltham, 2006, 2011).

Finally, the found subgrid-scale parametrisation approach should be scalable to a range of resolutions, from regional models85

used in this study to Arctic-wide models, like neXtSIM (Rampal et al., 2016; Ólason et al., 2022).

As a first step towards solving these challenges for NNs
:::
and

::::::
giving

:
a
::::::::::::::
proof-of-concept, we present the aforementioned twin

experiments with a regional model. We create a training dataset with an ensemble of forcing parameters and initial cohesion,

which describes the strength of the sea ice against stress. We simulate high-resolution truth trajectories at a
:::
Our

::::
goal

::
is
:::

to

::::
train

::::
NNs

::
to

::::::
correct

:::
the

::::::
output

::
of

::::::::::
simulations

::::
with

::
a
:::::
8 km

::::::::
horizontal

:::::::::
resolution

:::::::
towards

:::::::::
simulation

::::
with

::
a 4 km resolution.90

Projected into a lower resolved space at a 8 km resolution, these truth trajectories are used as reference and initial condition

for low-resolution forecasts. As the low-resolution forecast
:::::
model

::::
setup

:
resolves fewer processes than the truth

::::::::::::
high-resolution

::::
setup, the NN has to account for the unresolved subgrid-scale processes to correct model errors. In the following, we will thus

use model error correction and subgrid-scale parametrisation interchangeably. We train the NN to correct forecasts for a lead

time of 10 min and 8 s (a multiplier of our 16 s model time step), with the approach commonly known as the additive resolvent95

correction, which targets the difference between forecast and projected truth. When cycled during forecasting, the output of

the NN is added to the forecast of the geophysical model; the model is then a hybrid machine-learning-physical model.

With such experiments, we
:::
For

:::
this

:::::
goal,

::
we

:
have found a baseline deep learning architecture, based on the U-Net approach

(Ronneberger et al., 2015)
:::
and

:
with applied tricks,

::::
e.g.,

:
from the ConvNeXt architecture (Liu et al., 2022). As the model is
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discretised on a triangular grid, we introduce a projection step to a high-resolution Cartesian grid, where the aforementioned100

U-Net extract features. The extracted features are projected back into the original triangular space and then combined by linear

functions, shared across all grid points, into an additive model error correction. The convolutional U-Net makes use of spatial

correlations and extracts anisotropic features at multiple scales. Balanced with maximum likelihood during training, a single

NN corrects all nine forecast model variables at the same time.

Our baseline architecture is only trained to correct the forecast
:::
The

::::
NNs

::::
are

::::::
trained

::
to

::::::
correct

:::
all

::::
nine

:::::::::
prognostic

::::::
model105

:::::::
variables

:
for a lead time of 10 min and 8 s . When the correction is cycled with the forecast model , uncorrected errors

accumulate for longer forecast horizons, reducing the efficiency of our error correction. Nevertheless
::
(a

::::::::
multiplier

:::
of

:::
our

::::
16 s

:::::
model

::::
time

:::::
step).

::::::
During

::::::::::
forecasting,

:::
the

::::::::
so-trained

:::
NN

::::
can

::
be

::::::
applied

:::::
every

::::::
10 min

::::
and

:::
8 s

::
to

::::::::::
continuously

::::::
correct

:::
the

::::::
model

::::::
output.

:::::
Based

:::
on

:::
this

::::::::
approach, we present first promising results for short-term forecasting (up to 60 min), as showcased in

Fig. 1c.110

We briefly present the
::::::::
introduce

:::
the

:::::::
problem

::::
that

:::
we

:::
try

::
to

:::::
solve,

:::
the

:
regional sea-ice model

:
,
:::
and

:::
our

:::::::
strategy

::
to
:::::

train
:::
the

::::
NNs in Sect. 2.2. The different components of our deep-learning-based

:
2.

::::
The

:::
NN

:::
for

:::
the model error correction are introduced

:
is
::::::
briefly

::::::::
explained

:
in Sect. ??. Our learning strategy and the specific features of the twin experiments are described in Sect. 2.

::
3. Results are given in Sect. 5, summary and discussion in Sect. 6, and final, concise, conclusions in Sect. 7.

2 A regional sea-ice model with a Maxwell-Elasto-Brittle rheology115

In the following paragraphs, we will briefly describe the most important properties of the regional sea-ice model used in this

study.
::
A

::::
more

:::::::
rigorous

::::::::::
introduction

:::
of

::
the

::::::
model

:::
can

::
be

:::::
found

::
in
:
Appendix A presents the model parameters used in this study.

For
:::
and

:
a more technical presentation of the model, we refer the reader to Dansereau et al. (2016, 2017).

Compared to Arctic and pan-Arctic
:::::::::
description

::
of

:::
the

:::
NN

::
in

:::::::::
Appendix

::
B.

2
::::
Twin

:::::::::::
experiments

:::
for

:::::
deep

:::::::
learning

::
a
::::::
model

:::::
error

:::::::::
correction120

:::
Our

::::
goal

::
is

::
to

::::
make

::
a
::::::::::::::
proof-of-concept

:::
that

:::::::::::
subgrid-scale

::::::::
processes

:::
can

:::
be

:::::::::::
parameterised

:::
by

:::::
neural

::::::::
networks

::::::
(NNs).

:::
We

::::::
hereby

:::::::::
parametrise

::::::::::::
subgrid-scale

::::::::
processes

::::
with

:
a
::::

NN
::::
that

::::::
corrects

::::::
model

::::::
errors.

:::
As

::::::
testbed,

:::
we

::::
use

:
a
:::::::
regional

:
sea-ice models, like

neXtSIM (Rampal et al., 2016; Ólason et al., 2022), this model is
:::::
model

:::
that

::::::
depicts

::::::
sea-ice

::::::::
dynamics

::
in

:
a regional standalone

model that accounts exclusively for dynamical processes . Like most
::::::::::::::::::
Maxwell-elasto-brittle

::::::::
rheology.

:::
To

:::::
train

:::
the

::::::
neural

::::::::
networks,

:::
we

:::
use

::::
twin

:::::::::::
experiments,

:::::
where

:::
we

:::::::
compare

::::::::::::
low-resolution

:::::::
forecast

::
to

:
a
::::::
known

::::::::::::
high-resolved

::::
truth,

:::::::::
simulated

::::
with125

::
the

:::::
same

:
sea-ice models, it is as well two-dimensional and based on a plane stress approximation. Nine variables constitute

its prognostic state vector: sea-ice velocity in x- and y-direction, the three stress components, level of damage, cohesion,

thickness, and concentration.

Atmospheric wind stress is the sole external mechanical forcing, whereas the ocean beneath the sea ice is assumed to be at

rest. Given the small horizontal extent of our simulation domain (see Fig. 2), we also neglect the Coriolis force
:::::
model.130
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(a) The model domain with the high- (red) and low-resolution (black) grid; (b) a snapshot of the stress, σxy in Pa, where

the arrows correspond to von Neumann boundary conditions on all four sides; (c) a snapshot of the damage, where the arrows

correspond to an inflow of undamaged sea ice on all four sides. Both snapshots are taken at an arbitrary time and represent a

commonly encountered case in our dataset.

2.1
:::::::

Problem
::::::::::
formulation135

The Maxwell-Elasto-Brittle rheology from Dansereau et al. (2016) specifies the constitutive law of the model. It combines

elastic deformations, with an associated elastic modulus, and permanent deformations, with an associated apparent viscosity.

The ratio of the viscosity to the elastic modulus defines the rate at which stresses are dissipated into permanent deformations.

Both variables are coupled to the level of damage: deformations are strictly elastic over undamaged ice and completely

irreversible over fully-damaged ice. The level of damage propagates in space and time due to damaging and healing. Ice is140

damaged, and thus the level of damage increases, when and where the stresses are overcritical according to a Mohr-Coloumb

damage criteria (Dansereau et al., 2016). This mechanism parametrises the role of brittle failure processes from the subgrid-scale

onto the mechanical weakening of ice at the mesoscale. Reducing the level of damage, ice is healed at a constant rate, which

parameterises the effect of subgrid-scale refreezing of cracks onto the mechanical strengthening of the ice. By neglecting

thermodynamical sources and sinks in the model
:::
Our

::::
goal

::
is
:::
to

:::::::::
parametrise

::::::::::
unresolved

::::::::
processes

::
of

:::
the

:::::::
forecast

::::::
model

:::::
M(·)145

:::
that

:::::
maps

:::
an

:::::
initial

::::
state

:::::
xin
t−1::

at
:::::

time
::::
t− 1

:::
to

:
a
:::::::

forecast
:::
xf
t::

at
:::::

time
:
t, cohesion, thickness, and area are solely driven by

advection and diffusion processes; the prognostic variable for the thickness is hereby the thickness of the ice-covered portion

of a grid cell, defined as the ratio between thickness and area. For the prognostic

xf
t =M(xin

t−1),
:::::::::::::

(1)

::
to

:::::::
simplify

:::
the

::::::::
notation,

:::::
time

:::
has

:::::
been

::::::::::
discretised,

:::::
t ∈ N.

:::::::::
Normally,

::::::::::::::
parametrisations

::::
for

:::::
single

:::::::::
processes

:::
are

:::::::::
integrated150

:::::::
together

::::
with

::
the

:::::::
forecast

::::::
model.

:::::::
Instead,

:::
we

::::
learn

:
a
::::::
model

::::
error

:::::::::
correction

:::
that

:::
has

::
to
::::::::::
parametrise

:::::::::::
subgrid-scale

::::::::
processes

::::
and

::::::
correct

::
all

:::::::::
prognostic

:::::
model

::::::::
variables

::
at

:::
the

:::::
same

::::
time.

:

:::
The

:::::::::
correction

::
is

:::::::::
represented

:::
by

:::
the

:::::
output

:::
of

:
a
::::
NN,

:::::::::::::
f(xin

t−1,x
f
t,ϕ), :::::

which
::::::
makes

:::
use

::
of

:::
the

:::::
initial

::::
state

::::
and

:::
the

:::::::
forecast

::
as

::::
input

:::
and

:::::::::
combines

::::
them

::::
with

:::
its

:::::::::
parameters

::
ϕ.

::::
The

:::
NN

::
is

::::::
trained

::
to

::::::
predict

:::
the

:::::::
residual

:::::::::::::
∆xt = xt

t −xf
t:::::::

between
:::
the

::::
truth

:::
xt
t

:::
and

:::
the

:::::::::
forecasted

::::
state.

:
155

::
To

:::::
apply

:::
the

:::::
model

:::::
error

::::::::
correction

:::
for

::::::::::
continuous

:::::::::
forecasting,

:::
the

::::::::
predicted

:::::::
residual

::
is

:::::
added

::
to

:::
the

::::::::
forecast,

:::::::
resulting

::::
into

::
the

::::::::
corrected

:::::::
forecast

:::
xc
t .::::

This
::::::::
corrected

:::::::
forecast

:::
can

:::
be

::::
then

::::
used

::
as

:::::::::
subsequent

::::::
initial

::::
state

:::
for

:::
the

::::::
forecast

::::::
model,

:

xc
t

::
= xf

t + f(xin
t−1,x

f
t,ϕ),

::::::::::::::::::
xin
t = xc

t.
:::::::

(2)

::::::
Applied

::
to
::::::
correct

:::
the

::::::
model

::::::::
variables

::
in

:::
this

::::
way,

:::
the

:::::
neural

:::::::
network

::::
can

::
be

::::
used

:::::::
together

::::
with

:::
the

:
sea-ice thickness and area,

a simple volume-conserving scheme is introduced to represent the mechanical redistribution of the ice thickness associated160

with ridging (Dansereau et al., 2017)
:::::
model.

6



The model equations are discretised in time using a first-order, Eulerian implicit scheme. Due to the coupling of the

mechanical parameters to the levelof damage, the constitutive law is non-linear, and a semi-implicit fixed point scheme is

used to iteratively solve the momentum, the constitutive, and the damageequations. Within a modelintegration time step, these

three fields are updated first. Cohesion, thickness, and area are updated secondly, using the already updated fields of165

2.2
::::::

Testbed
::::
with

::
a
:::::::
regional

::::::
sea-ice

::::::
model

:::
The

::::::
model

::::::
depicts

:::
the

:::::::::
dynamical

:::::::::
processes

::
of

:::
sea

:::
ice

:::::
with

:
a
:::::::::::::::::::
Maxwell-elasto-brittle

::::::::
rheology

:::::::::::::::::::
(Dansereau et al., 2016)

:
.
::::
The

:::::::::::::
thermodynamics

:::::::
consist

::
of

::::
only

::::::::::::
redistribution

::
of sea-ice velocity and damage

:::::::
thickness,

:::::::
handled

:::
as

:::::
tracer

:::::::
variable

::::::::
similarly

::
to

:::
the

::::::
sea-ice

::::
area

:
.
:::
The

:::::::::::
elasto-brittle

::::::::
rheology

:::::::::
introduces

:
a
:::::::
damage

::::::
variable

::::
that

::::::::::::
parameterises

:::::::::::
subgrid-scale

::::::::
processes

::::
and

::::::::
represents

:::
the

::::::::::::
fragmentation

::::
level

:::
of

:::
the

:::
sea

:::
ice

::
on

::
a
:::::::
grid-box

:::::
level.

:::::::::
Depending

:::
on

:::
the

::::
state

:::
of

:::
the

:::
sea

:::
ice

:::
and

:::::::::
especially

:::
the170

:::::::
cohesion

:
,
:::
the

::::::
sea-ice

::::::::::
deformation,

::::::::::
represented

::
as

:::::
stress

:
,
::
is

::::::::
converted

::::
into

:::::::::
permanent

::::::
damage.

::
In

:::
this

::::::
model,

:::
the

:::::
stress

::::
and

:::
the

::::::
sea-ice

::::::
velocity

::
are

::::::
driven

:::
by

:::
the

::::::::::
atmospheric

::::::
surface

:::::
wind

::
as

::::
only

:::::::
external

:::::::
forcing.

::
In

:::::
total,

::::
The

:::::
model

::::
has

::::
nine

:::::::::
prognostic

::::::::
variables,

:::::
which

::::
will

::
be

::
all

::::::::
corrected

:::
by

:::
the

:::::
model

:::::
error

:::::::::
correction.

:::
We

::::
refer

::
to

::::::::
Appendix

::
A

:::
for

:
a
:::::
more

::::::::
technical

:::
and

::::::::
complete

:::::::::
description

::
of

:::
the

:::::::
regional

::::::
sea-ice

::::::
model.

:

The equations are discretised in space by a discontinues Galerkin scheme . The velocity and forcing componentsare defined175

by linear,
::::::
model’s

::::::::
equation

::
are

::::::::
spatially

:::::::::
discretised

::
by

::
a first-order , continuous finite elements. All other variables and derived

quantities like deformation and advection are characterised by constant,
::::::::
continuous

::::::::
Galerkin

:::::::
scheme

:::
for

:::
the

::::::
sea-ice

:::::::
velocity

::::::::::
components,

::::
and

:
a
:
zeroth-order , discontinuous elements. As the nodes are shared in the first-order elements, there are more

grid points for all variables that are defined as zeroth-order elements than for the velocity and forcing components
:::::::::::
discontinuous

:::::::
Galerkin

::::::
scheme

:::
for

::
all

:::::
other

:::::
model

::::::::
variables. The model is implemented in C++ and uses the Rheolef library (Version 6.7, Saramito, 2022)180

.

Our virtual area spans 40 km× 200 km: a channel-like setup, which is nevertheless anisotropy-allowing. The model is based

on a triangular grid with an average triangle size of 8 km for the low-resolution forecasts. The grid for the high-resolution truth

trajectories is a refined version of the low-resolution with a spacing of 4 km (Fig. 2a).

If not otherwise stated, we initialise the simulations with undamaged sea ice, the velocity and stresscomponents are set to185

zero
::::::::
integrated

:::
in

::::
time

::::
with

::
a

::::::::
first-order

::::::::
Eulerian

:::::::
implicit

:::::::
scheme,

:::
and

::
a
:::::::::::
semi-implicit

:::::
fixed

:::::
point

::::::
scheme

:::::::::
iteratively

::::::
solves

::
the

:::::::::
equations

:::
for

:::
the

::::::::
velocities,

:::
the

:::::
stress, and the area and thickness to one. The cohesion is initialised with a random field,

drawn from a uniform distribution between 5× 103 Pa and 1× 104 Pa. We use von-Neumann boundary conditions on all four

sides (Fig. 2, b), with an inflow of undamaged sea ice
:::::::
damage.

::::
The

:::::
model

::::
area

:::::
spans

::::::::::::::
40km× 200km

::
in

::
x-

::::
and

::::::::::
y-direction,

::::::::::
respectively (Fig. 2, c)

:::
2a),

:::
and

:::
we

:::
run

:::
the

::::::
model

::
at

:::
two

::::::::
different

::::::::::
resolutions,

::
at

:
a
::::
4km

::::
and

:
a
:::::::::
coarsened

::::
8km

:::::::::
resolution.

::::
The190

:::::::::
integration

::::
time

::::
step

::
is

::
8s

:::
for

:::
the

:::::::::::::
high-resolution

:::::
setup,

:
and a random cohesion, again between 5× 103 Pa and 1× 104 Pa.

The model configuration thus simulates a zoom into an (almost) undamaged region of sea ice, e.g. in the centre of the Arctic
:::
16s

::
for

:::
the

::::::::::::
low-resolution.

For the atmospheric
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Figure 2.
::
(a)

:::
The

:::::
model

::::::
domain

::::
with

::
the

::::
high-

::::
(red)

:::
and

:::::::::::
low-resolution

:::::
(blue)

::::
grid;

::
(b)

:::::::
snapshot

::
of

::
the

::::::
surface

::::
wind

::::::
velocity

::
in

::::::::
y-direction

::
in

:::::
ms−1,

::::
used

::
as

::::
wind

:::::
forcing

:::
for

::
the

:::::
shown

::::
case,

:::
the

::::
white

:::::
arrows

:::::::
indicate

::
the

::::
main

::::::::
movement

:::::::
direction;

:::
(c)

::::::
snapshot

::
of
:::
the

:::::
stress,

:::
σxy::

in
:::
Pa,

::::
where

:::
the

:::::
arrows

:::::::::
correspond

:
to
:::
von

::::::::
Neumann

:::::::
boundary

::::::::
conditions

::
on

::
all

:::
four

:::::
sides;

::
(d)

:::::::
snapshot

::
of

::
the

:::::::
damage,

:::::
where

::
the

:::::
arrows

:::::::::
correspond

:
to
:::
an

:::::
inflow

:
of
:::::::::
undamaged

:::
sea

::
ice

:::
on

::
all

:::
four

:::::
sides.

:::
All

:::::::
snapshots

:::
are

::::
taken

::
at

::
an

::::::
arbitrary

::::
time

:::
and

:::::::
represent

:
a
:::::::
typically

:::::::::
encountered

::::
case

::
in

::
our

::::::
dataset.

:

::
As

:::::::
external

:
wind forcing,

:::::::::
depending

::
on

:::
the

::::::
spatial

:::
x-

:::
and

:::::::::
y-position

::::
and

:::
the

:::::::
temporal

:::::::::
t-position,

:
we impose a wave-like195

velocity
::::::
surface

::::
wind

::::::
defined

:::
by

:::
the

:::::::
velocity

::::::::
ua(x,y, t) in y-directionand no velocity in x-direction. Because of the anisotropy,

the sea ice can nevertheless move in x-direction. Depending on its length scale and amplitude , the wave-like forcing generates

cases of rapid transitions between undamaged and fully-damaged sea ice. As spin-up for the high-resolution truth trajectories,

the wind forcing is linearly increased over the course of the first simulation day. The parameters of the wind forcing

ua(x,y, t) =A · sin
[
2π

λ
(ϕ+ y+ t · ν)

]
+u0.

::::::::::::::::::::::::::::::::::::

(3)200

:::::
Given

::::
base

:::::::
velocity

:::
u0,

:::
the

::::
wind

:::::::
velocity

::
is

::::::::
sinusoidal

::::
with

:::::::::
amplitude

::
A,

:::::
wave

:::::
length

::
λ,
::::::
phase

::
ϕ,

:::
and

::::::::
advection

:::::::
velocity

::
ν.

:::
To

:::::::
generate

:::::::
different

::::::::
situations

::
in

:::
our

:::::::::::
experiments,

:::
the

::::::
forcing

::::::::::
parameters are randomly drawn , as described in Sect. 2. The wind

forcing is updated at each model integration time step (8s for the simulations at high resolution and 16s for the simulations

at low resolution).
:::
(cf.

::::
Sect.

:::
4),

::::::::
resulting

:::
into

::
a

:::::::
velocity

::::
field

::::
such

::
as

:::::::
depicted

:::
in

:::
Fig.

:::
2b.

:::
As

:
a
:::::::::::
consequence

::
of

::::
such

::
a
:::::::
forcing,

::
the

:::
sea

:::
ice

::::::::::
experiences

:::::::::::
deformations

::
in

::::::::
localised

:::::
zones

::::
(Fig.

::::
2c),

:::
lead

::
to
:::::
quick

:::::::::
transitions

:::::::
between

::::::::::
unfractured

:::
and

::::::::::
completely205

:::::::
fractured

:::
sea

:::
ice

::::
(Fig.

::::
2d).

:
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3 A deep learning based subgrid-scale parametrisation

:::
We

:::
use

::::::::::::
von-Neumann

::::::::
boundary

:::::::::
conditions,

::::
and

::
an

::::::
inflow

::
of

::::::::::
undamaged

:::
sea

::::
ice.

::::
With

::::
this

:::::
model

::::::
setup,

:::
the

:::::::::
simulations

::::
can

::
be

::::::::
generally

::::
seen

::
as

:::::::::
zoomed-in

::::::
region

:::::
within

:::
an

:::::::::
undamaged

::::::
sea-ice

:::::
field.

:

In our deep learning approach (a), the input fields are projected by a linear projection operator P from their triangular space210

into a Cartesian space that has a higher resolution, where the U-Net extracts features. Back-projected into triangular space by

the pseudo-inverse of the linear projection operator P†, these features are linearly combined to obtain the predicted residuals.

The U-Net consists of multiple ConvNeXt-like blocks (b). A first convolutional layer extracts depth-wise (i.e. without mixing

the channels) spatial features with a kernel size of 7× 7. A 1× 1 convolution with a Gaussian error linear unit (Gelu) activation

function combines the layer-normalised channels. Together with a last 1× 1 convolution, this path mixes the channels. Finally,215

a residual connection from the input of the block is added to the output of the block.

2.1
::::

Twin
:::::::::::
experiments

To represent spatial correlations and anisotropic features, we use convolutional neural networks (CNNs). We cast the learning

of a subgrid-scale parametrisation as model error correction (Sect. ??), applied in a post-processing step, after the model

forecast is generated. Since the Maxwell-Elasto-Brittle model is spatially discretised on a triangular space (cf. Sect. 2.2), we220

introduce a linear projection operator P (Sect. B1)
::
In

:::
our

::::
twin

:::::::::::
experiments,

:::
we

::::
have

::::
two

:::::
kinds

::
of

::::::::::
simulations,

::
as

::::::::
depicted

::
in

:::
Fig.

::
3:

:::
we

::::::
define

:::
the

::::::::::::
low-resolution

:::::
model

:::::
setup

::
as

::::
our

::::::
forecast

::::::
model, interpolating from the triangular space to a Cartesian

space that has a higher resolution, and where convolutions can easily be applied. After this projection, we apply a U-Net

(Sect. B2) to extracts features in Cartesian space from the projected input fields. These features are then projected back into

the triangular space with the pseudo-inverse of the projection operator P†. There, linear functions combine pixel-wise (i.e.,225

processing each element-defining grid point independently) the extracted features. Each linear function is shared across all

grid points for each predicted residual variable. The NN predicts the residuals for all nine forecast modelvariables at the same

time with one shared U-Net. By sharing the U-Net across tasks, the NN has to learn patterns and features for error correction

of all variables. To weight the nine different loss functions, we make use of a maximum likelihood approach (Sect. B3). This

proposed pipeline (visualised in Fig. 4) can be seen as a baseline that enables a subgrid-scale parametrisation with deep learning230

for sea-ice dynamics, correcting all model variables at the same time
:::::
which

:::
we

::::
want

::
to

::::::
correct

:::::::
towards

:::::::::::::
high-resolution

:::::
setup

::
as

:::
true

::::::
model.

::::
The

:::::
initial

:::::::::
conditions

::
at

:::
the

:::::::::::::
high-resolution

:::
are

::::::::
integrated

::::
with

:::
the

::::
true

:::::
model

::
to

::::::::
simulate

::
the

:::::
truth

::
at

:::
the

:::::
target

:::
lead

:::::
time,

::
in

:::
our

::::
case

::::::
10min

:::
and

:::
8s.

2.2 Problem formulation

We cast the subgrid-scale parametrisation as forecast error correction, solvable with a NN in a post-processing step, after235

the forecast model has been applied. As input for the NN, we use the initial state xin
t−1 at time t− 1 and the forecasted

state xf
t, propagated from t− 1 to t with the (non-corrected) geophysical model xf

t =M(xin
t−1); to simplify the notation,

time has been discretised, t ∈ N. Based on the input fields, the NN f(xin
t−1,x

f
t,ϕ) with its parameters ϕ should predict the

9



Figure 3.
:
In
::::

our
:::
twin

::::::::::
experiments,

:::
the

::::::::::::
high-resolution

::::
state

::::
with

::
a

::::
4 km

::::::::
resolution

::
is
:::::::::
propagated

::::
from

::::
time

:
t
:::

to
:::
time

:::::
t+1

::::
with

:::
the

:::::::::::
high-resolution

:::
true

::::::
model;

:::
one

:::::::
discrete

:::
time

::::
step

:::::::::
corresponds

::::
here

::
to

::
a
:::
lead

::::
time

::
of

::::::
10 min

::::
and

:::
8 s.

:::
The

::::::::::::
high-resolution

::::
truth

::
at

::::
time

:
t
::
is

:::::::
projected

::
by

::::::::
Lagrange

::::::::::
interpolation

:::
into

:::::::::::
low-resolution

:::::
space

:::::
(4 km

:::::::::
resolution),

:::::
acting

::
as

:::::
initial

::::
state

::
for

:::
the

:::::::
forecast.

:::
The

:::::::
forecast

:
is
::::::::
performed

:::
by

:::
the

:::::::::::
low-resolution

::::::
forecast

:::::
model

:::
M,

:::::
which

:::::::::
propagates

:::
the

:::
state

:::::
from

:::
time

::
t
::
to

:::
time

:::::
t+1

::
in

:::
the

:::::::::::
low-resolution

:::::
space.

:::
The

:::::
model

::::
error

::::::::
correction

::
is

:::::
learned

:::
by

::::::::
comparing

:::
the

:::::::::::
low-resolution

::::::
forecast

::
at
::::
time

::::
t+1

::
to

:::
the

::::
truth

::
at

:::
the

::::
same

::::
time,

:::::::
projected

::::
into

::::::::::
low-resolution

:::::
space.

:

residual ∆xt = xp
t −xf

t, defined as the difference between the projected truth xp
t and the forecasted state. For cycling the error

correction together with the geophysical model, we can add the predicted residual to the
:::
To

:::::::
initialise

:::
the

:
forecast , resulting240

into the corrected forecast xc
t , then used as subsequent initial state for the geophysical model . The equations for a complete

forecast cycle from t− 1 to t then read

xf
t=M(xin

t−1),

xc
t= xf

t + f(xin
t−1,x

f
t,ϕ).

When the correction is cycled with the forecast model,
:::
that

::::::
should

:::
be

::::::::
corrected

:::::::
towards

:::
the

:::::
truth,

::
we

:::::::
project

:::
the

:::
true

::::::
initial245

::::::::
conditions

:::::
from

:::
the

:::::::::::::
high-resolution

::
to

:::
the

:::::::::::::
low-resolution.

:::
As

:::::::::
projection

:::::::
operator,

:::
we

:::::
make

::::
use

::
of

:::
the

:::::::::::
interpolation

:::::::
defined

::
by

:::::::::
first-order

:::::::::
continuous

:::::::
Galerkin

::::
and

::::::::::
zeroth-order

::::::::
Galerkin

::::::::
elements,

::::::::::::
corresponding

::
to

::::::::
Lagrange

:::::::::::
interpolation

::::
with

:::::::
(linear)

:::::::::
barycentric

:::
and

:::::::
nearest

::::::::
neighbour

:::::::::::
interpolation,

:::::::::::
respectively.

::
To

:::::::
generate

:::
the

::::::::
forecast,

:::
the

:::::
initial

:::::::::
conditions

::
at

:::
the

:::::::::::::
low-resolution

:::
are

::::::::
integrated

::
to

:::
the

:::::
target

::::
lead

:::::
time

::::
with

:::
the

:::::::
forecast

::::::
model.

:::
As

:::
we

:::::
want

::
to

:::::::::
reinitialise

:::
the

:::::::
forecast

::::::
model

::::
with

:::
the

::::::::
corrected

::::::
model

:::::
fields

:::::
later, the initial state for the following250

cycle is simply the corrected state,

xin
t = xc

t.
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:::::
model

::::
error

:::::::::
correction

:::
has

::
to

:::
be

::::::::
estimated

::
at

:::
the

::::::::::::
low-resolution.

:::
To

:::::::::::
consequently

:::::
match

:::
the

:::::::::
resolution

::
of

:::
the

:::::::
forecast

::::
with

:::
the

::::
truth,

:::
we

::::::
project

:::
the

::::
truth

::
at
:::
the

:::::
target

::::
lead

::::
time

::
to

:::
the

::::::::::::
low-resolution

::::
with

::::
our

::::::::
previously

:::::::
defined

::::::::
projection

::::::::
operator.

2.2 The projection operator255

:::
The

::::::
neural

:::::::
network

::::::
targets

:::
the

::::::::
difference

::::::::
between

::::
truth

::::
and

:::::::
forecast

::
at

:::
the

::::::::::::
low-resolution

:::
(cf.

:::::
Sect.

::::
2.1).

:::::
Using

::::
this

:::::::
strategy

:::
and

::
an

:::::::::
ensemble

::
of

:::::
initial

:::::::::
conditions

::::
and

::::::
forcing

::::::::::
parameters,

:::
we

:::::::
generate

:::
our

:::::::
training

:::::::
dataset,

::::
then

::::
used

::
to
:::::

learn
:::
the

::::::
model

::::
error

:::::::::
correction.

:::::::::::
Additionally,

:::
we

:::::::
evaluate

:::
the

::::::::::
performance

:::
of

:::
the

::::::
learned

:::::
model

:::::
error

::::::::
correction

:::
on

:
a
::::::
similar

:::
but

:::::::::::
independent

:::
test

::::::
dataset.

:

For the Cartesian space, we chose a discretisation of 32× 128 elements in the x- and y-directions, defined by constant,260

zeroth-order, Cartesian elements evenly distributed in the 40 km× 200 km domain. As each Cartesian element has a resolution

of 1.25 km× 1.5625 km,

3
:
A
::::::::::::
convolutional

::::::
U-Net

:::::::
baseline

:::
The

::::::
neural

:::::::
network

:::::
(NN)

::::::
should

::::
learn

::
to

:::::
relate

:::
the

:::::
input

:::::::::
predictors

::
to

:::
the

:::::
output

:::::::
targets.

::::
The

:::::
inputs

:::
and

::::::
targets

:::
are

::::::::
spatially

:::::::::
discretised

::
as

::::
finite

::::::::
elements,

::::
and

:::
the

:::
NN

::::::
should

::::::
directly

:::
act

:::
on

:::
this

::::::::
triangular

::::::
model

::::
grid.

::::::::
Moreover,

:
the Cartesian space has a265

higher resolution than the original triangular space (∼ 8 km) . Using such a super-resolution mitigates the loss of information

caused by the projection. Furthermore, the NN can learn interactions between variables on a smaller-scale than used in the

model , which helps to parametrise the subgrid-scale, as we will see in Sect. 5.1.

As projection operator P , we use Lagrange interpolation from the original triangular elements to the Cartesian ones. For

the velocity and forcing components, defined as first-order elements, this interpolation corresponds to a (linear) Barycentric270

interpolation and to a nearest neighbour interpolation for all other variables, defined as zeroth-order elements; P thus reduces

to a linear operator, hereafter written P . Because of the higher resolution, there are multiple Cartesian elements per triangular

element, and the inverse of the operator does not exist as the linear system is over-determined. Consequently, in order to define

the backward projection from the Cartesian space to the triangular space , we use the Moore–Penrose pseudo-inverse P †. Since

the rank of P is by construction equal to the dimension of the triangular space, i.e. its column number, the pseudo-inverse is in275

our case equal to P † = (P⊤P )−1P⊤, where P⊤ corresponds to the transposed operator. Note, for coarse Cartesian spaces,

the mapping from Cartesian space to triangular space can be non-surjective, meaning that not all triangular elements are covered

by at least one Cartesian element: the pseudo-inverse is in this case rank deficient.
:::
NN

::::::::::
architecture

::::::
should

::
be

:::::::
scalable

:::::
from

:::::::
regional

::::::
models

::
as

::::
used

::
in

:::
this

:::::
study

::
to

::::::::::
Arctic-wide

:::::::
models,

:::
like

:::::::::
neXtSIM.

::
As

:::
we

::::::
expect

:::
that

:::
the

:::::
model

::::::
errors

::::
from

:::
the

::::::
sea-ice

::::::::
dynamics

::::
have

:::
an

:::::::::
anisotropic

:::::::::
behaviour,

:::
we

::::::::::
additionally

:::::
want

::
to

:::::::
directly

::::::
encode

:::
the

:::::::::
extraction

::
of

::::::::
localised

:::::::
features

::::
with

::
a280

:::::::::::::::::
directional-dependent

:::::::::
weighting

::::
into

:::
the

::::
NN.

:::::::::
Therefore,

::
as

:::::::
depicted

::
in
::::

Fig.
::
4,
:::
we

::::
use

:
a
:::
NN

::::::
based

::
on

::
a

:::::::::::
convolutional

::::::
U-Net

:::::::::
architecture

::::::::::::::::::::::
(Ronneberger et al., 2015).

::::
For

:
a
:::::
more

:::::::
technical

::::::::::
description

::
of

:::
this

::::
NN

::::::::::
architecture,

:::
we

::::
refer

::
to

:::::::::
Appendix

::
B.

:

In the case of zeroth-order discontinuous Galerkin elements, the projection operator assigns to each Cartesian element one

triangular element.The back-projection operator then corresponds to an averaging of the Cartesian elements into their assigned

11



triangular element. This averaging can be seen as a type of ensembling the information from smaller, normally unresolved,285

scales to larger, resolved scales. We have implemented this projection operator as a NN layer with fixed weights in PyTorch.

Figure 4.
::
In

:::
our

::::
deep

::::::
learning

:::::::
approach

:::
(a),

:::
the

::::
input

::::
fields

:::
are

:::::::
projected

::
by

:
a
::::
fixed

:::::
linear

::::::::
projection

::::::
operator

::
P

::::
from

::::
their

:::::::
triangular

:::::
space

:::
into

:
a
:::::::
Cartesian

:::::
space

:::
that

:::
has

:
a
:::::
higher

:::::::::
resolution,

::::
where

:::
the

:::::::
learnable

:::::
U-Net

::::::
extracts

:::::::
features.

:::::::::::
Back-projected

::::
into

:::::::
triangular

:::::
space

::
by

:::
the

:::::::::::
pseudo-inverse

::
of

:::
the

::::
linear

::::::::
projection

:::::::
operator

:::
P†,

::::
these

::::::
features

:::
are

::::::::
combined

::
by

:::::::
learnable

:::::
linear

:::::::
functions

::
to
:::::
obtain

:::
the

::::::
output.

::
In

:::
our

::::
case,

::
the

:::::
U-Net

:::::::
consists

::
of

::::::
multiple

::::::::::::
ConvNeXt-like

:::::
blocks

:::
(b)

:::
that

::::
have

::
a

:::::
branch

::::
path

:::
and

:
a
::::
fixed

::::
skip

:::::::::
connection

:::
(i.e.,

:::
the

:::::
output

::
of
:::

an

::::::
identity

:::::::
function):

::
in

:::
the

:::::
branch

::::
path,

::
a

:::::::
learnable

::::::::::
convolutional

::::
layer

::::::
extracts

:::::::::
depth-wise,

:::
i.e.

::::::
without

:::::
mixing

:::
the

:::::::
channels,

::::::
spatial

::::::
features

:::
with

:
a
:::::
kernel

:::
size

::
of
:::::
7× 7.

:::
The

:::::::
resulting

::::::
features

:::
are

::::::::::::
layer-normalised

:::
and

::::::::
combined

::
by

:::
two

:::::::::
consecutive

:::::::
learnable

::::::::::
convolutions

:::
with

:
a
:::::
1× 1

::::
kernel

::::
and

:
a
:::::::
Gaussian

::::
error

:::::
linear

:::
unit

::::::
(Gelu)

:::::::
activation

:::::::
function

:::::::::
in-between.

::
In

:::
the

:::
end,

:::
the

:::::::
features

::
are

:::::
added

::
to
:::
the

:::::
output

::
of
:::

the
::::
skip

::::::::
connection.

:::::::::
Throughout

:::
the

::::::
Figure,

:::
blue

:::::::
coloured

:::::::::
connections

::::::
indicate

:
a
::::
fixed

:::::::
function,

:::
red

::::::
colours

:
a
:::::::
learnable

:::::::
function,

:::
and

:::::
dotted

::::
lines

::
in

::
the

:::::
U-Net

:::
and

::::::::
ConvNeXt

:::::
block

:::::::
represent

:::
skip

::::::::::
connections.

3.1 The U-Net feature extractor

We use CNNs in Cartesian space
:::::::::::
Convolutional

::::
NNs

:::
are

:::::::::
optimised

:::
for

::::
their

:::
use

:::
on

::::::::
Cartesian

::::::
spaces,

::::::
where

::::
they

:::
can

::::::
easily

::::::
exploit

:::::
spatial

::::::::::::::
autocorrelations.

:::
The

::::::
model

:::::::
variables

:::
are

::::::::::
additionally

::::::
defined

:::
on

:::::::
different

::::::::
positions

:
at
:::
the

::::::::
triangles:

:::
the

::::::::
velocities

::
are

:::::::
defined

:::
on

:::
the

::::::
nodes

::
of

:::
the

::::::::
triangles,

::::::::
whereas

::
all

:::::
other

::::::::
variables

:::
are

::::::::
constant

::::::
across

:
a
:::::::

triangle. The feature extractor290

should be able to extract multiscale features, and to represent rapid spatial transitions, which might occur only on finer scales.

Consequently, we have selected a deep NN architecture with a U-like representation, a so-called U-Net (Ronneberger et al., 2015)

. The encoding part (on Fig. 4a
:::::::::::
Consequently,

::
we

::::::
project

::::
from

:::::::::
triangular

:::::
space

:::
into

::::::::
Cartesian

::::::
space,

:::::
where

:::
the

::::::::::::
convolutional

12



:::
NN

::
is

::::::
applied

::
to
::::::

extract
::::::::

features.
:::
As

::
in

:::
the

:::::::::
projection

:::
step

:::::
from

:::::::::::::
high-resolution

:::::
model

::::
grid

::
to

:::::::::::::
low-resolution

::::
grid,

:::
we

:::::
again

:::
use

::::::::
Lagrange

:::::::::::
interpolation

::::
with

:
a
::::::::::
Barycentric

:::
and

::::::
nearest

:::::::::
neighbour

:::::::::::
interpolation,

:::
as

::
in

:::
our

::::
twin

::::::::::
experiments

::::
(cf.

:::
Sec.

:::
2).

:::
To295

:::::::
mitigate

:
a
:::::::
possible

::::
loss

::
of

::::::::::
information

::
by

:::
the

:::::::::
projection

::::
step,

:::
we

::::::
define

:
a
::::::::
Cartesian

:::::
space

::::
with

::
a

:::::
much

:::::
higher

:::::::::
resolution

::::
than

::
the

:::::::
original

::::::::
triangular

::::::
space.

:::
The

::::::
U-Net

::::
uses

::::::::::::
convolutional

:::::
filters

:::
and

::::::
shares

:::
its

:::::::
weights

:::::
across

:::
all

::::
grid

::::::
points.

::::
This

:::::
way, the left side

:::::
U-Net

:::::::
extracts

:::::::::::
shift-invariant

::::
and

::::::::
localised

:::::::
features

:::::
which

::::::::
represent

::::::::
common

::::::
motifs.

:::
To

:::::
learn

:::::::
features

::
at

:::::::
different

::::::
scales,

::::
the

:::::::
features

:::
are

::::::::::::
coarse-grained

::::
once

::
in

:::
the

::::::::
encoding

::::
part

::
of

:::
the

:::::
U-Net

::::
(left

::::
part

::
of

:::
the

::::::
U-Net

::
in

:::
Fig.

::::
4a),

:::
and

::::::::
upscaled

::
in

:::
the

::::::::
decoding

::::
part of300

the U-Net ) extracts information on multiple scales (here on two), by cascading downsampling steps. The decoding part (on Fig.

4a, the right side of the
::::
(right

::::
part

::
of

:::
the U-Net ) refines coarse-scale information up and combines them with information from

finer scales, and outputs the extracted features. Consequently,
:
in

::::
Fig.

::::
4a),

:::::
giving

:::
the

::::::
U-Net

::
its

:::::::
distinct

:::::
name.

::::
We

:::::::::
implement

::
the

::::::::::::::
coarse-graining

:::::
using

::::::
strided

:::::::::::
convolutions

::::::::::::::::::::::
(Springenberg et al., 2015),

::::::
where

::::
grid

:::::
points

:::
are

::::::::
skipped,

:::
and

:::
the

:::::::::
upscaling

::::
with

::::::
bilinear

:::::::::::
interpolation

::::::::
followed

::
by

::
a
::::::::::
convolution

:::::
layer

::::::::::::::::
(Odena et al., 2016)

:
.
::
To

:::::
retain

:::::::::::
fine-grained

:::::::
features,

:::
the

::::::::
upscaled305

:::::::::
information

::
is
:::::::::

combined
::::
with

::::::::::
information

:::::
from

:::
the

:::::
finer

::::
scale

:::
by

:
a
:::::

skip
:::::::::
connection

::::
(i.e.,

:
the

:::::
output

:::
of

::::::
identity

::::::::::
functions),

::
as

::::::::
indicated

::
in

:::
Fig.

:::
4a

:::
by

:::
the

::::::::
horizontal

::::
blue

::::::
dashed

:::::
line.

::::
This

:::::
allows

::::
the U-Net architecture can extract features at multiple

scales, mapped onto the finest scale
::
to

::::::
extract

::::::::
localised

::::::
features

::::::
across

:::
two

::::::
scales.

Our typical
::::::
Instead

::
of

::::::::::::::
commonly-used

:::::::::::
convolutional

::::::
blocks

::::
with

:::::::
standard

:::::::::::
convolutional

::::::
filters,

:::::::
followed

:::
by

:
a
::::::::::::
normalisation

:::
and

:::::::::
non-linear

::::::::
activation

::::::::
function,

::::
we

:::::
make

:::
use

:::
of

::::::
blocks

:::::::
inspired

:::::
from

:::
the

:::::::::
ConvNeXt

::::::::::
architecture

:::::::::::::::
(Liu et al., 2022),

:::
as310

:::::
shown

:::
in

::::
Fig.

:::
4b.

::
In

:::::
these

:::::::
blocks,

:::
the

::::::
feature

:::::::::
extraction

::
is
:::::

split
::::
into

::::::::
extraction

:::
of

:::::::
features

:::::
from

::::::
spatial

::::::::::
correlations

::::
and

:::::::::
correlations

::::::
across

:::::::
features.

::::
This

::::::
makes

:::
the U-Net architecture consists of 3 different blocks : Residual blocks, mainly inspired

by ConvNeXt blocks (Liu et al., 2022), a downsampling block, and an upsampling block. Our complete U-net architecture

has in total approximately 1.2× 106 trainable parameters and consists of five stages, cf. Table B1. The
:::::::::::::
computationally

:::::
more

:::::::
efficient

:::
and

::::::
shows

:::::::::
empirically

:::
an

::::::::
improved

:::::::::::
performance

:::
(cf.

:::::::::
Appendix

:::
C).

:::::
After

:::
the

::::::
U-Net

:::
has

::::::::
extracted

:::
the

::::::::
features,

:::
the315

::::::
features

:::
are

::::::
pushed

:::::::
through

:
a
:
rectified linear unit (relu) in the output stage, hout =max(0,hout−1), introduces a discontinuity

into ,
:::::::::::::::::
xout =max(0,xin)):::::::::::

non-linearity
::
to

::::::::
introduce

:
a
:::::::::::

discontinuity
:::

in the features, which can help
:::::::::
empirically

:::::
helps

:
the NN

to represent sharp transitions in the level of damage . The input fields projected into
:::
(cf.

::::::::
Appendix

:::::
D1).

:::
The

::::::::
extracted

:::::::
features

:::
are

::::::::
projected

:::::
back

:::::
from the Cartesian space are treated as input channels for the input stage and

include nine state variables and one forcing field for both input time steps, resulting to in-total 20 input channels. The320

architecture is quite thick, with 128 output channels, to extract features for all model variables at the same time.
::::
into

:::
the

::::::::
triangular

:::::
space.

::::::::
Because

:::
the

::::::::
projection

::::::::
operator

::
is

:::::
purely

::::::
linear,

:::
the

:::::::::::::
back-projection

::::::::
operator

:::
can

::
be

::::::::::
analytically

:::::::::
estimated

::
by

:::
the

:::::::::::::
pseudo-inverse

::
of

:::
the

:::::::::
projection

:::::::
matrix.

::
As

::::
the

::::::::
Cartesian

:::::
space

::
is

::::::::::::::
higher-resolved,

:::
the

:::::::::::::
back-projection

::::::::
averages

:::
the

::::::
features

::
of
:::::::
several

::::::::
Cartesian

:::::::
elements

::::
into

:::::::
features

::
of

:::::
single

::::::::
triangular

:::::::::
elements.

Proposed baseline "U-NeXt" based on ConvNeXt-like blocks. "Down" and "Up" correspond to downsampling and upsampling325

blocks, respectively. Stage Operation Params nin nout nx nyInput ConvNeXt 23 056 20 128 32 128Down 1 Down 295 424

128 256 16 64ConvNeXt 145 152 256 256 16 64ConvNeXt 145 152 256 256 16 64Bottleneck ConvNeXt 145 152 256 256 16
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64Up 1 Up 295 552 256 128 32 128ConvNeXt 95 744 128 128 32 128ConvNeXt 39 808 128 128 32 128Output ConvNeXt

39 808 128 128 32 128relu – 128 128 32 128

3.0.1 The ConvNeXt blocks330

In our standard configuration, the processing blocks are mainly inspired by ConvNeXt blocks (Liu et al., 2022). The output

hl = fl(hl−1)+ gl(hl−1) of the l-th block is calculated based on the output of the previous block hl−1 by adding a residual

connection fl(hl−1) to a branch connection gl(hl−1), as depicted in Fig. 4b.

The residual connection is an identity function fl(hl−1) = hl−1 if the number of its output channels nout equals the number

of its input channels nin. Otherwise, a convolution with a 1× 1 kernel, called in the following 1× 1 convolution, combines the335

nin input channels to nout output channels as a linear pixel-wise-shared function.

In the branch connection, a single convolutional layer with a 7× 7 kernel is applied depth-wise (i.e. on each input channel

independently ) to extract information about neighbouring pixels; before applying the convolution, the fields are zero padded

by three pixels on all four sides, such that the output of the layer has the same size as the input. The output of this spatial

extraction layer is normalised by layer normalisation (Ba et al., 2016) across all channels and
::::
Back

::
in

:::
the

::::::::
triangular

::::::
space,

:::
the340

:::::::
extracted

:::::::
features

:::
are

::::::::
combined

:::
by

::::::::
learnable

:::::
linear

::::::::
functions.

::::::
These

:::::
linear

::::::::
functions

::::::
process

::::
each

::::::::::::::
element-defining

::::
grid

:::::
point

:::::::::::
independently

:::
but

:::::
using

:::
the

:::::
same

::::::
weights

::::::
across

::
all

:
grid points. Compared to batch normalisation (Szegedy et al., 2014), layer

normalisation is independent of the number of samples per batch and performs on par in this type of block (Liu et al., 2022).

Afterwards, a convolution layer with a 1× 1 kernel mixes the normalised channel information up. If not otherwise depicted,

the output of this intermediate layer gets activated by a Gaussian error linear unit (Gelu, Hendrycks and Gimpel, 2020). The345

last 1× 1 convolution linearly combines the activated channels into nout channels. The output of this branch connection is

scaled by learnable factors γ, one for each output channel, and initialised with γi = 1× 10−6. This type of scaling improves

the convergence for deeper networks with residual layers (Bachlechner et al., 2020; De and Smith, 2020).

3.0.1 The down- and upsampling

For the downsampling operation, in the encoding part of the U-Net, we use a layer normalisation, followed by zero padding350

of one pixel on all four sides, and a convolution with a kernel size of 3× 3 and stride of 2× 2, similar to Liu et al. (2022). As

this operation halves the data sizes in x- and y-direction, the number of channels is doubled in the convolution. By replacing

max-pooling operations with a strided convolution, the downsampling operation becomes learnable (Springenberg et al., 2015)

.

For the upsampling operation, in the decoding part of the U-Net, we use a sequence of bilinear interpolation, which doubles355

the spatial resolution, layer normalisation, zero padding of one pixel on all four sides, and a convolution with a 3× 3 kernel,

which halves the number of channels. A bilinear interpolation followed by a convolution avoids unwanted checker-board effects

(Odena et al., 2016), which can occur when using transposed convolutions for upsampling.
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3.1 Learning via maximum likelihood

In our NN architecture, we want to predict a model error correction for all
::
To

::::::::
estimate

::::
their

::::
own

::::::
model

:::::
error

:::::::::
correction360

:::
out

::
of

:::
the

:::::::
features,

:::::
each

::
of

:::
the

:
nine model variables at the same time, which causes nine different loss function terms, like

nine different mean-squared errors or mean absolute errors (MAEs). As each of these variables has its own error magnitude,

variability, and issues to correct, we have to weight the loss functions against each other with parameters λi, Ltotal =
∑9

i=1λiLi.

To tune these parameters, we use a maximum likelihood approach, which relates the weighting parameters to the uncertainty

of the nine different model variables (Cipolla et al., 2018).
:::::
linear

:::::::
function.

:
365

In the maximum likelihood approach, a conditional probability distribution p(∆x | x,θ) parametrised by θ is assumed to

approximate the true, but unknown, data generating conditional probability distribution of the residuals ∆x given the input

x – note that for conciseness the initial state xin and the forecasted state xf have here been gathered in a single input vector

x. The parameters of this probability distribution are optimised such that the negative log-likelihood of the observed residuals

∆x given the input x and parameters is minimised,370

θ⋆ ≜ argmin
θ

[− lnp(∆x | x,θ)].

The log-likelihood factorises hereby as sum over multiple dimensions like the samples or variables.
::::
total,

:::
by

:::::::::
projecting

:::
the

::::
input

::::
into

:
a
::::::::
Cartesian

:::::
space,

:::
the

::::::::::::
convolutional

:::::
U-Net

:::::::
extracts

:::::::
features,

:::::
which

:::
are

::::
then

:::
the

:::::
basis

::
for

:::
the

:::::::::
estimation

::
of

:::
the

::::::
output

::
in

:::
the

::::::
original

:::::::::
triangular

:::::
space.

::::
The

:::
use

:::
of

:::
the

:::::
U-Net

::::::
allows

::
us

::
to
::::::
extract

::::::::
localised

:::::::
features

::::
and

::
an

:::::::
efficient

::::::::::::::
implementation,

::::
even

:::
for

::::::::::
Arctic-wide

:::::::
models.

::::
The

::::::::
extraction

:::
of

:::::::
features

::
at

:
a
::::::
higher

:::::::::
resolution

:::::::
bundled

::::
with

::::
their

:::::::::::
combination

::
in

:::::::::
triangular375

::::
space

::::::
makes

:::
the

:::
NN

:::::::
directly

:::::::::
applicable

:::
for

:::::::::::
finite-element

:::::::
models.

We treat the output of our NN f(x,ϕ) with its weights ϕ as the median of a univariate approximated Laplace distribution.

From the perspective of the NN, the negative log-likelihood is thus a weighted MAE loss function. As all data points are equally

weighted, a Laplace distribution results into a more robust estimation against outliers than a Gaussian distribution. Contrary to

the median predicted as field, we use a single scale parameter per variable, bi, shared across all grid points. We optimise the380

nine scale parameters together with the NN by minimising the negative log-likelihood, averaged over B data pairs (xj ,∆xj).

As we utilise a variant of stochastic gradient descent for optimisation, the data pairs are drawn from the training dataset D at

each iteration. Before summing all nine loss terms up, we average the negative log-likelihood per-variable across all grid points

(here simplified denoted as average across M grid points) as the velocity components have fewer data points than all other

variables, caused by their spatial discretisation (c.f. Sect. 2.2),385

Ltotal =
1

BM

9∑
i=1

B∑
j=1

M∑
k=1

1

bi
|∆xi,j,k − fi,j,k(x,ϕ)|+ ln(2bi).

The factor in front of the absolute error, λi =
1
bi

, is the weighting factor; the MAE can be recovered by setting bi = 1 as

constant. The additional term, ln(2bi), origins from the normalisation of the Laplace distribution, is independent of the errors,

and counteracts a too small bi. This approach optimises bi to match the expected MAE (Norton, 1984) in the training dataset
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and can be seen as an uncertainty estimate, e.g. recently used in Cipolla et al. (2018); Rybkin et al. (2020). Compared to using390

a fixed climatological value, this approach adaptively weights the loss, depending on the error of the NN for the different

variables. This adaptive weighting marginally improves the training of the NN, as shown in Sect. D3. Since we learn the

scale parameters purely from data, this approach can be seen as type II maximum likelihood or empirical Bayes approach

(Murphy, 2012)

4 Experimental setup
::::
Data

:::::::::
generation

::::
and

::::::::
training395

We train and test different NNs with twin experiments, using the
::::::
regional

:
sea-ice model,

::
as

:
described in Sect. 2.2. We compute

trajectory simulations
:
2.
:::
We

::::::::
simulate

::::::::::::
high-resolution

:::::
truth

:::::::::
trajectories

:
with a resolution of 4 km and an integration step of 8 s,

which stand as our truth for the twin experiments. Based on a coarsened
:::
and

::::::::::::
low-resolution

::::::::
forecasts

::::
with

:
a
:
8 km version of

the truth grid and an integration step of
::::::::
resolution

::::
and

:
a
:
16 s , we simulate low-resolution forecasts

::::
step. The NNs will learn

:::
are

::::::
trained to correct these low-resolution forecasts (hereafter simply called "forecasts") for a lead time of 10 min and 8 s. In other400

words, the training target is the difference between the projected truth and the forecasts after an integration of 10 min and 8 s,

which equals 38 time steps at the low resolution.

We train the NN
::::
NNs on an ensemble of 100 truth trajectories. The NN hyperparameters, like the depth of the network or the

number of channels, are tuned against a distinct validation dataset with 20 trajectories. Finally, the scores are estimated using

an independent test dataset with 50 trajectories.405

All truth trajectories
::::::::::::
high-resolution

:
are initialised with a randomly chosen cohesion field ; as the cohesion is one of the

state variables, the cohesion is advected and diffused. The simulations also have different random external forcing parameters.

These forcing parameters define the atmospheric wind speed ua(x,y, t) depending on the spatial x- and y-position and the

temporal t-position by

ua(x,y, t) =A · sin
[
2π

λ
(ϕ+ y+ t · ν)

]
+u0.410

The model parameters values are given
::::::::
randomly

::::::
drawn

::::::
forcing

::::::::::
parameters,

::
as

::::::::
specified

:
in Table 1: they have been .

::::::
These

:::::::::
parameters

:::
are chosen such that most trajectories have damaged

:::::::
fractured sea ice in different regions of the simulation area.

::::::::
simulated

:::::::
domain.

::::
The

:::::::::::::
low-resolution

:::::
setup

::::
uses

:::
the

:::::
same

:::::::
forcing

::::::::::
parameters,

:::::::
whereas

::::
the

::::::::
cohesion

::::
field

::
is
::::

one
::
of

::::
the

::::::::
prognostic

::::::
model

::::::::
variables

::::
and,

:::::
hence,

::::::::
projected

::
to

:::
the

:::::::::::::
low-resolution.

The truth trajectory
:::::::
Defining

:::
the

::::
truth

::::::::::
trajectories,

:::
the

:::::::::::::
high-resolution simulations are run for three days of simulation time.415

The first day of simulation, where the forcing is linearly increased to its full strength after the
::
as

::
in

::::::::::::::::::::
Dansereau et al. (2016)

:::::
during

:::
the

::::
first day of simulationas in Dansereau et al. (2016), is

:
,
:::::
which

::
is
:::::::::::
consequently

:
treated as spin-up and omitted from

the evaluation. Consequently, we use two daysof truth trajectories to generate the dataset; the process of generating the dataset

is depicted in Fig. 3. To make the truth comparable to the forecast simulations
:::
Over

::::
the

:::::::::
subsequent

::::
two

::::
days, the truth is

projected to the 8 km resolution grid using a Lagrange interpolation, as in finite elements’ discretisation. We generate initial420

conditionsfor the forecast trajectories by hourly slicing the projected truth. For these forecasts, the cohesion is one of the
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Table 1. The random ensemble parameters and their distribution, U(a,b) specifies a random variable drawn from a continuous uniform

distribution with its two boundaries a and b. The cohesion is independently drawn for each grid point and ensemble member, whereas each

ensemble member has one set of forcing parameters.

Description Value

Cohesion C U(5× 103 Pa,1× 104 Pa)

Amplitude A U(8 m s−1,20 m s−1)

Wave length λ U(50 km,200 km)

Phase ϕ U(−100 km,100 km)

Advection ν U(−0.5 m s−1,0.5 m s−1)

Base velocity u0 max(20 m s−1 −A,U(0 m s−1,10 m s−1))

projected state variables. Since our only difference in the experiments should come from differently integrated processes, we

keep the forcing parameters for the forecasts the same as for the truth. We run the forecasts for one hour of simulation time

. After
:::::::::
trajectories

:::
are

::::::
hourly

:::::
sliced

:::
to

:::::
obtain

:::
the

::::::
initial

:::::::::
conditions.

:::::::::
Projected

:::
into

:::::::::::::
low-resolution,

:::
the

::::::
initial

:::::::::
conditions

:::
are

::::::::
integrated

::::
with

:::
the

:::::::
forecast

::::::
model

::::
until

::::
the

:::::::
forecast

::::
lead

::::
time

::
of

:
10 min and 8 s, we compute the residual (the difference425

between the projected truth and the forecasted state) and include it into our training dataset
:
.
::
To

::::::::
generate

:::
the

:::::::
datasets

:::
for

:::
the

::::::
training

::
of

:::
the

:::::
NNs,

:::::
these

:::::::
forecasts

:::
are

:::::::::
compared

::
to

:::
the

:::::::
projected

:::::
truth

:::::
fields

::
at

::
the

:::::
same

::::
lead

::::
time.

This dataset contains input-residual pairs(xj ,∆xj). The input
:::::
These

:::::::
datasets

::::::
contain

::::::::::
input-target

:::::
pairs.

:::
The

::::::
inputs for the

NNs consists
::::::
consist of 20 fields: nine fields for the initial conditions, nine fields for the forecasted state, one forcing velocity

in y-direction at the initial time, and one forcing velocity at a lead timeof 10 min and 8 s. Our training target is
:::::::
forecast430

:::::
model

:::::
fields

:::
and

::::
one

::::::
forcing

::::
field

:::
for

:::
the

:::::
initial

:::::::::
conditions

::::
and

:::
the

:::::::
forecast

::::
lead

::::
time.

::::
The

::::::
targets

:::
are the difference between

the projected truth and the forecasted state at the same forecast lead time, and consists
::::::
consist of nine fields. All the data is

:::
The

::::::
inputs

:::
and

::::::
targets

:::
are normalised by a global per-variable mean and standard deviation, both estimated from the training

dataset.

The truth state with a 4 km resolution is propagated from time t to time t+1 with the true high-resolution model; one435

discrete time step corresponds here to a lead time of 10 min and 8 s. The truth at time t is projected by Lagrange interpolation

into low-resolution space (4 km resolution), acting as initial state for a forecast. A low-resolution forecast model M performs

the forecast and propagates the state from time t to time t+1 in the low-resolution space. To learn a model error correction,

the low-resolution forecast at time t+1 is compared to the truth at the same time, again projected into low-resolution space.

The hourly slicing gives us 48 samples per truth trajectory. Consequently, in total,
::::::::
trajectory,

:::::::
resulting

::::
into

:::::
4800,

::::
960,

::::
and440

::::
2400

:::::::
samples

:::
for the training, validation, and test datasethave 4800, 960, and 2400 samples , respectively.

::::::::::
respectively.

::
In

:::::
total,

::
the

:::::::
training

::::::
dataset

::::
has

:::::::::
12.3× 106

::::::::::::::::
degrees-of-freedom

:::::::
(number

:::
of

:::::::
samples

::
×

::::::
number

:::
of

:::::::
variables

::
×
:::::::

number
::
of

::::
grid

:::::::
points).

:::
The

::::
NN

:::::::::::
configuration

::::
used

::
in

:::
our

::::::::::
experiments

::::
(cf.

::::
Table

:::
B1

::
in
:::::::::
Appendix

::
B)

:::
has

:::::::::
1.2× 106

:::::::::
parameters;

:::
an

:::::
order

::
of

:::::::::
magnitude
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::::::
smaller

::::
than

:::
the

:::::::
degrees

::
of

:::::::
freedom

::
in
::::

the
::::::
training

:::::::
dataset.

::::::
During

::::::::
training,

:::
the

::::
NNs

:::::::::
experience

:::
no

:::::::::
overfitting,

:::::
even

::
if

::::
only

::::
10%

::
of

:::
the

:::::::
training

::::
data

:
is
:::::
used,

::
as

::::::
shown

::
in

::::::::
Appendix

::::
D1.445

:::
We

::::
train

:::
the

::::
NNs

:::
by

::::::::::
minimising

:
a
::::
loss

:::::::
function

:::::::::::
proportional

::
to

:
a
::::::::

weighted
:::::

mean
::::::::

absolute
::::
error

:::::::
(MAE),

::
a

::::
more

::::::::
rigorous

::::::::
treatment

::
of

:::
the

:::
loss

:::::::
function

:::
can

:::
be

:::::
found

::
in

::::::::
Appendix

:::
B3.

::::
The

:::::
MAE

::
is

::::::::
estimated

:::
for

::::
each

::::::
variable

:::::::::::::
independently.

::
To

:::::::
average

::::
these

::::::
MAEs

:::::
across

:::
all

::::::::
variables,

:::
the

::::::::
individual

::::::
MAEs

::
are

::::::::
weighted

:::
by

:
a
::::::::::
per-variable

::::::
weight.

::::
The

::::::
weights

:::
are

:::::::
learned

::::::::
alongside

::
the

::::
NN

:::
and

:::
can

:::
be

::::
seen

::
as

:::::::::
uncertainty

::::::::
estimate

::::
from

:::
the

:::::::
training

::::::
dataset.

::
In

:::
our

:::::
case,

:::
the

::::::::
weighted

::::
MAE

::::::::::
empirically

::::::::
performs

:::::
better

:::
than

::
a
:::::::
weighted

::::::::::::
mean-squared

::::
error

::::
loss

:::::::
function

:::
and

::
if

:::
the

::::::::
weighting

::
is

:::::::::::
automatically

:::::::
learned

::::
from

::::
data

:::::::::
(Appendix

::::
D3).450

If not otherwise specified, all NNs are trained for 1000
::::
1000 epochs with a batch size of 64 to minimise the Laplace negative

log-likelihood (cf. Sect. B3) in the training data.
::
64.

:::
To

:::::::
optimise

:::
the

:::::
NNs,

::
we

::::
use Adam (Kingma and Ba, 2017) with an initial

learning
:
a
:::::::
learning

::::
rate of γ = 3× 10−4, β1 = 0.9, and β2 = 0.999, is used to optimise the NNs. We refrain of learning rate

decay or early stopping, as such methods would make the experiments harder to compare.455

All experiments are performed on the CNRS/IDRIS (French National Centre for Scientific Research) Jean Zay supercom-

puter, using a single NVIDIA Tesla V100 GPU
::
or

::::::::
NVIDIA

::::
Tesla

::::::
A100

::::
GPU

:
per experiment. The NNs are implemented in

PyTorch (Paszke et al., 2019) with PyTorch lightning (Falcon et al., 2020) and Hydra (Yadan, 2019). The code is publicly

available under https://github.com/cerea-daml/hybrid_nn_meb_model.

5 Results460

We propose a baseline architecture based on a
::
the

:
U-Net, built out of ConvNeXt blocks (defined

:
as

::::::::
described

:
in Sect. B2),

::
3,

::
in

::
the

:::::::::
following simply called U-NeXt. We have selected the parameters of the U-NeXt architecture

::
(cf.

:::::
Table

:::
B1

::
in

::::::::
Appendix

:::
B)

after a randomised hyperparameter screening in the validation dataset with 200 different network configurations.

We evaluate our trained NNs on the test dataset with the mean absolute error (MAE)
:
in

:::
the

::::::::::::
low-resolution. To get comparable

performances across the nine model variables, we normalise the
:::
their

:
errors by their expectation from the globally-averaged465

climatology
:::::::
expected

:::::
MAE in the training dataset. Note that this normalisation results into a constant weighting, differing from

the adaptive weighting used during the training process, which depends on the training trajectory. In the case of the MAE, the

errors are normalised by their expected MAE in the training dataset. Furthermore, this normalisation allows us to estimate the

performance of the NNs with a single metric, averaged over all model variables. The NNs are trained ten times with different

random seeds (s ∈ [0,9]), the results in Table 2–7 correspond to the averaged metric
::
and

:::
all

::::::
results

:::
are

::::::::
averaged over the ten470

trained networks.

::
As

:::::::
baseline

:::::::
method,

:::
we

:::
use

:
a
::::::::::
persistence

::::::
forecast

::::
with

:::
the

:::::
initial

:::::::::
conditions

::
as

:::::::
constant

:::::::::
prediction.

:::
We

::::::::::
additionally

::::::::
compare

::
the

::::::::
forecasts

::::::::
corrected

::
by

:::
the

::::
NN

::
to

:::
the

::::::::::
uncorrected

:::::::
forecasts

:::::
from

:::
our

::::::
sea-ice

::::::
model.

In the following, we discuss the results on the test dataset in Sect. 5.1, what we can learn about the model errors
:::::::
residuals

by analysing the sensitivity of the NN to its inputs in Sect. 5.2, and how we can combine the NN with the geophysical model475

for lead times up to one hour in Sect. 5.3.
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5.1 Performance on the test dataset

In a first step, we evaluate the performance of our model error correction on the test dataset, without cycling
:::::::
applying the

correction together with the geophysical model, Table 2. A comparison
:::
For

:::::::::
additional

::::::
results,

:::
we

::::
refer

:::
to

::::::::
Appendix

::
C
::::
and

::::::::
Appendix

::
D,

::::::
where

:::
we

::::::
among

:::::
other

:::::
things

::::::::
compare

:
with other NN architectures, other loss functions, and other activation480

functionscan be found in Appendix C, Appendix D3, and Appendix D1, respectively.

Table 2. Normalised MAE on the test dataset,
:::::::
estimated

::
in

:::::::::::
low-resolution,

:::
and

:
averaged over ten NNs trained with different seeds. Reported

are the errors for the velocity component in y-direction v, for the stress component σyy , the damage d, and the area A. The mean Σ is the

error averaged over all nine model variables, including the non-shown ones. A score of one would correspond to the performance
::::
MAE of

the geophysical
:::::
sea-ice model forecast in the training dataset. A bold font indicates

::::
Bold

:::::
scores

:::
are the afterwards used architecture and the

best scores
::
in

:
a
::::::
column.

::
For

:
a
::::
table

::::
with

:::::::
standard

:::::::
deviation

:::::
across

::::
seeds,

:::
we

::::
refer

::
to

::::
Table

:::
C1.

:

Name v σyy d A Σ

Persistence 2.37
:::
0.37 0.60 0.29 0.37

:::
0.60

:::
2.37

:
0.79

Geophysical
:::::
Sea-ice model 0.94

:::
1.14 1.09 0.91 1.14

:::
1.09

:::
0.94

:
1.03

Hybrid model
::::::
Hybrid

::::
model

:
0.33

:::
0.23 0.38 0.17 0.23

:::
0.38

:::
0.33 0.24

The NN corrects the model forecasts across all variables, which .
::::
This

:
results in an averaged gain of the hybrid model over

75% compared to the geophysical
:::::
sea-ice

:
model. For the stress, damage, and area, the persistence forecast performs better than

the geophysical modelfor the lead time of 10 min and 8 s
:::::
sea-ice

::::::
model, as the model forecast drifts towards the attractor of

the geophysical model
:::::::::::
low-resolution

::::::
model

::::
setup, as discussed in Sect. 5.3. Since the NN uses the initial conditions as input,485

the hybrid model surpasses the performance of persistence, even for variables where persistence is better than the geophysical

::::::
sea-ice model. In

::::::::
Appendix

:::
C,

:::
we

::::
show

::::
that

:::
the

:::::
model

:::::
error

::
of

:::
the

::::::
sea-ice

::::::
model

::
is

::::::
mostly

:::::
driven

:::
by

:
a
:::::::::
dynamical

:::::
error

::::
such

:::
that

::::::
simply

::::::::
correcting

:::
the

::::
bias

:::
has

::::::
almost

::
no

::::::
impact

:::
on

:::
the

:::::::::::
performance.

::
In total, the NN consistently improves the forecast on

the test dataset.

To apply CNNs to the raw data of our finite-elements-based sea-ice model, we project from triangular to Cartesian space,490

where the features are extracted. The number of elements in the Cartesian space determines its effective resolution and, thus,

the finest scale on which the NN can extract features. To demonstrate the effect of different resolutions on the result, we perform

three different experiments, where we change the grid size, while keeping the NN architecture the same (Table 3).

The training loss, here the negative Laplace log-likelihood, measures how well a NN can be fitted towards the training dataset.

Although its resolution is higher than the original resolution of 8 km, the back-projection for the 8×32 grid is underdetermined,495

as the mapping is non-surjective, degrading the performance of the NN. Starting at the 16×64 grid, the Cartesian space covers

all triangular grid points, and all NNs have a similar predictive power with similar training losses. Nevertheless, the MAE of

the finest 32× 128 grid is the lowest for all variables. As we keep the architecture the same for all resolutions, the higher the

resolution, the smaller the receptive field of the NN. At the highest resolution, the NN is thus forced to extract more localised
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Table 3. Normalised MAE on the test dataset for different Cartesian grid sizes, x-direction × y-direction. The error components are estimated

as in Table 2. The training loss is estimated as the expected Laplace negative log-likelihood, averaged over the training dataset, variables,

and ten NNs trained from different seeds. A
:::
The bold font indicates

:::
grid

:::
size

::
is the selected

:::
used

:
grid size and

:::
bold

:::::
scores

:::
are the best scores

:
in
::
a
:::::
column.

Grid size Loss v σyy d A Σ

8× 32 -9.31 0.72
:::
0.29 0.64 0.42 0.29

:::
0.64

:::
0.72

:
0.50

16× 64 -18.58 0.43
:::
0.26 0.41 0.18 0.26

:::
0.41

:::
0.43

:
0.28

32× 128
::::::::
32×128 -18.47 0.33

:::
0.23 0.38 0.17 0.23

:::
0.38

:::
0.33 0.24

features. Such localised features seem to better represent the needed processes
::::::::
processes

::::::
needed

:
for the prediction of the500

residuals and for parametrising the subgrid-scale; this improvement by using a finer Cartesian space will be discussed more in

detail in Sect. 6.

(a) 8× 32

(b) 16× 64

(c) 32× 128
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Figure 5. Normalised feature map in Cartesian space for grid sizes of (a) 8×32, (b) 16×64, and (c) 32×128. The feature map is estimated

based on the same sample in the test dataset. The specific feature maps are selected such that the extracted features qualitatively match for

all three resolutions. As the maps might have different order of magnitudes, they are normalised by their 99-th percentile for visualisation

purpose, the colours are thus proportional to the activation.

In Fig. 5, we visualise a typical output of the U-Net before it gets projected back into triangular space and linearly combined.

The used grid resolution impacts those feature maps; the higher the resolution, the sharper
:::
and

::::
more

:::::::::::
fine-grained the feature

map. Sharper features can better represent anisotropy and discrete processes in sea ice. For
::::::::
Exhibiting

:::::
more

:::::::::::
fine-grained505

::::::
motifs,

::
in

:
the highest resolution, Fig. 5c, the extracted features correspond to a mixture between localised features and a

generally smoother background pattern. The localised
::::::
network

::::
can

::::::
extract

:::::::
features

:::::
along

:::
the

::
x-

:::
and

::::::::::
y-direction

:::
and

:::
can

:::::
even

:::::::
represent

::::::::::
small-scale

::::::::
structures

::
in

::::::::
diagonal

:::::::::
directions.

:::::
These

::::::::::
fine-grained

:
features indicate an ability to parametrise the effect

of the subgrid-scale onto the resolved scales. Moreover, as a consequence of the extraction of more localised features for finer

spaces, the NN also localises the background noise such that the field appears to be much noisier in the case of inactive zones,510

where the activation is low.
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5.2 Sensitivity to the input

The inputs of the NN have a crucial impact on the performance of the model error correction. In the following, we evaluate the

sensitivity of the NN with respect to its input variables. In a first step, we alter the input and measure the resulting performance

of the NN with the normalised MAE(,
:
Table 4).515

Table 4. Normalised MAE on the test dataset for different input sets. The error components are estimated as in Table 2. nin corresponds to

the number of input channels. Bold indicates
::
The

::::
bold

:::::
scores

:::
are the best scores

::
in

:
a
::::::
column.

Name nin v σyy d A Σ

Initial only 10 0.34 0.77 0.63 0.63
:::
0.77

:::
0.34 0.60

Forecast only 10 0.35
:::
0.66

:
0.75 0.62 0.66

:::
0.75

:::
0.35 0.60

Both 20 0.33
:::
0.23

:
0.38 0.17 0.23

:::
0.38

:::
0.33 0.24

W/o forcing 18 0.33
:::
0.24

:
0.37 0.18 0.24

:::
0.37

:::
0.33 0.25

Difference only 10 0.30
:::
0.19

: :::
0.15 0.37 0.15

:::
0.30 0.19 0.23

+ initial state 20 0.26
::::
0.17

:::
0.15 0.33 0.15

:::
0.26 0.17 0.21

+ forecasted state 20 0.26
::::
0.17 0.33 0.14 0.17

:::
0.33

:::
0.26 0.21

Usually, only the initial conditions are used for a neural-network-based model error correction (Farchi et al., 2021a). As

sea-ice dynamics is a first-order Markov system, the results are very similar when using only the initial state
:::::::::
conditions or only

the forecast state as input. Using both
:::::::::
Compared

::
to

::::
input

:::::
from

:
a
:::::
single

:::::
time,

:::::
using

::::
both

:::::
times

::
as

::::
input

:
improves the prediction

by more than 58 %. The
::::::
around

:::::
60 %.

::
In

:::
this

:::::
case,

:::
the NN learns to correct the residuals

:::::
model

::::
error

:
based on the difference

between the forecast and initial state
::::::::
conditions, representing the sea-ice dynamics. If only one state

:
a

:::::
single

::::
time

:
is used as520

input, the NN has to internally learn an emulator of the dynamicsto correct residuals. Explicitly giving the difference to the NN

instead of raw states improves the correction, although the number of predictors is halved. With the difference, the network

can directly access
::
has

:::::::
directly

::::::
access

::
to the model dynamics. Adding the initial state

:::::
Further

::::::
adding

:::
the

::::::
initial

:::::::::
conditions or

forecasted state to the difference further improves the correction; the network has then also access to
:::::
access

:::
to

::::::
relative

::::
and

absolute values.525

The permutation feature importance of the RMSE for the given output variable with respect to the input variable for "Initial

+ Difference" as input, estimated over the whole test dataset. The numbers show the multiplicatively RMSE increase of a

specific output variable (y-axis) if a given input variable (x-axis) is permuted, a higher number corresponds to a higher feature

importance. The colours are normalised by the highest feature importance for a given output variable and proportionally to the

feature importance. The "Difference" variables specify the difference of the forecast state to the initial state as input into the530

neural network.

In the second step, we analyse how the input variables influence the output of the NN. As we want to quantify the impact

of the dynamics on the output, we base the analysis on the previous "Initial + Difference" experiment (Table 4)
::::
from

:::::
Table
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:
4. As global input variables importance metric

::::::
measure, we use the permutation feature importance (Breiman, 2001): the NN

is applied several timesto the input variables, each time, another input variables is permuted
:::::::
shuffled across the samples. By535

permuting
::::::
shuffled

:
an input variable, its information is destroyed, and the output of the NN is changed. The possible change in

::::
This

:::::::
possibly

:::::::
changes the prediction error compared to the original, unchanged, outputdescribes the importance of this input

variable
::::::::::
unperturbed

:::::::
original

::::::
output. Focussing on active regions, we measure the errors with the RMSE, estimated over the

whole test dataset. The higher the RMSE for a permuted
::::::
shuffled

:
input variable, the higher the importance for this variable onto

the errors, as summarised in Table 5.
:::::::
Because

:::
the

::::::::::
information

::
of

::::
only

::::::
single

::::::::
variables

:::
are

::::::::
destroyed,

:::
the

:::::::::::
permutation

::::::
feature540

:::::::::
importance

::
is

:::::::
sensitive

::
to
:::::::::
correlated

:::::
input

:::::::
variables

:::::::::
(Appendix

:::::
D2).

::::::::::::
Consequently,

::
the

::::::::::::
inter-variable

:::::::::
importance

::
in
:::::
Table

::
5
::
is

:::::
likely

:::::::::::::
underestimated.

Table 5.
:::
The

:::::::::
permutation

::::::
feature

::::::::
importance

::
of
:::

the
::::::

RMSE
:::
for

::
the

:::::
given

:::::
output

:::::::
variable

:::
with

::::::
respect

::
to

:::
the

::::
input

:::::::
variable

::
for

::::::
"Initial

::
+

::::::::
Difference"

:::
as

::::
input,

::::::::
estimated

::::
over

:::
the

:::::
whole

:::
test

::::::
dataset.

:::
The

:::::::
numbers

:::::
show

:::
the

::::::::::::
multiplicatively

:::::
RMSE

:::::::
increase

::
of

:
a
::::::

specific
::::::

output

::::::
variable

::::
(row)

::
if

:
a
:::::
given

::::
input

::::::
variable

:::::::
(column)

::
is

::::::::
permuted,

:
a
:::::
higher

::::::
number

:::::::::
corresponds

::
to

:
a
:::::
higher

::::::
feature

:::::::::
importance.

:::
The

::::::
colours

:::
are

::::::::
normalised

::
by

:::
the

:::::
highest

::::::
feature

::::::::
importance

:::
for

:
a
::::
given

:::
row

::::::
(output

:::::::
variable)

:::
and

::::::::::
proportionally

::
to

:::
the

:::::
feature

:::::::::
importance.

:::
The

::::::::::
"Difference"

::::::
variables

::::::
specify

:::
the

:::::::
difference

::
of
:::
the

::::::
forecast

::::
state

::
to

::
the

:::::
initial

::::::::
conditions

::
as

::::
input

:::
into

:::
the

::::
NN.

Fo
rc

in
g

u
- Vel

oc
ity

v
- Vel

oc
ity

σx
x
σx
y
σy
y

D
am

ag
e

C
oh

es
io
n

A
re

a
T
hi

ck
ne

ss

Fo
rc

in
g

u
- Vel

oc
ity

v
- Vel

oc
ity

σx
x
σx
y
σy
y

D
am

ag
e

C
oh

es
io
n

A
re

a
T
hi

ck
ne

ss

Input: x

u - Velocity

v - Velocity

σxx

σxy

σyy

Damage

Cohesion

Area

Thickness

O
u
tp

u
t:
f

(x
)

1.0 1.0 1.0 1.1 1.0 1.0 1.2 1.0 1.3 1.1 1.0 5.7 1.1 1.1 1.0 1.1 1.0 1.0 1.4 1.1

1.1 1.0 1.3 1.0 1.0 1.1 1.2 1.0 1.5 1.4 1.4 0.9 11.5 1.0 1.0 1.1 1.0 1.0 1.4 1.4

1.0 1.0 1.0 1.1 1.0 1.0 1.2 1.0 1.1 1.1 1.0 1.0 1.1 5.5 1.0 1.0 1.0 1.0 1.1 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.2 1.0 4.4 1.0 1.0 1.0 1.2 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.1 1.1 1.1 3.8 1.0 1.0 1.3 1.1

1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 3.5 1.0 1.0 1.0

1.0 1.0 1.3 1.0 1.0 1.0 1.0 2.0 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.3 1.2 1.4

1.0 1.0 1.2 1.0 1.0 1.0 1.1 1.0 1.3 1.5 1.0 1.0 1.2 1.0 1.0 1.1 1.0 1.0 1.8 1.7

1.0 1.0 1.2 1.0 1.0 1.0 1.1 1.0 1.4 1.8 1.0 1.0 1.2 1.0 1.0 1.1 1.0 1.0 1.6 2.1

Initial: x0 Difference: ∆x = x1 − x0
Im

p
or

ta
n
t

U
n

im
p

or
ta

n
t

All model variables are highly sensitive to their own dynamics, showing their importance as predictors for the model error

correction. Furthermore, the feature importance reflects the relations inherited by the model equations (cf. Sect. 2.2, Dansereau

et al., 2017). For instance, caused by the dependence of the thickness upon the sea-ice area, they are linked together in the input-545

output relation. The wind forcing externally drives and influences the sea-ice velocity in y-direction, v. The v-velocity, however,
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advects and mixes the cohesion, area, and thickness. By modulating the momentum equation and mechanical parameters,

respectively, the area and thickness influence the velocity and stress components. In total, the area and thickness are the most

influential and most influenced variables in the whole dataset, as they represent the conditions of the sea ice. Therefore, the

NN has learned meaningful relations between input and residuals.
::
for

::::
each

::::::
model

:::::::
variable,

::::
their

::::::::
dynamics

:::
are

::
in

::::
fact

::
the

::::::
single550

::::
most

::::::::
important

:::::
input

:::::::
variable,

:::
on

:::::
which

:::::
basis

:::
the

:::::
neural

:::::::
network

:::::::
extracts

:::::::
features.

:

As local measure, we move to the sensitivity ∂f(x,θ)
∂x of the NN output to its input fields (Simonyan et al., 2013), again for

the "Initial + Difference" experiment. To showcase what the NN has learned in spatial meanings, we concentrate here on a

single grid point in a single outputted
::::::::
prediction

:::
for

:::
the

:
sea-ice areafield. .

::::
The

:::::
initial

::::::::::
conditions,

:::
the

:::::::::
dynamics,

:::
the

:::::::
forecast

::::
error,

::::
and

:::
the

::::
NN

::::::::
prediction

:::
for

::::
the

::::::
sea-ice

::::
area

::
is

::::::
shown

::
in

::::
Fig.

:::::
6a–d.

:
To smooth the sensitivity and reduce its noise, we555

perturb the input to the NN
:::::::
variables

:
128 times with noise drawn from N (0,0.12), and average the gradient

:::::::::
sensitivity over

these noised versions (Smilkov et al., 2017). The resulting saliency maps (Fig. 6
:::
e–h) show which regions

::::
grid

:::::
points influence

the selected grid point
:::::
output. The larger its amplitude, the more sensitive is the output to the pixel

:::
that

::::
grid

:::::
point.

In the selected active region
:::
For

:::
the

::::::::
selected

::::
grid

:::::
point, the prediction of the residual for the sea-ice area is especially

sensitive to the thickness, either to its
::::
area

::::
itself

::::
and

:::
the

:::::::::
thickness,

::
in

:
absolute values, Fig. 6f, or its

:
e,

::::
and

::::
their

:
dynamics,560

Fig.6k
:
f. This underlines the already mentioned relation between the sea-ice area and thickness, and confirms the global results

of the permutation feature importance of Table ??. As surrounding pixels are important for the sensitivity, spatial correlations

in the input fields have to be correctly represented by the NN. Additionally, the sensitivity is directional dependent, Fig. 6g,

and exhibits localised features
::
in

:::::
Table

::
5.

::::
The

::::::::
sensitivity

:::::::::::
additionally

::::::
exhibits

::
a
:::::
strong

::::::::::
localisation

:::
for

:::
the

:::::::
damage

:::::::::
dynamics,

:::
Fig.

:::
6g,

:::
and

::
is

:::::::::
directional

:::::::::
dependent

::
to

::
the

:::::::
velocity

:::::::::
dynamics,

:::
Fig.

:::
6h.

::::::
Hence,

:::
the

:::
NN

::::::
seems

::
to

:::
rely

:::
on

:::::::
localised

:::
and

::::::::::
anisotropic565

::::::
features

::
to
::::::
predict

:::
the

::::::::
residual.

:::::
Based

::
on

:::::
these

::::::::::
sensitivities,

:::
we

:::
can

:::::::
interpret

:::::
what

::::::
features

:::
the

::::
NN

:::
has

:::::::
learned,

::::::
guiding

::
us

:::::::
towards

:
a
:::::::
physical

::::::::
meaning

::
of

:::
the

:::::
model

::::::
errors.

:::
The

::::::::
diametral

:::::::
impacts

::
of

:::
the

::::::::
thickness

::::
and

:::
area

:::
in

:::::::
absolute

:::::
values

::::
and

::::::::
dynamics

:::::::
indicate

:::
that

:::
the

::::::
sea-ice

::::::
model

::::
tends

::
to

:::::::::::
overestimate

:::
the

:::::
effect

::
of

:::
the

::::::::
dynamics,

:::::::
whereas

:::
the

:::::
initial

:::::::::
conditions

::::
have

::
a
:::::::
stronger

::::::::
persisting

::::::::
influence

::::
than

::::::
predict

::
by

:::
the

::::::
model.

:::::::::
However,

:::
the

::::::::::
connectivity

:::::::
between

::::
grid

::::::
points

::
is

:::::::::::::
underestimated

::
by

:::
the

:::::::
model,

::
as

::::
seen

::
in
::::::

Fig.6f.
:::

In
:::::::
general,570

::
the

::::::
model

:::::::::::
overestimates

:::
the

:::::::::
fracturing

::::::
process

:::::::
leading

::
to

::
a

::::
mean

:::::
error

::
of

:::::::::::
2.31× 10−3

::
for

:::
the

:::::::
damage

::
in

:::
the

:::::::
training

:::::::
dataset.

::::
This

::::::::::::
overestimation

::
of

::::::::
fracturing

:::::
could

::::
also

:::::::
explain

::
the

:::::
very

:::::::
localised

::::::
impact

::
of

:::
the

:::::::
damage

::::::::
dynamics, Fig. 6c and i. The NN

can thus extract anisotropic and localised input-output relations to correct the model errors
::
6g.

::::
The

:::::::::
directional

::::::::::
dependency

:::
on

::
the

:::::::
velocity

:::::::::
dynamics,

::::::
Fig.6h,

:::::::::::
additionally

:::::::
indicates

:::
an

::::::::::::
overestimation

::
of

:::
the

::::::
effects

:::
of

:::
the

:::::::
velocity

:::::::::
divergence;

::
if
:::::::::
fracturing

::::::::
processes

:::
are

::::::
induced

:::
by

::::::::
divergent

:::::::
stresses,

:::
the

:::
NN

::::
tries

::
to

::::::::
decrease

::::
their

::::::
impact

::
on

:::
the

::::::
sea-ice

:::::
area.575

::
In

:::::::
general,

:::
this

::::::::
analysis

:::
has

::::::
shown

::::
that

:::
the

:::
NN

:::::
relies

::::
not

::::
only

:::
on

:
a
::::::

single
::::
time

::::
step

::
as

::::::::
predictor

::::
but

::
on

::::
how

::::
the

:::::
fields

::::::
develop

::
in
:::::

time,
:::::::::
indicating

::::
that

:::
the

::::::::
dynamics

::::::::
themself

:::
are

:::
the

::::::
biggest

::::::
source

:::
of

:::::
model

:::::
error

:::::::
between

::::::::
different

::::::::::
resolutions.

::::::::::
Additionally,

::::
the

:::::::
network

:::::::
extracts

::::::::
localised

:::
and

::::::::::
anisotropic

::::::::
features,

:::::
which

:::
are

:::::::::
physically

:::::::::::
interpretable

::::
and

:::::
point

:::::::
towards

::::::
general

:::::::::::
shortcomings

::
in

:::
the

::::::::
dynamics

::
of
:::
the

::::::
sea-ice

::::::
model.
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(a) Initial (b) Dynamics (c) Error (d) Prediction

(e) Thickness (f) ∆Area (g) ∆Damage (h) ∆Velocity

0.9 1.0
Absolute

−4 −2 0 2 4
Difference (×103)

-0.5 -0.1 0 0.1 0.5

Sensitivity : ∂f(x)/∂x

Figure 6. The
:::::::
Snapshots

::
at

::
an

:::::::
arbitrary

::::
time

::
of

::
(a)

::::::
sea-ice

::::
area

:
at
:::::

initial
::::
time,

:::
(b)

:::
the

::::::::
difference

::
in

:::
area

:::::::
between

::::::
forecast

::::
time

:::
and

:::::
initial

::::
time,

::
(c)

::::::::
difference

::
in

:::
area

:::::::
between

:::::::
projected

::::
truth

:::
and

::::::
forecast

::
at

::::::
forecast

::::
time,

:::
and

::
(d)

::::::::
prediction

::
of

:::
the

:::
NN

::
for

:::
the

::::
area.

::
In

:::
the

::::
lower

::::
part,

::
we

::::
show

:::
the

:
sensitivity of the

:::::::
prediction

:::
for

:::
the

:::
area

::
at

:
a
:
chosen grid point, indicated by either

:
a
:
white or black dots depending

:::
dot, on

::
(e)

the background colour
:::::::
thickness

::
at

:::::
initial

:::
time, on

::
(f) the residual prediction for the sea-ice

:::::::
difference

::
in

:
area. To reduce the noise,

::
(g)

:
the

gradient is averaged around 128 noised input fields
:::::::
difference

::
in

::::::
damage, perturbed by white noise with a standard deviation of 0.1. The

following acronyms are used for
:::
and

::
(h)

:
the variables: v –

:::::::
difference

::
in velocity in y-direction; σyy – divergent stress .

::::
The

::::
black

:::::
arrow in

y-direction; d – damage; A – sea-ice area; (h– )
:::::::
indicates

:::
the

::::
main sea-ice thickness

::::::::
movement

:::::::
direction.

5.3 Cycled forecasting
::::::::::
Forecasting with

::::::
model error correction580

After establishing the importance of the dynamics for the error correction, we cycle
::
use

:
the error correction together with the

low-resolution forecast model
:::
for

:::::::::
short-term

:::::::::
forecasting. As trained for a forecast horizon of 10 min and 8 s, we apply the NN

to correct the forecast
::::::::
forecasted

:::::
states every 10 min and 8 s. Because the prognostic sea-ice thickness is represented as a ratio

between the actual sea-ice thickness and the area, its error distribution can have very fat tails and can be non-well-behaved.

Thus, we predict as output the actual sea-ice thickness, then, as post-processing step, translated into the prognostic sea-ice585

thickness. To reduce the amplification of small output errors of the NN over grid points with small sea-ice area, we limit

the error correction of the prognostic sea-ice thickness to values between −1× 10−3 and 1× 10−3. We additionally enforce

physical bounds on all variables, by limiting the values to physical reasonable bounds after error correction. Related to optimal
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control theory in dynamical systems, we
:::
We change the performance metric to be the RMSE,

::
a
:::::::::
commonly

:::::
used

:::::
metric

:::
to

:::::::
evaluate

::::::
forecast

::::::::::::
performances. We evaluate the performance across all 2400 hourly time slices on the test dataset(Fig. 7 and590

Table 6).
::
For

::::::::::
forecasting

:::::::
purpose,

:::
the

::::
NN

::::
with

:::
the

:::::
initial

:::
and

:::::::::
forecasted

:::::
fields

::
as

:::::
input

:::::::
performs

::::::::
generally

:::::
better

::::
than

:::
the

::::
NN

::::
with

:::::
initial

:::
and

:::::::::
difference

:::::
fields

:::::::::
(Appendix

::::
D3);

:::
for

::::::::::::
simplification

::
in

:::
the

:::::::::
following,

:::
we

:::
use

::::
only

:::
the

::::
NN

::::
with

:::
the

:::::
initial

::::
and

::::::::
forecasted

::::::
fields,

:::::
calling

::
it
:::::
again

:::::::
"Hybrid

:::::::
model".
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Figure 7. Normalised RMSE for (a) the velocity in y-direction, (b) the divergent stress in y-direction, (c) the damage, and (d) the sea-ice

area as function of lead time on the test dataset, normalised by the expected RMSE on the training dataset for a lead time of 10 min and 8 s.

In the hybrid models
:::::
model, the forecast is corrected every 10 min and 8 s, and the performance is averaged over all ten

::::::
networks

::::::
trained

:::
with

:::::::
different random seeds

:
.

Overall, the hybrid models surpass the performance of the original geophysical model (Fig. 7). The
:::::::
However,

:::
for

:::
the

:::::::
forecast

::::
with

:::
the

::::::
sea-ice

::::::
model

:::
and

:::
the

::::::
hybrid

::::::
model,

::
a
::::::
strong

::::
drift

::
is

:::::::
evident.

:::
As

:::::::::
correcting

:::
the

::::
bias

:::
has

::::::
almost

:::
no

::::::
impact

:::
on

:::
the595

::::::::::
performance

::
in

:::
the

::::
test

::::::
dataset

:::::::::
(Appendix

:::
C),

:::
this

::::
drift

::
is
:::
not

::::::
caused

:::
by

::::::
model

::::::
biases.

::::::
Instead,

:::
the

:
projected initial state lays

not on the attractor of the forecast model, the forecast drifts towards the model attractor; a behaviour similar to what is typical

in seasonal or decadal climate predictions initialised with observed data. This results in large deviations between geophysical
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forecast and projected truth. Consequently,
:
,
:::
and the persistence forecast is better than the forecast model for the velocity, the

stress, and the damage. And yet, updating the forecast model
::::::::
correcting

:::
the

::::::
model

:::::
states

:
with NNs improves the forecasts600

at update
::::::::
correction

:
time, even compared to persistence. Between

::::
Even

:::
so,

:::
the

:::::::::
correction

::::::
nudges

::::
the

:::::::
forecast

:::::::
towards

:::
the

:::::::
projected

:::::
truth

:::
and

:::
out

:::
of

:::
the

:::::::
attractor.

::::::::::::
Consequently,

::::::::
between two consecutive updates, when the model runs freely, the

:::
the

forecast drifts again towards the attractor
::::
when

:::
the

::::::
model

:::
runs

:::::
freely, which leads to a decreased impact of the error correction.

Nevertheless, the accumulated model error correction results into an improved forecast for a lead time of 60 min (Table 6),

especially for the sea-ice area and damage,
::::
even

::
if
:::
the

:::
last

:::::::::
correction

::
is

::::::
already

::::::
9 min

:::
ago.605

Table 6. Normalised RMSE on the test dataset for a lead time of 60 min. The last update in the hybrid models was at a lead time of 50 min

and 40 s. The errors are normalised by the expected standard deviation
:::
for

:
a
::::
lead

:::
time

:::
of

::::::
60 min on the training dataset. The symbolic

representation of the variables has the same meaning as in Table 2.
:::
The

::::
bold

:::::
scores

::
are

:::
the

:::
best

:::::
scores

::
in
::
a

::::::
column.

Name v σyy d A Σ

Persistence 1.13 0.81 0.83 2.58 1.42
::::
1.19

Geophysical
:::::
Sea-ice model 1.34 0.93 1.06 0.98 1.06

Hybrid "Initial + Forecast"
:::::
Hybrid

:::::
model 1.16 0.95 0.68 0.46

:::
0.46 0.90

::::
0.81

Hybrid "Initial + Difference" 1.20 1.01 0.71 0.41 0.93

By explicitly representing the dynamics as difference, the "Initial + Difference" experiment extracts more information from

the dynamics than the "Initial + Forecast" experiment (see also Table 4). In some sense, the experiment is overfitted towards

the use of the dynamics for the model error correction. Additionally, for the velocity, stress, and damage, the drift towards the

attractor makes the training dataset less representative for the model forecast . As a consequence, the "Initial + Difference"

experiment performs worse than the "Initial + Forecast" experiment in these variables, and averaged over all nine model610

variables.

Although the forecast
:::
The

:::::::
forecast

:
error generally increases with lead time,

::
but

:
the error reduction gets smaller with each

update, especially for the sea-ice area. Since the NN correction is imperfect, the error during the next forecast cycle is an

interplay between the initial condition error and the model error
::::
errors

:::::
from

:::
the

:::::
initial

:::::::::
conditions

::::
and

:::::
from

:::
the

:::::
model. The

NN is trained with perfect initial conditions to correct the model error only. As the
:::::::
influence

::
of

:::
the

:
initial condition error615

increases with each update, the network corrects
:::
error

::::::::::
distribution

::::::
shifts,

:::
and

::::
the

::::::::
statistical

::::::::::
relationship

:::::::
between

:::::
input

::::
and

::::::
residual

:::::::
changes

::::
with

::::
lead

:::::
time;

:::
the

:::::::
network

::::
can

::::::
correct less and less forecast errors.

:::
This

:::::
effect

:::
has

:::
an

:::::
larger

::::::
impact

:::
on

:::
the

::::::
forecast

::
if
:::
the

::::
lead

::::
time

:::::::
between

::::
two

:::::::::
corrections

::::
with

:::
the

:::
NN

::
is
::::::
further

:::::::
reduced

:::::::::
(Appendix

::::
D2).

:

To show the effect of this error distribution shift, we analyse the
:::::::::
differences

:::::::
between

:::
the

::::
first

:::
and

::::
fifth

::::::
update

::::
step

::::
with

:::
the

centred spatial pattern correlation (Houghton et al., 2001, p. 733) between the updates and the residuals for the first and the620

fifth update (Table 7)
:::
NN

:::::::::
prediction

:::
and

:::
the

::::
true

:::::::
residual:

:::
we

:::::
centre

:::
all

:::::
fields

::
by

::::::::
removing

:::::
their

:::::
mean,

:::
and

::::::::
estimate

::::::::
Pearson’s

:::::::::
correlation

::::::::
coefficient

::::::::
between

::
the

:::::::::
prediction

:::
and

:::
the

:::::::
residual

::
in

:::::
space. By centring the covariances and variances, we neglected

:::::
fields,

:::
we

::::
omit the influence of the amplitudes upon the performance of the NN. The correlations are independently

:::::
higher

:::
the
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:::::::::
correlation,

:::
the

::::::
higher

:::
the

:::::::::
similarity

::
in

:::
the

:::::::
patterns

::::::::
between

:::
the

:::::::::
prediction

:::
and

::::
the

:::::::
residual,

::::
and

:
a
::::::::::

correlation
::
of

::
1
::::::
would

::::::
indicate

::
a
::::::
perfect

::::::
pattern

:::::::::
correlation.

:
625

:::
The

::::::::::
correlations

:::
are

:
estimated over space for each test sample and variable

:::::::::::
independently

:
and averaged via a Fisher z-

transformation (Fisher, 1915): the single correlations are transformed by the inverse hyperbolic tangent function. In transformed

space, the values are approximately Gaussian distributedand averaged
:
,
:::
and

:::
we

:::::::
average

::::
them

:
across samples. The average is

transformed back by the hyperbolic tangent function. An averaged correlation of 1 would indicate a perfect pattern correlation.

630

Table 7. Centred pattern correlation on the test dataset between the updates and the residuals for the first update and fifth update. The symbols

of the variables are the same as in Table 2.

Update v σyy d A Σ

First update 0.94 0.99 0.93 0.92 0.98

Fifth update 0.70 0.89 0.59 0.28 0.76

Since they are trained for this, the NN can predict the patterns of the residuals
:::::
almost

::::::::
perfectly

::::::
predict

:::
the

:::::::
residual

:::::::
patterns

for the first update. At the fifth update, larger parts of the residual patterns are unpredictable for our trained networks.
::::
NN.

::::::::
Especially

:::
the

::::::
sea-ice

::::
area

::::
has

:
a
::::::
longer

:::::::
memory

:::
for

::::
error

::::::::::
corrections

::::
such

::::
that

:::
the

::::::::
predicted

:::::::
patterns

:::
are

::::::
almost

::::::::
unrelated

::
to

::
the

:::::::
residual

:::::::
patterns

:::
for

:::
the

:::
fifth

:::::::
update. Caused by the drift towards the attractor,

:::
the

::::::
sea-ice

:::::
model

::::::
forgets

:
parts of the previous

error correction are forgotten and
::
for

:::
the

:::::::
velocity

:::
and

::::::::
divergent

:::::
stress

::::::::::
component,

:::
and

:::::
these

::::::::
forgotten

::::
parts

:
get corrected again635

in the fifth update, especially for the divergent stress components. As the sea-ice area has a longer memory for error corrections,

its predicted patterns are almost unrelated to the residual patterns for the fifth update
:
.
::::::::
However,

:::
the

::::::
pattern

:::::::::
correlation

::
is

::::
also

::::::::
decreased

:::
for

:::::
these

:::::::::
dynamical

:::::::
variables

:::
for

:::
the

::::
fifth

:::::::
update.

:::::
Based

:::
on

:::::
these

::::::
results,

:::
the

:::::
error

::::::::::
distribution

::::
shift

::
is

:::
one

:::
of

:::
the

::::
main

::::::::::
challenges

:::
for

:::
the

:::::::::
application

::
of

::::
such

::::::
model

::::
error

::::::::::
corrections

:::
for

:::::::::
forecasting.

Our proposed parametrisation is deterministic and is designed to target the median value. On the resolved scale, sea-ice640

dynamics can look stochastically noised, with suddenly appearing strains and linear kinematic features, as discussed in the

introduction. We show the effect of the seemingly stochastic behaviour in Fig. 8 with the temporal development of damage

and total deformation for the truth
::::::::::::
high-resolution

:::::::::
simulation, the forecast model without parametrisation, and the parametrised

hybrid model.

The initial state exhibits damaged sea ice in the centre, corresponding to a diagonal main strain in the total deformation. In645

the high-resolution truth
:::::::::
simulation, the damaging process continues, leading to more widespread damaging of sea ice. Related

to new strains, the damage is additionally extended towards the south. The low-resolution forecast model only diffuses the

deformation without remaining main strain in the already damaged sea ice. As a result, the model misses the southward-

extending strain and damaging process. Furthermore, the model extends the damage and deformation southwards, although the

newly developed strain is weaker than in the truth
::::::::::::
high-resolution. The parametrisation can represent widespread damaging of650

sea ice. However, the parametrisation misses the development of new strains and positions the main strain at the wrong place.
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Figure 8. Snapshots of damage (left) and total deformation (right), showing their temporal evolution, in the high-resolution true model

::::::::
simulation (top),

:::
for the low-resolution forecast model (middle), and the low-resolution hybrid model (bottom).

This problem can especially occur on longer forecasting time scales, where the damage field is further developed compared to

its initial state. Therefore, we see the need for parametrisations that can also reproduce the stochastic effects of subgrid-scales

onto the resolved scales.

6 Summary and discussion655

We have introduced an approach to parametrise subgrid-scale dynamical processes in the sea ice
:::::
sea-ice

:::::::
models based on

deep learning techniques. Using twin experiments with a model of sea-ice dynamics that implements a Maxwell-Elasto-Brittle

::::::::::::::::::
Maxwell-elasto-brittle rheology, the NN learns to correct low-resolution forecasts towards high-resolution true trajectories for

the
:::::::::
simulations

:::
for

:
a
:
forecast lead time of 10 min and 8 s.

Our results show that NNs are able to correct forecast model errors related to the sea-ice dynamics and can thus parametrise660

the unresolved subgrid-scale processes as for other Earth system components. In addition, we are able to directly transfer

recent improvements in deep learning, like ConvNeXt blocks (Liu et al., 2022), to ameliorate the representation of the subgrid-

scale. We
::::::
Instead

::
of
::::::::::::

parametrising
::::::
single

::::::::
processes,

:::
we

:
correct all model variables at the same time with one big NN, here

with 1.5× 106 parameters. We employ a maximum likelihood approach using a univariate Laplace log-likelihood, which

corresponds to a mean absolute error reduction. By targeting a prediction of the median instead of the mean, the NN extracts665
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more contrasted features, which improves the parametrisation compared to a Gaussian log-likelihood. Additionally, optimising

globally-shared uncertainty parameters together with the NN balances the learning for all variables during training and results

into an additional gain.

Our specific convolutional U-Net architecture improves the parametrisation compared to naively-stacked convolutional

layers. The U-Net architecture extracts localised and anisotropic features on multiple scales. For feature extraction, we map the670

triangular input elements
::::
from

:::
the

::::::::
triangular

:::::
model

:::::
space

:
into a Cartesian space with a higher resolution to preserve correla-

tions of the input data. Our results show hereby that higher resolved Cartesian spaces further
:::::::::::::
higher-resolved

::::::::
Cartesian

::::::
spaces

improve the parametrisation; the network can then extract more information about the subgrid-scale.
::
In

:::
the

::::::::
Cartesian

::::::
space,

:
a
:::::::::::
convolutional

::::::
U-Net

::::::::::
architecture

:::::::
extracts

::::::::
localised

:::
and

::::::::::
anisotropic

:::::::
features

:::
on

:::
two

::::::
scales.

:
Mapped back into the original

triangular space, the extracted features are linearly combined to predict the residual
:::::::
residuals, which parametrises the effect of675

the subgrid-scale upon the resolved scales. Therefore, using such a mapping into Cartesian space, we can apply CNNs , which

can efficiently scale to larger,
:
to
:
Arctic-wide , models

::::::
models

::::
with

:::::::::::
unstructured

:::::
grids,

:::
like

::::::::
neXtSIM.

Our results suggest that the finer the Cartesian space resolution, the better the performance of the NN. This improvement

could emerge from our type of twin experiments, where the main difference in the resolved processes is a result of different

model resolutions. Consequently, extracting features at a higher resolution than the forecast model might be needed to represent680

the processes of the truth that has a higher resolution
::::::::::::::
higher-resolution

::::::::::
simulations; the NN would act as an emulator for these

processes. The
::
In

:::
this

:::::
case,

:::
the resolution needed for the projection would be linked to the resolution of the truth. As processes

have no discretised resolution in real-world, we would have difficulties to find the right resolution for the projection in such

cases. Nevertheless, in
:::::::
targetted

::::::::::
simulations.

::::::::
However,

::
in

:
the light of our results, this argument

:::
link seems to be unlikely, as

:
:

the performance of the finer 32×128 grid is higher than the 16×64 grid, although the latter one has already a higher resolution685

than the truth grid
:::
grid

::::
from

:::
our

::::::::
targetted

:::::::::
simulations. Additionally, this argument

:::
the

:::
link

:
cannot explain the increased training

loss
::
but

:::::::::
decreased

:::
test

:::::
errors for the finer gridcompared to its lowered errors on the test dataset.

The gain likely results from an inductive bias in the NN for Cartesian spaces with higher resolutions. We keep the NN

architecture and its hyperparameters, like the size of the convolutional kernels, the same, independent of the resolution in

the Cartesian space. Consequently, viewed from the original triangular space, the receptive field of the NN is reduced by690

increasing the resolution. The function space representable by such NN is more restricted, and, as the fitting power is reduced,

the training loss increases again. The NN is biased towards more localised features. These localised features help the network

to represent previously unresolved processes and the underlying partial differential equation of the residuals better. This better

representation improves the generalisation of the NN, resulting into lower errors on the test dataset
:::
test

::::::
errors. However, as

this study is performed
::::
with

::::
twin

::::::::::
experiments

:
in very specific settingswith twin experiments, it remains unknown to us if the695

projection into a space that has a higher resolution is advantageous for subgrid-scale parametrisations with machine learning

in general.

The permutation feature importance as global feature importance and sensitivity maps as local importance help us to explain

the learned NN by physical reasoning. The sensitivity map has additionally shown that the convolutional U-Net can extract

anisotropic and localised features, depending on the relation between input and output. We see such an analysis as especially700
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relevant for subgrid-scale parametrisations learned from observations, as the feature importance can be utilised to find the

sources of model errors and guide model developments. Using such tools, we discover that the NN represents a physically

explainable input-to-output mapping.

Cycling
:::::::
Applying

:
the NN correction together with the forecast model improves the forecasts up to one hour. Since the error

correction is imperfect, the initial condition errors accumulate for longer forecast horizons. There, the
:::
The

::::::
longer

:::
the

:::::::
forecast705

:::::::
horizon,

:::
the

:::
less

:::
are

:::
the

:
targetted residuals in the training dataset are less representative , and also the correlation between the

predicted error patterns and the true error patterns reduces. These
:::
data

::::::::::::
representative

:::
for

:::
the

:::
true

::::::::
residuals.

:::::
Such issues would

be solved in online training of the NNs (Rasp, 2020; Farchi et al., 2021a), which could be nevertheless too costly for real-world

applications. Offline reinforcement learning additionally tackles similar issues (Levine et al., 2020; Lee et al., 2021; Prudencio

et al., 2022) and can be thus a way to partially solve them.710

Although the here-learned NNs can make continuous corrections, they represent only deterministic processes. As the evolu-

tion of sea ice propagates from the subgrid-scale to larger scales, unresolved processes can appear like stochastic noise from

the resolved point of view. Consequently, the deterministic model error correction is unable to parametrise such stochastic-like

processes, which can lead for example to wrongly-positioned strains and linear kinematic features. Generative deep learning

(Tomczak, 2022) can offer a solution to such problems and could introduce a form of stochasticity into the subgrid-scale715

parametrisation, e.g. by meanings of generative adversarial networks (Goodfellow et al., 2014) or denoising diffusion models

(Sohl-Dickstein et al., 2015). Such techniques can also be used to learn the loss metric, circumventing issues by defining a loss

function for training.

Because of missing subgrid-scale processes in the low-resolution forecast model, the projected truth states
::::::::::::
high-resolution

::::::::::
simulations,

::::::::
projected

:::
into

:::
the

:::::::::::::
low-resolution,

:
are far off the low-resolution attractor. Consequently, when the forecast model720

is run freely, it drifts toward its own attractor, resulting into large deviations from the forecasted states to the projected truth

::::::::::::
high-resolution

:
states. This difficult forecast setting is indeed quite realistic, as models miss also in reality subgrid-scale pro-

cesses (Bouchat et al., 2022; Ólason et al., 2022), such that empirical free-drift or even persistence forecasts are difficult to beat

with forecast models (Schweiger and Zhang, 2015; Korosov et al., 2022). As the attractor of the forecast models does not match

the attractor of the observations or the projected truth
::::::::::::
high-resolution

:
state, also finding the best state on the model attractor725

would not necessarily lead to an improved forecast (e.g. Stockdale, 1997; Carrassi et al., 2014). The only way is therefore to

improve the forecast model, thereby changing its attractor
:
,
::::
e.g.,

::
by

:::::::
directly

:::::::::::
parametrising

::::
the

:::::::::::
subgrid-scale

::::::::
processes

::::
with

::
a

:::::::
tendency

:::::::::
correction.

A subgrid-scale parametrisation can be generally seen as a kind of forcing. Here, we use a resolvent correction, where we

correct the forecast model with NNs at integrated time steps; the parametrisation is like Euler integrated in time. Our results730

show that casting the subgrid-scale parametrisation as post-processing is needed to correct the sea-ice dynamics with such a

resolvent correction. Then, the NN has
:::
the

:::
NN

:::::
needs

:
access to the dynamics of the model and can

::
to correct tendencies related

to the drift towards the wrong attractor, at least at update
::::::::
correction

:
time. One strategy can be thus to increase the update

frequency or to distribute the correction over an update window, similarly to incremental analysis update in data assimilation

(Bloom et al., 1996). Another strategy is to use tendency corrections (Bocquet et al., 2019; Farchi et al., 2021a), where the735

30



parametrising NN is directly incorporated as an external forcing term into the model equation. As the tendency correction is

included into the model itself, it also changes and possibly corrects the attractor. The adjoint model of the forecasting model

::::::
Needed

::
to
:::::

train
::::
such

::
a
::::::::
tendency

:::::::::
correction

:::::::::::::::::
(Farchi et al., 2021a),

::::
the

::::::
adjoint

::::::
model is typically unavailable for large-scale

sea-ice models, but would be needed to train such a tendency correction (Farchi et al., 2021a). To remedy such needs, one

could also rely on training
:::
train

:
the NN as a resolvent correction for a specific forecast horizon and scaling the correction to a740

tendency correction, constant over the specified forecast horizon.
:::
and

:::::
scale

:::
the

::::::::
correction

::
to
::
a
::::::::
tendency

:::::::::
correction.

Ideally
:::
This

:::::
study

::::
and

::
its

:::::::::::
experiments

:::
are

:::::::
designed

:::
to

::
be

::
a

::::::::::::::
proof-of-concept.

::::
The

::::
NN

::
is

::::
able

::
to

::::::
correct

::::::
model

:::::
errors,

::::
our

:::::
results

::::::::::
nevertheless

:::::::
indicate

:::::::::::
shortcomings

::::
and

::::::::
challenges

:::::::
towards

::
an

::::::::::
operational

:::::::::
application

::
of

::::
such

:::::::::::
subgrid-scale

::::::::::::::
parametrisations.

:::
Our

::::::
sea-ice

::::::
model

:::::::
exhibits

::
a
:::::
strong

:::::
drift

:::::::
towards

::
its

::::
own

::::::::
attractor,

::::::
which

:::::
leads

::
to

::::
large

:::::::::
difference

::::::::
between

::::::::::
simulations

::
at

:::::::
different

::::::::::
resolutions.

::
It

::
is

:::
yet

::::::::
unknown

:::
for

::
us

::
if
::::
this

:::::
strong

::::
drift

::
is
:::::

only
::::::
evident

::
in

::::
our

:::::
model

:::
or

:
if
::

it
:::::::
prevails

::::
also

:::
for

:::::
other745

::::::
sea-ice

::::::
models.

::::::::::::
Nevertheless,

:::
the

:::
NN

::::::
should

::::::
ideally

:::
take

:::
the

::::::::
models’s

:::::::
attractor

::::
into

:::::::
account

::::
such

:::
that

:::
the

::::::::
corrected

:::::
states

::::
stay

::
on

:::
this

::::::::
attractor.

::::::::::
Additionally,

::::
the

:::
NN

::
is

::::::
trained

:::
to

::::::
correct

::::::::
forecasts

:::
for

:
a
:::::::
specific

:::::
model

:::::
setup

::::
and

:
a
:::::::

specific
::::::
model

:::::::::
resolution.

:::::::::
Normally,

::
the

::::
NN

:::
has

::
to

:::
be

:::::::
retrained

:::
for

:::::
other

::::::
setups,

:::
and

:::::::::
especially

::::
other

::::::::::
resolutions.

::::::::
However,

:::
we

:::::
might

:::
be

:::::
lucky

::
in

::::::::
correcting

::::::
model

:::::
errors

::::
from

::::::
sea-ice

:::::::::
dynamics:

:::
as

::::::
sea-ice

::::::::
dynamics

:::
are

::::::::::
temporally

:::
and

::::::::
spatially

::::::::::::
scale-invariant

:::
for

:::::::::
resolutions

:::
up

::
to

::
at
:::::

least750

::::
1km,

:::
we

:::::
might

:::
be

::::
able

::
to

:::::
apply

:::
the

::::
same

::::::
model

::::
error

:::::::::
correction

:::
for

:::::::
different

::::::::::
resolutions.

::
In

::::
any

::::
case,

:::
the

:::
NN

::::::
trained

:::
for

::::
one

::::::::
resolution

:::::
could

::
be

::::
used

:::
as

::::::
starting

:::::
point

::
to

:::::::
fine-tune

::
it
:::::::
towards

::::::
another

:::::::::
resolution.

:

::
In

:::
our

::::
case,

:::
we

:::::
apply

::::
twin

:::::::::::
experiments,

::::::
where

::
we

:::::
train

:::
the

:::
NN

::
to

::::::
correct

::::::::
forecasts

::::
with

::::::::
perfectly

::::::
known

:::::
initial

:::::::::
conditions

::::::
towards

::
a
:::::::::::::
high-resolution

::::::::::
simulation.

::::::::
Although

::::
such

:::::::
training

::
is
::::::

simple
::::

and
::
in

::::
our

::::
case

:::::::::
sufficient,

:::
the

:::
NN

::::::
suffers

:::::
from

:::
an

::::
error

::::::::::
distribution

::::
shift.

::::::::
Applying

::::
twin

::::::::::
experiments

:::
for

:::
the

:::::::
training

::
of

:::::::::::
subgrid-scale

::::::::::::::
parametrisations,

:::
the

::::
NN

:::::
learns

::
to

:::::::
emulate755

::::::::
processes

::
of

:::
the

::::::::::::
high-resolution

::::::::::
simulations.

:::::
Such

::
an

::::::::
emulation

:::::
could

:::::
allow

::
us

::
to

::::::
achieve

::
a

::::::
similar

::::::::::
performance

::::
with

::::::::::::
low-resolution

:::::::::
simulations

:::
as

::::
with

:::::::::::::
high-resolution

::::::::::
simulations,

::::::
which

::::::
would

::::::::
speed-up

::::::::::
simulations.

:::::::::
However,

::
in

::::
this

::::
case,

::::
the

:::
NN

::::::
learns

:::::::::::
instantiations

::
of

::::::
already

::::::
known

:::::::::
processes.

::::::
Instead, subgrid-scale parametrisations should be

:::::
ideally learned by incorporating observations into the forecast. Combining

::::
This

::::
way,

::
the

:::::::::::::
parametrisation

:::::
could

::::
learn

::
to
::::::::::
incorporate

::::::::
processes

:::::
which

:::::
might

:::
be

:::::::
unknown

::::
yet.

::::
Such

:::::::
learning

::::
from

::::::::::::::::
sparsely-distributed760

::::::::::
observations

:::
can

::
be

:::::::
enabled

::
by

:::::::::
combining

:
machine learning with data assimilation enables such learning from sparsely-distributed

observations (Bocquet et al., 2019, 2020; Brajard et al., 2020, 2021; Farchi et al., 2021b; Geer, 2021). This combination could

be
::::::::
Therefore,

:::
we

:::
see

::::
this

:::::::::::
combination

::
as

::::
one

::
of

:
the next step towards the goal of using observations to learn data-driven

parametrisations for sea-ice models.

7 Conclusions765

Based on our results for twin experiments with a sea-ice dynamics-only model in a channel-setup, we conclude the following:

– Deep learning can correct forecast errors and can thus parametrise unresolved subgrid-scale processes related to the

sea-ice dynamics. For its trained forecast horizon, the neural network can reduce the forecast errors by more than 75 %,
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averaged over all model variables. This error correction makes the forecast better than persistence for all model variables

at update
::::::::
correction time.770

– A single
::
big

:
neural network can parametrise processes related to all model variables at the same time. The needed

weighting parameters can be hereby spatially-shared and learned with a maximum likelihood approach. A Laplace

likelihood improves the extracted features compared to a Gaussian likelihood and is better suited to parametrise the

sea-ice dynamics.

– Convolutional neural networks with a U-Net architecture can represent important inductive biases
::::::::
processes for sea-ice775

dynamics by extracting localised and anisotropic features from multiple scales. Mapping
::
For

:::::::
sea-ice

::::::
models

:::::::
defined

::
on

::
a

::::::::
triangular

::
or

:::::::::::
unstructured

::::
grid,

::::
such

::::::::
scalable

:::::::::::
convolutional

::::::
neural

::::::::
networks

:::
can

::
be

:::::::
applied

:::
for

::::::
feature

:::::::::
extraction

::
by

::::::::
mapping the input data into a Cartesian space that has a higher resolution than the original space, such scalable

convolutional neural networks can be applied for feature extraction in sea-ice models defined on a triangular or unstructured

grid. The finer Cartesian space keeps correlations in
:::::
hereby

::::::::::
correlations

::::
from

:
the input data intact and enables the net-780

work to extract better features related to subgrid-scale processes.

– Because forecast errors in the sea-ice dynamics are likely linked to errors of the forecast model attractor, we have to

cast
::::
apply

:
the model error correction as a post-processing step and to input into the neural network the initial and

forecasted state. This way, the neural network has access to the model dynamics and can correct them. Consequently,

the dynamics of the forecast model variables are the most important predictors in a forecast
:::::
model error correction for785

sea-ice dynamics.

– Although only trained for correction at the first update step, cycling
:::::::
applying

:
the error correction together with the fore-

cast model improves the forecast, tested up to one hour. The accumulation of uncorrected errors results into a distribution

shift in the forecast errors, making the error correction less efficient for longer forecast horizons. These stochastic effects

can result in wrongly positioned strains and damaging processes for a deterministic error correction. Online training or790

techniques borrowed from offline reinforcement learning would be needed to remedy this distribution shift.

– The deterministic hybrid model leads to a better damage and total deformation representation than the forecast model

without parametrisation
:::::
model

:::::
error

:::::::::
correction

:::::
leads

::
to

:::
an

::::::::
improved

::::::::::::
representation

::
of

::::
the

::::::::
fracturing

:::::::::
processes. Nev-

ertheless, the unresolved subgrid-scale in the sea-ice dynamics can have seemingly stochastic effects on the resolved

scales.
:::::
These

::::::::
stochastic

::::::
effects

:::
can

:::::
result

::
in

:::::::
wrongly

:::::::::
positioned

:::::
strains

::::
and

::::::::
fracturing

::::::::
processes

:::
for

:
a
:::::::::::
deterministic

:::::
error795

:::::::::
correction. To properly parametrise such effects, we would need generative neural networks.
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Appendix A: The parameters of the regional sea-ice model
:::
with

::
a
:::::::::::::::::::
Maxwell-elasto-brittle

::::::::
rheology

Our
::
In

:::
the

::::::::
following

::::::::::
paragraphs,

::::
we

:::
will

::::::::
describe

:::
the

:::::
most

::::::::
important

:::::::::
properties

:::
of

:::
the

:
regional sea-ice model is almost

the same as that presented in Dansereau et al. (2017). Since our chosen parameters differ a bit from the parameters used in

Dansereau et al. (2016, 2017), we give them
::::
used

::
in

::::
this

:::::
study.

:::
For

::
a
:::::
more

:::::::
technical

:::::::::::
presentation

::
of

:::
the

::::::
model,

:::
we

:::::
refer

:::
the800

:::::
reader

::
to

::::::::::::::::::::::::
Dansereau et al. (2016, 2017)

:
.
:::
Our

::::::
chosen

::::::
model

:::::::::
parameters

:::
are

:::::
given in Table A1.

Table A1. The parameters for the
::::::
regional

:
sea-ice dynamics-only model

::
that

::::::
depicts

:::
the

:::::
sea-ice

::::::::
dynamics (Dansereau et al., 2016, 2017)

used in this study.

Parameter Values

Poison
::::::
Poisson s ratio ν 0.3

Internal friction coefficient µ 0.7

Ice density ρ 900 kgm−3

Velocity of the elastic shear in ice c 500 m s−1

Undamaged elastic modulus E0 5.85× 108 Pa

Undamaged apparent viscosity η0 5.85× 1015 Pa s

Undamaged relaxation time λ0 1× 107 s

Damage exponent α 4

Characteristic time for damage td 16 s

Characteristic time for healing th 5× 105 s

Average grid resolution ∆x 4 km (high-res)

8 km (low-res)

Integration time step ∆t 8 s (high-res)

16 s (low-res)

Air drag coefficient Cda 1.5× 10−3

Air density ρa 1.3 kgm−3

Water drag coefficient Cdw 5.5× 10−3

Water density ρw 1× 103 kgm−3

The characteristic time in the damaging process is chosen to be no source of

forecast error.

::::::::
Compared

::
to
::::::
Arctic

:::
and

:::::::::
pan-Arctic

::::::
sea-ice

:::::::
models,

::::
like

::::::::
neXtSIM

:::::::::::::::::::::::::::::::::
(Rampal et al., 2016; Ólason et al., 2022)

:
,
:::
this

::::::
model

:
is
::
a

:::::::
regional

:::::::::
standalone

:::::
model

::::
that

:::::::
accounts

::::::::::
exclusively

::
for

:::::::::
dynamical

:::::::::
processes.

::::
Like

::::
most

:::::::
sea-ice

::::::
models,

::
it
::
is

::::::::::::::
two-dimensional

:::
and

:::::
based

:::
on

:
a
::::::

plane
:::::
stress

:::::::::::::
approximation.

::::
Nine

::::::::
variables

:::::::::
constitute

::
its

:::::::::
prognostic

:::::
state

::::::
vector:

::::::
sea-ice

:::::::
velocity

:::
in

::
x-

::::
and

:::::::::
y-direction,

:::
the

:::::
three

:::::
stress

::::::::::
components,

:::::
level

::
of

:::::::
damage,

::::::::
cohesion,

:::::::::
thickness,

:::
and

::::::::::::
concentration.805

::::::::::
Atmospheric

:::::
wind

:::::
stress

::
is

:::
the

:::
sole

:::::::
external

::::::::::
mechanical

:::::::
forcing,

:::::::
whereas

:::
the

:::::
ocean

:::::::
beneath

:::
the

:::
sea

:::
ice

::
is

:::::::
assumed

::
to

:::
be

::
at

:::
rest.

::::::
Given

:::
the

::::
small

:::::::::
horizontal

:::::
extent

:::
of

:::
our

:::::::::
simulation

::::::
domain

::::
(see

::::
Fig.

::
2),

:::
we

::::
also

::::::
neglect

:::
the

:::::::
Coriolis

:::::
force.

:
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:::
The

:::::::::::::::::::
Maxwell-elasto-brittle

:::::::
rheology

:::::
from

::::::::::::::::::::
Dansereau et al. (2016)

:::::::
specifies

:::
the

::::::::::
constitutive

:::
law

::
of

:::
the

:::::::
model.

:
It
:::::::::

combines

:::::
elastic

::::::::::::
deformations,

::::
with

::
an

:::::::::
associated

::::::
elastic

::::::::
modulus,

:::
and

:::::::::
permanent

::::::::::::
deformations,

::::
with

::
an

:::::::::
associated

::::::::
apparent

::::::::
viscosity.

:::
The

::::
ratio

:::
of

::
the

::::::::
viscosity

::
to

:::
the

::::::
elastic

:::::::
modulus

::::::
defines

:::
the

::::
rate

::
at

:::::
which

:::::::
stresses

:::
are

:::::::::
dissipated

:::
into

:::::::::
permanent

::::::::::::
deformations.810

::::
Both

::::::::
variables

:::
are

:::::::
coupled

:::
to

:::
the

:::::
level

::
of

::::::::
damage:

:::::::::::
deformations

:::
are

:::::::
strictly

::::::
elastic

::::
over

::::::::::
undamaged

:::
ice

::::
and

::::::::::
completely

:::::::::
irreversible

::::
over

::::::::::::
fully-damaged

::::
ice.

::::
The

::::
level

:::
of

::::::
damage

::::::::::
propagates

::
in

:::::
space

::::
and

::::
time

:::
due

:::
to

::::::::
damaging

::::
and

:::::::
healing.

:::
Ice

::
is

::::::::
damaged,

:::
and

::::
thus

:::
the

::::
level

:::
of

::::::
damage

:::::::::
increases,

:::::
when

:::
and

:::::
where

:::
the

:::::::
stresses

:::
are

::::::::::
overcritical

::::::::
according

::
to

::
a

:::::::::::::
Mohr-Coloumb

::::::
damage

::::::
criteria

::::::::::::::::::::
(Dansereau et al., 2016).

::::
This

::::::::::
mechanism

::::::::::
parametrises

:::
the

::::
role

::
of

:::::
brittle

:::::
failure

::::::::
processes

:::::
from

::
the

:::::::::::
subgrid-scale

::::
onto

:::
the

:::::::::
mechanical

:::::::::
weakening

:::
of

:::
ice

::
at

:::
the

:::::::::
mesoscale.

::::::::
Reducing

:::
the

::::
level

:::
of

:::::::
damage,

:::
ice

::
is

::::::
healed

::
at

:
a
:::::::
constant

::::
rate,

::::::
which815

:::::::::::
parameterises

:::
the

:::::
effect

:::
of

:::::::::::
subgrid-scale

:::::::::
refreezing

:::
of

:::::
cracks

:::::
onto

:::
the

::::::::::
mechanical

:::::::::::
strengthening

:::
of

:::
the

::::
ice.

:::
By

:::::::::
neglecting

::::::::::::::
thermodynamical

:::::::
sources

:::
and

:::::
sinks

::
in

:::
the

::::::
model,

::::::::
cohesion,

:::::::::
thickness,

:::
and

::::
area

:::
are

::::::
solely

:::::
driven

:::
by

::::::::
advection

::::
and

::::::::
diffusion

::::::::
processes;

:::
the

:::::::::
prognostic

:::::::
variable

:::
for

:::
the

:::::::::
thickness

::
is

::::::
hereby

:::
the

::::::::
thickness

::
of

:::
the

::::::::::
ice-covered

::::::
portion

:::
of

:
a
::::
grid

::::
cell,

:::::::
defined

::
as

:::
the

::::
ratio

:::::::
between

::::::::
thickness

:::
and

:::::
area.

:::
For

:::
the

:::::::::
prognostic

::::::
sea-ice

::::::::
thickness

::::
and

::::
area,

:
a
::::::

simple
::::::::::::::::
volume-conserving

:::::::
scheme

::
is

:::::::::
introduced

::
to

:::::::
represent

:::
the

::::::::::
mechanical

:::::::::::
redistribution

::
of

:::
the

:::
ice

::::::::
thickness

:::::::::
associated

::::
with

::::::
ridging

::::::::::::::::::::
(Dansereau et al., 2017).

:
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:::
The

::::::
model

::::::::
equations

::::
are

:::::::::
discretised

:::
in

::::
time

:::::
using

::
a
:::::::::
first-order,

::::::::
Eulerian

:::::::
implicit

:::::::
scheme.

::::
Due

:::
to

:::
the

::::::::
coupling

::
of

::::
the

:::::::::
mechanical

::::::::::
parameters

::
to

:::
the

::::
level

:::
of

:::::::
damage,

:::
the

::::::::::
constitutive

::::
law

::
is

:::::::::
non-linear,

::::
and

:
a
::::::::::::
semi-implicit

::::
fixed

:::::
point

:::::::
scheme

::
is

::::
used

::
to

::::::::
iteratively

:::::
solve

:::
the

::::::::::
momentum,

:::
the

::::::::::
constitutive,

:::
and

:::
the

:::::::
damage

::::::::
equations.

::::::
Within

:
a
::::::
model

:::::::::
integration

::::
time

::::
step,

:::::
these

::::
three

:::::
fields

:::
are

:::::::
updated

::::
first.

:::::::::
Cohesion,

::::::::
thickness,

::::
and

::::
area

:::
are

:::::::
updated

::::::::
secondly,

:::::
using

:::
the

::::::
already

:::::::
updated

:::::
fields

:::
of

::::::
sea-ice

::::::
velocity

::::
and

:::::::
damage.

:
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:::
The

::::::::
equations

:::
are

:::::::::
discretised

::
in

:::::
space

:::
by

:
a
:::::::::::
discontinues

:::::::
Galerkin

:::::::
scheme.

::::
The

:::::::
velocity

:::
and

::::::
forcing

::::::::::
components

:::
are

:::::::
defined

::
by

::::::
linear,

::::::::
first-order,

::::::::::
continuous

::::
finite

:::::::::
elements.

:::
All

::::
other

::::::::
variables

:::
and

:::::::
derived

::::::::
quantities

::::
like

::::::::::
deformation

:::
and

:::::::::
advection

:::
are

:::::::::::
characterised

::
by

::::::::
constant,

::::::::::
zeroth-order,

::::::::::::
discontinuous

::::::::
elements.

:::
The

::::::
model

::
is

::::::::::
implemented

::
in
::::
C++

::::
and

::::
uses

::
the

:::::::
Rheolef

::::::
library

::::::::::::::::::::::::
(Version 6.7, Saramito, 2022).

:

:::
Our

::::::
virtual

::::
area

::::
spans

:::::::::::::::
40 km× 200 km:

:
a
:::::::::::
channel-like

:::::
setup,

:::::
which

::
is

::::::::::
nevertheless

:::::::::::::::::
anisotropy-allowing.

::::
The

:::::
model

::
is

:::::
based830

::
on

:
a
:::::::::
triangular

:::
grid

::::
with

:::
an

::::::
average

:::::::
triangle

:::
size

::
of

:::::
8 km

:::
for

:::
the

::::::::::::
low-resolution

::::::::
forecasts.

:::
The

::::
grid

:::
for

:::
the

::::::::::::
high-resolution

:::::
truth

:::::::::
trajectories

::
is

:
a
::::::
refined

:::::::
version

::
of

:::
the

::::::::::::
low-resolution

::::
with

:
a
:::::::
spacing

::
of

:::::
4 km

::::
(Fig.

::::
2a).

:
If
:::
not

:::::::::
otherwise

::::::
stated,

::
we

::::::::
initialise

:::
the

::::::::::
simulations

::::
with

::::::::::
undamaged

:::
sea

:::
ice,

:::
the

:::::::
velocity

::::
and

:::::
stress

::::::::::
components

:::
are

:::
set

::
to

::::
zero,

::::
and

:::
the

::::
area

:::
and

::::::::
thickness

:::
to

::::
one.

:::
The

::::::::
cohesion

::
is
:::::::::
initialised

::::
with

:
a
:::::::

random
:::::
field,

::::::
drawn

::::
from

::
a
:::::::
uniform

::::::::::
distribution

:::::::
between

:::::::::
5× 103 Pa

::::
and

::::::::::
1× 104 Pa.

:::
We

:::
use

::::::::::::
von-Neumann

::::::::
boundary

:::::::::
conditions

::
on

:::
all

::::
four

::::
sides

:::::
(Fig.

:::
2c),

::::
with

:::
an

::::::
inflow

::
of835

:::::::::
undamaged

:::
sea

:::
ice

::::
(Fig.

::::
2d)

:::
and

:
a
:::::::
random

::::::::
cohesion,

:::::
again

:::::::
between

:::::::::
5× 103 Pa

::::
and

::::::::::
1× 104 Pa.

:::
The

::::::
model

:::::::::::
configuration

::::
thus

::::::::
simulates

:
a
:::::
zoom

:::
into

:::
an

:::::::
(almost)

::::::::::
undamaged

:::::
region

:::
of

:::
sea

:::
ice,

:::
e.g.

::
in

:::
the

::::::
centre

::
of

:::
the

::::::
Arctic.

:::
For

:::
the

::::::::::
atmospheric

::::
wind

:::::::
forcing,

:::
we

::::::
impose

:
a
:::::::::
sinusoidal

:::::::
velocity

::
in

:::::::::
y-direction

::::
and

::
no

:::::::
velocity

::
in

::::::::::
x-direction,

:::
see

::::
also

:::
Eq.

:::
(3).

:::::::
Because

::
of

:::
the

::::::::::
anisotropy,

::
the

::::
sea

::
ice

::::
can

::::::::::
nevertheless

:::::
move

::
in

::::::::::
x-direction.

:::::::::
Depending

:::
on

::
its

::::::
length

::::
scale

::::
and

:::::::::
amplitude,

::
the

:::::::::
sinusoidal

::::::
forcing

:::::::::
generates

::::
cases

:::
of

::::
rapid

:::::::::
transitions

:::::::
between

::::::::::
undamaged

::::
and

::::::::::::
fully-damaged

:::
sea

:::
ice.

:::
As

:::::::
spin-up

:::
for

:::
the840

::::::::::::
high-resolution

:::::::::::
simulations,

:::
the

::::
wind

::::::
forcing

::
is
:::::::
linearly

::::::::
increased

::::
over

:::
the

::::::
course

::
of

:::
the

::::
first

:::::::::
simulation

::::
day.

:::
The

::::::::::
parameters
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::
of

:::
the

::::
wind

:::::::
forcing

:::
are

::::::::
randomly

::::::
drawn,

::
as

::::::::
described

:::
in

::::::
Sect. 4.

::::
The

::::
wind

:::::::
forcing

::
is

:::::::
updated

::
at

::::
each

:::::
model

::::::::::
integration

::::
time

:::
step

:::
(8s

:::
for

:::
the

:::::::::::::
high-resolution

::::::::::
simulations

:::
and

::::
16s

::
for

:::
the

::::::::::::
low-resolution

:::::::::::
simulations).

:

Appendix B:
::::::
UNeXt

:::::::::::
architecture

::
To

::::::::
represent

:::::
spatial

::::::::::
correlations

::::
and

:::::::::
anisotropic

:::::::
features,

:::
we

:::
use

::::::::::::
convolutional

::::
NNs

:::::::
(CNNs).

:::
We

::::
train

:
a
::::::
model

::::
error

:::::::::
correction845

::
as

:::::::::::
subgrid-scale

:::::::::::::
parametrisation

:::
(cf.

:::::
Sect.

::::
2.1),

::::::
applied

::
in
::

a
:::::::::::::
post-processing

::::
step,

:::::
after

:::
the

:::::
model

:::::::
forecast

::
is

:::::::::
generated.

:::::
Since

::
the

:::::::::::::::::::
Maxwell-elasto-brittle

:::::
model

::
is
::::::::
spatially

:::::::::
discretised

::
on

::
a
::::::::
triangular

:::::
space

::::
(cf.

::::
Sect.

::::
2.2),

:::
we

::::::::
introduce

::
a
:::::
linear

:::::::::
projection

:::::::
operator

::
P

:::::
(Sect.

::::
B1),

:::::::::::
interpolating

:::::
from

:::
the

:::::::::
triangular

:::::
space

::
to

::
a

::::::::
Cartesian

:::::
space

::::
that

:::
has

::
a

:::::
higher

::::::::::
resolution,

:::
and

::::::
where

::::::::::
convolutions

::::
can

:::::
easily

::
be

:::::::
applied.

:::::
After

::::
this

:::::::::
projection,

:::
we

:::::
apply

:
a
::::::
U-Net

:::::
(Sect.

::::
B2)

::
to

::::::
extracts

:::::::
features

:::
in

::::::::
Cartesian

:::::
space

::::
from

:::
the

::::::::
projected

:::::
input

:::::
fields.

::::::
These

:::::::
features

:::
are

::::
then

::::::::
projected

:::::
back

::::
into

:::
the

::::::::
triangular

:::::
space

:::::
with

:::
the

::::::::::::
pseudo-inverse

:::
of850

::
the

:::::::::
projection

::::::::
operator

::::
P†.

::::::
There,

:::::
linear

::::::::
functions

::::::::
combine

:::::::::
pixel-wise

::::
(i.e.,

::::::::::
processing

::::
each

:::::::::::::::
element-defining

::::
grid

:::::
point

::::::::::::
independently)

:::
the

::::::::
extracted

:::::::
features

:::
to

:::
the

::::::::
predicted

::::::::
residual,

:::
one

::::
for

::::
each

::::::::
variable.

::::
Each

::::::
linear

:::::::
function

::
is
:::::::

learned
::::
and

:::::
shared

::::::
across

:::
all

:::
grid

::::::
points.

::::
The

::::
NN

:::::::
predicts

:::
the

::::::::
residuals

:::
for

::
all

::::
nine

:::::::
forecast

::::::
model

::::::::
variables

::
at

:::
the

:::::
same

::::
time

::::
with

::::
one

:::::
shared

::::::
U-Net.

:::
By

::::::
sharing

:::
the

::::::
U-Net

:::::
across

:::::
tasks,

:::
the

::::
NN

:::
has

::
to

::::
learn

:::::::
patterns

:::
and

:::::::
features

:::
for

::::
error

:::::::::
correction

::
of

:::
all

::::::::
variables.

::
To

::::::
weight

:::
the

::::
nine

:::::::
different

::::
loss

::::::::
functions,

:::
we

:::::
make

:::
use

::
of

:
a
:::::::::
maximum

::::::::
likelihood

::::::::
approach

:::::
(Sect.

::::
B3).

::::
This

::::::::
proposed

:::::::
pipeline855

:::::::::
(visualised

::
in

::::
Fig.

::
4)

::::
can

::
be

:::::
seen

::
as

::
a

:::::::
baseline

::::
that

::::::
enables

::
a
:::::::::::
subgrid-scale

:::::::::::::
parametrisation

:::::
with

::::
deep

:::::::
learning

:::
for

:::::::
sea-ice

::::::::
dynamics,

:::::::::
correcting

::
all

::::::
model

:::::::
variables

::
at
:::
the

:::::
same

::::
time.

:

B1
::::
The

:::::::::
projection

::::::::
operator

:::
For

:::
the

::::::::
Cartesian

::::::
space,

:::
we

::::::
chose

:
a
::::::::::::

discretisation
::
of

::::::::
32× 128

::::::::
elements

:::
in

:::
the

:::
x-

:::
and

:::::::::::
y-directions,

:::::::
defined

:::
by

::::::::
constant,

::::::::::
zeroth-order,

::::::::
Cartesian

::::::::
elements

::::::
evenly

::::::::
distributed

::
in
:::
the

::::::::::::::
40 km× 200 km

:::::::
domain.

:::
As

::::
each

::::::::
Cartesian

:::::::
element

:::
has

:
a
:::::::::
resolution860

::
of

::::::::::::::::::
1.25 km× 1.5625 km,

:::
the

::::::::
Cartesian

:::::
space

:::
has

::
a
:::::
higher

:::::::::
resolution

::::
than

:::
the

::::::
original

:::::::::
triangular

::::
space

:::::::::
(∼ 8 km).

:::::
Using

::::
such

::
a

:::::::::::::
super-resolution

::::::::
mitigates

:::
the

:::
loss

::
of

::::::::::
information

::::::
caused

::
by

:::
the

:::::::::
projection.

:::::::::::
Furthermore,

:::
the

:::
NN

:::
can

:::::
learn

::::::::::
interactions

:::::::
between

:::::::
variables

:::
on

:
a
:::::::::::
smaller-scale

::::
than

::::
used

::
in

:::
the

::::::
model,

::::::
which

::::
helps

::
to

::::::::::
parametrise

:::
the

::::::::::::
subgrid-scale,

::
as

:::
we

:::
will

:::
see

:::
in

::::
Sect.

:::
5.1.

:

::
As

:::::::::
projection

:::::::
operator

:::
P ,

:::
we

:::
use

::::::::
Lagrange

:::::::::::
interpolation

:::::
from

:::
the

:::::::
original

::::::::
triangular

::::::::
elements

::
to

:::
the

:::::::::
Cartesian

::::
ones.

::::
For

::
the

:::::::
velocity

::::
and

::::::
forcing

:::::::::::
components,

:::::::
defined

::
as

:::::::::
first-order

::::::::
elements,

:::
this

:::::::::::
interpolation

:::::::::::
corresponds

::
to

:
a
:::::::
(linear)

::::::::::
Barycentric865

::::::::::
interpolation

::::
and

::
to

:
a
::::::
nearest

:::::::::
neighbour

:::::::::::
interpolation

:::
for

::
all

:::::
other

::::::::
variables,

::::::
defined

:::
as

::::::::::
zeroth-order

::::::::
elements;

::
P

::::
thus

:::::::
reduces

::
to

:
a
:::::
linear

::::::::
operator,

:::::::
hereafter

::::::
written

:::
P .

:::::::
Because

:::
of

::
the

::::::
higher

:::::::::
resolution,

:::::
there

:::
are

:::::::
multiple

::::::::
Cartesian

:::::::
elements

:::
per

:::::::::
triangular

:::::::
element,

:::
and

:::
the

::::::
inverse

::
of

:::
the

:::::::
operator

:::::
does

:::
not

::::
exist

::
as

:::
the

:::::
linear

::::::
system

::
is

::::::::::::::
over-determined.

::::::::::::
Consequently,

::
in

::::
order

::
to
::::::
define

::
the

:::::::::
backward

::::::::
projection

:::::
from

::
the

::::::::
Cartesian

:::::
space

::
to
:::
the

:::::::::
triangular

:::::
space,

:::
we

:::
use

:::
the

:::::::::::::
Moore–Penrose

::::::::::::
pseudo-inverse

::::
P †.

:::::
Since

::
the

:::::
rank

::
of

::
P

::
is
:::

by
:::::::::::
construction

:::::
equal

::
to

:::
the

:::::::::
dimension

::
of

:::
the

:::::::::
triangular

:::::
space,

::::
i.e.

::
its

:::::::
column

:::::::
number,

:::
the

:::::::::::::
pseudo-inverse870

:
is
:::

in
:::
our

::::
case

:::::
equal

::
to
::::::::::::::::::
P † = (P⊤P )−1P⊤,

::::::
where

::::
P⊤

::::::::::
corresponds

::
to
::::

the
:::::::::
transposed

::::::::
operator.

:::::
Note,

:::
for

:::::
coarse

:::::::::
Cartesian

::::::
spaces,

:::
the

:::::::
mapping

:::::
from

::::::::
Cartesian

:::::
space

::
to

:::::::::
triangular

:::::
space

:::
can

::
be

:::::::::::::
non-surjective,

:::::::
meaning

::::
that

:::
not

:::
all

::::::::
triangular

::::::::
elements

::
are

:::::::
covered

:::
by

::
at

::::
least

:::
one

::::::::
Cartesian

::::::::
element:

:::
the

::::::::::::
pseudo-inverse

::
is

::
in

:::
this

::::
case

::::
rank

::::::::
deficient.

:
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::
In

:::
the

::::
case

::
of

::::::::::
zeroth-order

::::::::::::
discontinuous

::::::::
Galerkin

::::::::
elements,

:::
the

::::::::
projection

::::::::
operator

::::::
assigns

::
to

::::
each

::::::::
Cartesian

:::::::
element

::::
one

::::::::
triangular

:::::::
element.

::::
The

:::::::::::::
back-projection

:::::::
operator

::::
then

::::::::::
corresponds

::
to

::
an

::::::::
averaging

::
of

:::
the

::::::::
Cartesian

::::::::
elements

:::
into

::::
their

::::::::
assigned875

::::::::
triangular

:::::::
element.

::::
This

:::::::::
averaging

:::
can

:::
be

::::
seen

::
as

::
a
::::
type

::
of

::::::::::
ensembling

:::
the

::::::::::
information

:::::
from

:::::::
smaller,

::::::::
normally

::::::::::
unresolved,

:::::
scales

::
to

:::::
larger,

::::::::
resolved

:::::
scales.

::::
We

::::
have

:::::::::::
implemented

:::
this

:::::::::
projection

:::::::
operator

::
as

:
a
::::
NN

::::
layer

::::
with

:::::
fixed

:::::::
weights

::
in

:::::::
PyTorch.

:

B2
::::
The

:::::
U-Net

:::::::
feature

::::::::
extractor

:::
We

:::
use

::::::
CNNs

::
in

::::::::
Cartesian

::::::
space.

:::
The

::::::
feature

::::::::
extractor

::::::
should

:::
be

::::
able

::
to

::::::
extract

:::::::::
multiscale

:::::::
features,

::::
and

::
to

::::::::
represent

:::::
rapid

:::::
spatial

::::::::::
transitions,

:::::
which

::::::
might

:::::
occur

::::
only

:::
on

::::
finer

::::::
scales.

::::::::::::
Consequently,

:::
we

:::::
have

:::::::
selected

::
a

::::
deep

::::
NN

::::::::::
architecture

::::
with

::
a880

:::::
U-like

::::::::::::
representation,

::
a
::::::::
so-called

:::::
U-Net

::::::::::::::::::::::
(Ronneberger et al., 2015).

::::
The

::::::::
encoding

:::
part

::::
(on

:::
Fig.

:::
4a,

:::
the

::::
left

:::
side

:::
of

:::
the

::::::
U-Net)

::::::
extracts

::::::::::
information

:::
on

:::::::
multiple

::::::
scales

::::
(here

:::
on

:::::
two),

::
by

:::::::::
cascading

::::::::::::
downsampling

:::::
steps.

::::
The

::::::::
decoding

::::
part

:::
(on

::::
Fig.

:::
4a,

:::
the

::::
right

:::
side

:::
of

::
the

:::::::
U-Net)

:::::
refines

:::::::::::
coarse-scale

::::::::::
information

::
up

:::
and

::::::::
combines

:::::
them

::::
with

::::::::::
information

::::
from

::::
finer

::::::
scales,

:::
and

:::::::
outputs

::
the

::::::::
extracted

::::::::
features.

::::::::::::
Consequently,

:::
the

::::::
U-Net

::::::::::
architecture

::::
can

::::::
extract

:::::::
features

::
at

:::::::
multiple

::::::
scales,

:::::::
mapped

:::::
onto

:::
the

:::::
finest

::::
scale.

:
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Table B1.
:::::::
Proposed

::::::
baseline

:::::::
U-NeXt

:::::::::
architecture

:::::
based

::
on

::::::::::::
ConvNeXt-like

::::::
blocks.

::::::
"Down"

:::
and

:::::
"Up"

::::::::
correspond

::
to
:::::::::::

downsampling
::::

and

::::::::
upsampling

::::::
blocks,

::::::::::
respectively.

:::::::
Counting

::::
with

::
the

:::::::
weights

::
of

::
the

:::::
linear

:::::::
functions

::
in

::::::::
triangular

:::::
space,

::
the

::::::::::
architecture

::
has

::
in
::::

total
::::::
around

:::::::
1.2× 106

:::::::::
parameters.

::::
Stage

: :::::::
Operation

: :::::
Params

:::
nin ::::

nout ::
nx: ::

ny

::::
Input

::::::::
ConvNeXt

:::::
23 056

::
20

:::
128

::
32

: :::
128

:::::
Down

:
1

:::::
Down

::::::
295 424

:::
128

:::
256

::
16

: ::
64

::::::::
ConvNeXt

::::::
145 152

:::
256

:::
256

::
16

: ::
64

::::::::
ConvNeXt

::::::
145 152

:::
256

:::
256

::
16

: ::
64

::::::::
Bottleneck

::::::::
ConvNeXt

::::::
145 152

:::
256

:::
256

::
16

: ::
64

::
Up

::
1

::
Up

: ::::::
295 552

:::
256

:::
128

::
32

: :::
128

::::::::
ConvNeXt

:::::
95 744

:::
128

:::
128

::
32

: :::
128

::::::::
ConvNeXt

:::::
39 808

:::
128

:::
128

::
32

: :::
128

:::::
Output

: ::::::::
ConvNeXt

:::::
39 808

:::
128

:::
128

::
32

: :::
128

:::
relu

:
–

:::
128

:::
128

::
32

: :::
128

:::
Our

::::::
typical

:::::
U-Net

::::::::::
architecture

:::::::
consists

::
of

:
3
:::::::
different

:::::::
blocks:

:::::::
Residual

::::::
blocks,

::::::
mainly

:::::::
inspired

::
by

:::::::::
ConvNeXt

::::::
blocks

::::::::::::::
(Liu et al., 2022)

:
,
:
a
:::::::::::::
downsampling

:::::
block,

::::
and

:::
an

::::::::::
upsampling

:::::
block.

::::
Our

::::::::
complete

::::::
U-net

::::::::::
architecture

:::
has

:::
in

::::
total

::::::::::::
approximately

:::::::::
1.2× 106

:::::::
trainable

:::::::::
parameters

:::
and

:::::::
consists

::
of

:::
five

::::::
stages,

:::
cf.

::::
Table

::::
B1.

:::
The

:::::::
rectified

:::::
linear

::::
unit

::::
(relu)

::
in

:::
the

::::::
output

:::::
stage,

::::::::::::::::::::
hout =max(0,hout−1),

::::::::
introduces

::
a
:::::::::::
discontinuity

:::
into

:::
the

::::::::
features,

:::::
which

::::
can

::::
help

:::
the

:::
NN

::
to

::::::::
represent

:::::
sharp

:::::::::
transitions

::
in

:::
the

:::::
level

::
of

:::::::
damage.

::::
The

::::
input

:::::
fields

::::::::
projected

::::
into

:::
the

::::::::
Cartesian

:::::
space

:::
are

::::::
treated

::
as

::::
input

::::::::
channels

:::
for

:::
the

::::
input

:::::
stage

:::
and

:::::::
include

::::
nine

::::
state

::::::::
variables890
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:::
and

:::
one

:::::::
forcing

::::
field

::
for

:::::
both

::::
input

::::
time

:::::
steps,

::::::::
resulting

::
to

::::::
in-total

:::
20

::::
input

::::::::
channels.

::::
The

::::::::::
architecture

::
is

::::
quite

:::::
thick,

::::
with

::::
128

:::::
output

::::::::
channels,

::
to

::::::
extract

:::::::
features

:::
for

::
all

::::::
model

:::::::
variables

::
at
:::
the

:::::
same

::::
time.

:

B2.1
:::
The

::::::::::
ConvNeXt

::::::
blocks

::
In

:::
our

:::::::
standard

::::::::::::
configuration,

:::
the

::::::::::
processing

:::::
blocks

:::
are

:::::::
mainly

:::::::
inspired

::
by

::::::::::
ConvNeXt

::::::
blocks

::::::::::::::
(Liu et al., 2022).

::::
The

::::::
output

:::::::::::::::::::::
hl = fl(hl−1)+ gl(hl−1)::

of
:::
the

::::
l-th

:::::
block

:
is
:::::::::

calculated
:::::
based

:::
on

:::
the

::::::
output

::
of

:::
the

:::::::
previous

:::::
block

:::::
hl−1 ::

by
::::::
adding

::
a
:::::::
residual895

:::::::::
connection

:::::::
fl(hl−1)::

to
::
a
::::::
branch

:::::::::
connection

::::::::
gl(hl−1),::

as
::::::::
depicted

::
in

:::
Fig.

:::
4b.

:

:::
The

:::::::
residual

:::::::::
connection

::
is

::
an

:::::::
identity

:::::::
function

::::::::::::::
fl(hl−1) = hl−1::

if
:::
the

::::::
number

::
of

:::
its

:::::
output

::::::::
channels

::::
nout :::::

equals
:::
the

:::::::
number

::
of

::
its

:::::
input

:::::::
channels

::::
nin.

:::::::::
Otherwise,

:
a
::::::::::
convolution

::::
with

::
a

::::
1× 1

::::::
kernel,

::::::
called

::
in

::
the

:::::::::
following

::::
1× 1

:::::::::::
convolution,

::::::::
combines

:::
the

:::
nin::::

input
::::::::
channels

::
to

::::
nout::::::

output
:::::::
channels

::
as

::
a
:::::
linear

:::::::::::::::
pixel-wise-shared

:::::::
function.

:

::
In

:::
the

::::::
branch

::::::::::
connection,

:
a
:::::
single

::::::::::::
convolutional

::::
layer

::::
with

::
a
:::::
7× 7

:::::
kernel

::
is

::::::
applied

::::::::::
depth-wise

:::
(i.e.

:::
on

::::
each

:::::
input

:::::::
channel900

::::::::::::
independently)

::
to

::::::
extract

::::::::::
information

:::::
about

::::::::::::
neighbouring

:::::
pixels;

::::::
before

::::::::
applying

:::
the

::::::::::
convolution,

:::
the

:::::
fields

:::
are

::::
zero

:::::::
padded

::
by

:::::
three

:::::
pixels

:::
on

::
all

::::
four

::::::
sides,

::::
such

::::
that

:::
the

::::::
output

::
of

:::
the

:::::
layer

:::
has

:::
the

:::::
same

::::
size

::
as

:::
the

:::::
input.

::::
The

::::::
output

::
of

::::
this

::::::
spatial

::::::::
extraction

:::::
layer

:
is
::::::::::
normalised

::
by

:::::
layer

::::::::::::
normalisation

::::::::::::::
(Ba et al., 2016)

:::::
across

::
all

::::::::
channels

:::
and

::::
grid

::::::
points.

:::::::::
Compared

::
to

:::::
batch

:::::::::::
normalisation

::::::::::::::::::
(Szegedy et al., 2014)

:
,
::::
layer

::::::::::::
normalisation

::
is

::::::::::
independent

::
of

:::
the

:::::::
number

::
of

:::::::
samples

:::
per

:::::
batch

:::
and

::::::::
performs

:::
on

:::
par

::
in

:::
this

::::
type

::
of

:::::
block

::::::::::::::
(Liu et al., 2022)

:
.905

:::::::::
Afterwards,

::
a
::::::::::
convolution

::::
layer

::::
with

::
a

::::
1× 1

::::::
kernel

:::::
mixes

:::
the

:::::::::
normalised

:::::::
channel

::::::::::
information

:::
up.

::
If

:::
not

::::::::
otherwise

::::::::
depicted,

::
the

::::::
output

::
of

::::
this

:::::::::::
intermediate

::::
layer

::::
gets

::::::::
activated

::
by

::
a
::::::::
Gaussian

::::
error

:::::
linear

::::
unit

:::::::::::::::::::::::::::::::
(Gelu, Hendrycks and Gimpel, 2020).

::::
The

:::
last

:::::
1× 1

::::::::::
convolution

:::::::
linearly

::::::::
combines

:::
the

::::::::
activated

:::::::
channels

::::
into

:::::
nout ::::::::

channels.
:::
The

::::::
output

:::
of

:::
this

::::::
branch

::::::::::
connection

::
is

:::::
scaled

:::
by

:::::::
learnable

::::::
factors

:::
γ,

:::
one

:::
for

::::
each

::::::
output

:::::::
channel,

::::
and

::::::::
initialised

:::::
with

::::::::::::
γi = 1× 10−6.

::::
This

::::
type

:::
of

::::::
scaling

::::::::
improves

::
the

:::::::::::
convergence

:::
for

::::::
deeper

:::::::
networks

::::
with

:::::::
residual

::::::
layers

::::::::::::::::::::::::::::::::::::::
(Bachlechner et al., 2020; De and Smith, 2020).

:
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B2.2
:::
The

::::::
down-

::::
and

::::::::::
upsampling

:::
For

:::
the

::::::::::::
downsampling

:::::::::
operation,

::
in

:::
the

::::::::
encoding

::::
part

::
of

:::
the

::::::
U-Net,

:::
we

:::
use

::
a
::::
layer

::::::::::::
normalisation,

::::::::
followed

:::
by

::::
zero

:::::::
padding

::
of

:::
one

:::::
pixel

::
on

:::
all

::::
four

:::::
sides,

:::
and

:
a
::::::::::
convolution

::::
with

::
a
:::::
kernel

::::
size

::
of

:::::
3× 3

:::
and

:::::
stride

:::
of

:::::
2× 2,

::::::
similar

::
to

:::::::::::::
Liu et al. (2022)

:
.
:::
As

:::
this

::::::::
operation

::::::
halves

:::
the

::::
data

::::
sizes

::
in

::
x-

::::
and

::::::::::
y-direction,

:::
the

:::::::
number

::
of

:::::::
channels

::
is
:::::::
doubled

::
in

:::
the

:::::::::::
convolution.

:::
By

::::::::
replacing

::::::::::
max-pooling

:::::::::
operations

::::
with

:
a
::::::
strided

:::::::::::
convolution,

::
the

:::::::::::::
downsampling

::::::::
operation

:::::::
becomes

::::::::
learnable

::::::::::::::::::::::
(Springenberg et al., 2015)915

:
.

:::
For

:::
the

::::::::::
upsampling

::::::::
operation,

::
in

:::
the

::::::::
decoding

:::
part

:::
of

:::
the

::::::
U-Net,

::
we

:::
use

::
a
::::::::
sequence

::
of

::::::
bilinear

::::::::::::
interpolation,

:::::
which

:::::::
doubles

::
the

::::::
spatial

:::::::::
resolution,

:::::
layer

::::::::::::
normalisation,

::::
zero

:::::::
padding

::
of

::::
one

::::
pixel

:::
on

::
all

::::
four

:::::
sides,

::::
and

:
a
::::::::::
convolution

::::
with

::
a
:::::
3× 3

::::::
kernel,

:::::
which

::::::
halves

:::
the

:::::::
number

::
of

:::::::::
channels.

::
A

:::::::
bilinear

:::::::::::
interpolation

:::::::
followed

:::
by

::
a
::::::::::
convolution

::::::
avoids

:::::::::
unwanted

::::::::::::
checker-board

:::::
effects

:::::::::::::::::
(Odena et al., 2016),

::::::
which

:::
can

:::::
occur

:::::
when

:::::
using

:::::::::
transposed

:::::::::::
convolutions

:::
for

::::::::::
upsampling.

::::::
Before

::::::
further

::::::::::
processing,920

::
the

::::::
output

::
of

:::
the

::::::::::
upsampling

:::::
block

:
is
:::::::::::
concatenated

::::
with

:::
the

::::::
output

::
of

:::
the

:::::::
encoding

::::
part

::
at

:::
the

::::
same

::::::
spatial

:::::::::
resolution,

::::::::
indicated

::
by

:::
the

::::
blue

:::::
dotted

::::
line

::
in

::::
Fig.

::
4a.

:
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B3
::::::::
Learning

:::
via

:::::::::
maximum

:::::::::
likelihood

::
In

:::
our

:::
NN

:::::::::::
architecture,

::
we

:::::
want

::
to

::::::
predict

:
a
::::::
model

::::
error

::::::::
correction

:::
for

:::
all

::::
nine

:::::
model

::::::::
variables

::
at

:::
the

::::
same

:::::
time,

:::::
which

::::::
causes

:::
nine

::::::::
different

::::
loss

:::::::
function

:::::
terms,

::::
like

::::
nine

:::::::
different

::::::::::::
mean-squared

:::::
errors

:::
or

:::::
mean

:::::::
absolute

:::::
errors

::::::::
(MAEs).

:::
As

::::
each

::
of

:::::
these925

:::::::
variables

:::
has

:::
its

::::
own

::::
error

:::::::::
magnitude,

:::::::::
variability,

::::
and

:::::
issues

::
to

:::::::
correct,

::
we

::::
have

:::
to

:::::
weight

:::
the

::::
loss

::::::::
functions

::::::
against

::::
each

:::::
other

::::
with

:::::::::
parameters

:::::::
λ ∈ R9,

:::::::::::::::::
Ltotal =

∑9
i=1λiLi. ::

To
::::
tune

:::::
these

:::::::::
parameters,

:::
we

:::
use

:
a
:::::::::
maximum

:::::::::
likelihood

::::::::
approach,

:::::
which

::::::
relates

::
the

:::::::::
weighting

:::::::::
parameters

::
to

:::
the

::::::::::
uncertainty

::
of

:::
the

::::
nine

:::::::
different

::::::
model

:::::::
variables

:::::::::::::::::
(Cipolla et al., 2018)

:
.

::
In

:::
the

::::::::
maximum

:::::::::
likelihood

:::::::::
approach,

:
a
::::::::::
conditional

:::::::::
probability

::::::::::
distribution

:::::::::::
p(∆x | x,θ)

:::::::::::
parametrised

::
by

::
θ
::
is

::::::::
assumed

::
to

::::::::::
approximate

:::
the

::::
true,

:::
but

:::::::::
unknown,

::::
data

:::::::::
generating

::::::::::
conditional

:::::::::
probability

::::::::::
distribution

::
of

:::
the

::::::::
residuals

::::
∆x

:::::
given

:::
the

:::::
input930

:
x
::
–
::::
note

::::
that

::
for

::::::::::
conciseness

::::
the

:::::
initial

::::
state

:::
xin

::::
and

:::
the

::::::::
forecasted

:::::
state

::
xf

:::::
have

::::
here

::::
been

:::::::
gathered

:::
in

:
a
:::::
single

:::::
input

::::::
vector

::
x.

:::
The

::::::::::
parameters

::
of

:::
this

::::::::::
probability

:::::::::
distribution

:::
are

:::::::::
optimised

::::
such

:::
that

:::
the

:::::::
negative

::::::::::::
log-likelihood

::
of

:::
the

::::::::
observed

::::::::
residuals

:::
∆x

:::::
given

:::
the

:::::
input

:
x
::::
and

:::::::::
parameters

::
is

:::::::::
minimised,

:

θ⋆ ≜ argmin
θ

::::::::::

[− lnp(∆x | x,θ)
::::::::::::::

].

:::
The

::::::::::::
log-likelihood

::::::::
factorises

::::::
hereby

::
as

::::
sum

::::
over

:::::::
multiple

::::::::::
dimensions

:::
like

:::
the

:::::::
samples

::
or

::::::::
variables.

:
935

:::
We

::::
treat

:::
the

:::::
output

:::
of

:::
our

:::
NN

:::::::
f(x,ϕ)

::::
with

:::
its

::::::
weights

::
ϕ
:::
as

:::
the

::::::
median

::
of

::
a

::::::::
univariate

::::::::::::
approximated

::::::
Laplace

:::::::::::
distribution.

::::
From

:::
the

::::::::::
perspective

::
of

:::
the

:::
NN,

:::
the

:::::::
negative

::::::::::::
log-likelihood

::
is

:::
thus

::
a
::::::::
weighted

::::
MAE

::::
loss

:::::::
function.

:::
As

:::
all

:::
data

::::::
points

::
are

:::::::
equally

::::::::
weighted,

:
a
:::::::
Laplace

::::::::::
distribution

:::::
results

::::
into

:
a
:::::
more

:::::
robust

:::::::::
estimation

::::::
against

:::::::
outliers

::::
than

:
a
::::::::
Gaussian

::::::::::
distribution.

::::::::
Contrary

::
to

::
the

:::::::
median

::::::::
predicted

::
as

:::::
field,

:::
we

:::
use

:
a
::::::

single
::::
scale

:::::::::
parameter

:::
per

::::::::
variable,

::
bi,::::::

shared
::::::
across

::
all

::::
grid

::::::
points.

:::
We

::::::::
optimise

:::
the

:::
nine

:::::
scale

:::::::::
parameters

:::::::
together

::::
with

:::
the

::::
NN

::
by

::::::::::
minimising

:::
the

:::::::
negative

::::::::::::
log-likelihood,

::::::::
averaged

::::
over

::
B

::::
data

::::
pairs

::::::::::
(xj ,∆xj).940

::
As

:::
we

::::::
utilise

:
a
::::::
variant

::
of

:::::::::
stochastic

:::::::
gradient

::::::
descent

:::
for

:::::::::::
optimisation,

:::
the

::::
data

:::::
pairs

:::
are

:::::
drawn

:::::
from

:::
the

::::::
training

:::::::
dataset

::
D

::
at

::::
each

:::::::
iteration.

::::::
Before

::::::::
summing

::
all

::::
nine

::::
loss

:::::
terms

:::
up,

:::
we

::::::
average

:::
the

:::::::
negative

::::::::::::
log-likelihood

::::::::::
per-variable

:::::
across

:::
all

:::
grid

::::::
points

::::
(here

:::::::::
simplified

:::::::
denoted

::
as

:::::::
average

::::::
across

::
M

::::
grid

::::::
points)

:::
as

:::
the

:::::::
velocity

::::::::::
components

:::::
have

:::::
fewer

::::
data

:::::
points

::::
than

:::
all

:::::
other

::::::::
variables,

::::::
caused

::
by

::::
their

::::::
spatial

:::::::::::
discretisation

::::
(c.f.

::::
Sect.

::::
2.2),

:

Ltotal =
1

BM

9∑
i=1

B∑
j=1

M∑
k=1

1

bi
|∆xi,j,k − fi,j,k(x,ϕ)|+ ln(2bi).

::::::::::::::::::::::::::::::::::::::::::::::::::

945

:::
The

:::::
factor

:::
in

::::
front

::
of

::::
the

:::::::
absolute

:::::
error,

:::::::
λi =

1
bi

,
::
is

:::
the

:::::::::
weighting

::::::
factor;

:::
the

:::::
MAE

:::
can

:::
be

::::::::
recovered

:::
by

::::::
setting

:::::
bi = 1

:::
as

:::::::
constant.

::::
The

::::::::
additional

:::::
term,

:::::::
ln(2bi), ::::::

origins
::::
from

:::
the

::::::::::::
normalisation

::
of

:::
the

:::::::
Laplace

::::::::::
distribution,

::
is

::::::::::
independent

::
of

:::
the

::::::
errors,

:::
and

::::::::::
counteracts

:
a
:::
too

:::::
small

:::
bi. ::::

This
::::::::
approach

::::::::
optimises

::
bi::

to
::::::
match

:::
the

:::::::
expected

:::::
MAE

:::::::::::::
(Norton, 1984)

::
in

:::
the

:::::::
training

::::::
dataset

:::
and

:::
can

:::
be

::::
seen

::
as

::
an

::::::::::
uncertainty

:::::::
estimate,

::::
e.g.

:::::::
recently

::::
used

::
in

::::::::::::::::::::::::::::::::::
Cipolla et al. (2018); Rybkin et al. (2020).

:::::::::
Compared

::
to

:::::
using

:
a
:::::
fixed

::::::::::::
climatological

:::::
value,

::::
this

::::::::
approach

:::::::::
adaptively

:::::::
weights

:::
the

::::
loss,

:::::::::
depending

:::
on

:::
the

:::::
error

::
of

:::
the

::::
NN

:::
for

:::
the

::::::::
different950

::::::::
variables.

::::
This

:::::::
adaptive

:::::::::
weighting

::::::::::
marginally

::::::::
improves

:::
the

:::::::
training

::
of

:::
the

:::::
NN,

::
as

::::::
shown

::
in

:::::
Sect.

::::
D3.

:::::
Since

:::
we

:::::
learn

:::
the

::::
scale

:::::::::
parameters

::::::
purely

:::::
from

::::
data,

::::
this

::::::::
approach

:::
can

:::
be

::::
seen

:::
as

::::
type

::
II

:::::::::
maximum

::::::::
likelihood

:::
or

::::::::
empirical

::::::
Bayes

::::::::
approach

:::::::::::::
(Murphy, 2012).

:
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Appendix C: Screening of architectures

As our NN architecture accommodates multiple decisions, we will here explore how they influence the results on the test955

dataset. We show what would happen if we would use other CNN architectures (Table ??
::
C1). Detailed NN configurations

can be found in Appendix C1. We have selected the parameters of the U-Net architecture after a randomised hyperparameter

screening in the validation dataset with 200 different network configurations per architecture, like for the U-NeXt architecture.

Table C1. Normalised MAE on the test dataset for different NN architectures, averaged over
:::::
shown

::
are

::::::
average

:::
and

:::::::
standard

:::::::
deviation

:::::
across

ten NNs trained with different
::::::
training seeds. Reported are the errors for the velocity component in y-direction v, for the stress component

σyy , the damage d, and the area A. The mean Σ is the error averaged over all nine model variables, including the non-shown ones. A score of

one would correspond to the performance of the raw forecast in the training dataset. Bold indicate
::::::
Models

:
in
:

the afterwards used
:::
first

:::::
block

::
are

::
to

::::::
baseline

:::::::
methods;

::::::
models

::
in

::
the

::::::
second

::::
block

:::
are

:::
the

:::::::
multiscale

:::::::::::
convolutional

:::::
models

:::
and

::
in

:::
the

:::
third

:::::
block

:::
the

::::::
U-Nets;

:::::
models

::
in

:::
the

::::
fourth

:::::
block

:::
are

:::
like

::
the

:::::
"Conv

:::::
(x1)" architecture,

:::
but

:::::
trained

:::
for

::::
each

::::::
variable

:::::::::::
independently and

:::
with

:
the

::::::
specified

::::::
number

::
of

:::::::
channels

::
in

::
the

::::::
hidden

::::
layer.

::::
Bold

:::::
scores

::::::::
correspond

::
to

:
best scores

:
in
:::
that

::::::
column.

Name Params (×106) v σyy d A Σ

Persistence - 2.37
::::::::
0.37± 0.00

:
0.60

::::::::
0.29± 0.00

:
0.29

::::::::
0.60± 0.00

:
0.37

::::::::
2.37± 0.00

:
0.79

:::::::::
0.79± 0.00

Raw forecast - 0.94
::::::::
1.14± 0.00

:
1.09

::::::::
0.91± 0.00

:
0.91

::::::::
1.09± 0.00

:
1.14

::::::::
0.94± 0.00

:
1.03

:::::::::
1.03± 0.00

Bias-corrected forecast - 0.94
::::::::
1.14± 0.00

:
1.09

::::::::
0.90± 0.00

:
0.90

::::::::
1.09± 0.00

:
1.14

::::::::
0.94± 0.00

:
1.02

:::::::::
1.02± 0.00

Conv (×1) 0.05
:::
0.05 0.61

::::::::
0.36± 0.02

:
0.46

::::::::
0.27± 0.01

:
0.31

::::::::
0.48± 0.01

:
0.35

::::::::
0.63± 0.01

:
0.36

::::::::
0.36± 0.01

:

Conv (×5) 0.29
:::
0.29 0.35

::::::::
0.33± 0.01

:
1.00

::::::::
0.24± 0.01

:
0.24

::::::::
1.00± 0.15

:
0.33

::::::::
0.35± 0.01

:
0.35

::::::::
0.35± 0.02

:

U-Net 3.7
::
3.7 0.33

::::::::
0.35± 0.00

:
0.41

::::::::
0.24± 0.00

:
0.24

::::::::
0.41± 0.00

:
0.35

:::::::::
0.33±0.00

:
0.28

:::::::::
0.28± 0.00

U-NeXt
:::::

U-NeXt
:

1.2
::
1.2 0.33

:::::::::
0.23±0.00

:
0.38

:::::::::
0.17±0.00

:
0.17

:::::::::
0.38±0.01

:
0.23

:::::::::
0.33±0.00

:
0.24

::::::::::
0.24±0.00

:::::::::
Independent

::::
Conv

::::
(×1,

:::
16)

: :::
0.05

: ::::::::
0.35± 0.01

: ::::::::
0.25± 0.02

: ::::::::
0.46± 0.01

: ::::::::
0.60± 0.01

: :::::::::
0.35± 0.00

:::::::::
Independent

::::
Conv

::::
(×1,

::::
128)

:::
0.42

: ::::::::
0.47± 0.04

: ::::::::
0.36± 0.05

: ::::::::
0.96± 0.22

: ::::::::
0.70± 0.05

: :::::::::
0.47± 0.05

The simplest approach to correct the model forecast is to estimate a global bias, one for each variable, in the training dataset

and to correct the forecast by this constant. As
:::
we

:::::::
measure

:::
the

::::::
MAE,

::
we

::::
take

:::
as

:::
bias

:
the low-resolution forecast has almost960

no systematic bias compared to the projected truth, this bias correction has only a negligible effect on the results
::::::
median

:::::
error

::::::
instead

::
of

:::
the

:::::
mean

::::
error

::
in

:::
the

:::::::
training

::::::
dataset.

:::::::::
Correcting

:::
the

::::
bias

:::
has

::::::
almost

::
no

::::::
impact

:::
on

:::
the

::::::
scores,

:::
and,

::::::::::::
consequently,

:::
the

:::::
model

:::::
error

::
is
:::::::::
dominated

:::
by

::::::::
dynamical

::::::
errors.

As a next level of complexity, we introduce a shallow CNN architecture with one layer as feature extractor, called "Conv

(×1)". Using dilation in the convolutional kernel, this layer can extract shallow multiscale spatial information for each grid965

point. This shallow architecture with only around 5×104 parameters constantly improves the forecast by around 65 % in aver-

age. Introducing a hierarchy of five convolutional layers in the "Conv (×5)" architecture increases the number of parameters to

2.9×105. However, the averaged metric is only marginally better than for the shallow CNN. Its multiscale capacity is limited,
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and the NN cannot scale with the depth of the network to extract more information. Caused by their limited capacity, the NNs

have to focus on some variables, creating an imbalance between variables,
::::::::
problems

::
to

::::::::
converge,

:
which harms the perfor-970

mancefor other variables, like the stress
::::::
damage

:
in the case of "Conv (×5)". A shallow network with a single convolutional

layer can be nevertheless an option to obtain a small and fast NN for a subgrid-scale parametrisation.
::::
Such

:
a
:::
fast

::::
NN

:::
can

:::
be

::::::
helpful

:
if
:::
the

:::::::::
additional

::::::
latency

::::
time

:::::::
impacts

::
its

::::::::::
application

::
in

:
a
::::::
sea-ice

::::::
model.

:

An approach to extract multiscale information is to use a U-Net architecture that extracts and combines information from

different levels of coarsened resolution. To make the approaches comparable, we use almost the same configuration as specified975

in Sect. B2 and Table B1, except that we replace the ConvNeXt blocks by simple convolutional layers with a kernel size of 3×3,

followed by batch normalisation (Szegedy et al., 2014), and a Gaussian error linear unit activation function. Using such a U-Net

decreases the forecast errors by more than 20 % compared to the basic CNN. Although the improvement is for some variables

only small compared to the simpler networks, the U-Net improves the balance between different variables. Consequently, the

metric for the U-Net is always better than for persistence, showing its capacity and potential to extract multiscale information.980

Replacing the classical convolutional layers with ConvNeXt blocks as described in Sect. B2 gives an additional improvement

in the performance of the NNs. Although the number of parameters for the U-NeXt is only a third of the number for the U-Net,

the ConvNeXt blocks reduce the forecast errors by additional 14 %. The blocks reduce hereby especially the errors in the

damage and area. The ConvNeXt blocks are able to extract more information from existing data than convolutional layers.

Because the U-NeXt is the best performing method also in the validation dataset, we will continue to use this architecture for985

the rest of the manuscript.
:::::::::
throughout

:::
the

::::::::::
manuscript.

:::::::
Training

::::::
"Conv

:::::
(×1)"

:::
for

:::::
each

:::::
model

::::::::
variable

::::::::::::
independently

:::
has

:::::
only

:
a
::::::::
marginal

::::::
impact

:::
on

:::
the

:::::::
scores,

:::::::
although

:::::
their

:::::::
latencies

:::
are

:::::
much

:::::
larger

:::::
than

::
for

::::
the

:::::
shared

::::
NN.

::::
The

:::::::::::
convergence

:::::
issues

::
in
::::

the
:::::
"Conv

::::::
(×5)"

:::
and

:::::::::::
"Independent

:::::
Conv

:::::
(×1,

::::
128)"

:::::::::::
architecture

::::::
indicate

::::
that

:::
the

:::::::::::
improvement

:::
of

:::
the

:::::
bigger

::::::
neural

::::::::
networks

::
is

:::
not

::::
only

::::::
related

::
to

:::
an

::::::::
increased

::::::
number

:::
of

:::::::::
parameters

:::
but

::::
also

::::::
because

:::::
their

::::::::
multiscale

::::::
layout.

::::::
These

:::::
results

:::::::
signify

:::
that

:::::::
training

:::
one

:::
big

::::::
neural

:::::::
network

:::
for

:::::
model

:::::
error990

::::::::
correction

::
of

:::
all

:::::
model

::::::::
variables

::::::
allows

::
us

::
to

:::
use

::::::
bigger

::::::::
networks,

:::::
which

::::::::
improves

::::
their

:::::::
general

:::::::::::
performance.

C1 Neural network configurations

By mapping from triangular space into high resolution
::::::::::::
high-resolution

:
Cartesian space, several Cartesian elements are caught in

one triangular element. Consequently, a simple convolutional layer would have problems to extract information across multiple

scales. To circumvent such problems, we apply in the case of the naively-stacked convolutional layers two convolutional layers995

at the same time – one local filter with a 3× 3 kernel, and one larger-scale filter with 3× 3 kernel and a dilation of 6× 7, such

that the filter sees the next triangular element – we call such a layer "MultiConv". Using zero padding, we keep the output of

the layers the same. The output of both convolutional layers is averaged to get a single output. As usual for CNNs, we use

batch normalisation instead of layer normalisation. We keep Gelu as activation function, as for the ConvNeXt blocks, except

for the last layer, where we use relu. The "Conv (×1)" uses a single block (Table C2), whereas the "Conv (×5) stacks five1000

blocks (Table C3) with increasing number of feature channels.
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Table C2. "Conv (×1)" based on a single multiscale convolutional layer
::::
with

:::::
"Batch

:::::
norm"

::
as

::::
batch

:::::::::::
normalisation.

Operation Params nin nout nx ny

MultiConv 46 208 20 128 32 128

Batch normalisation
::::
norm 256 128 128 32 128

relu - 128 128 32 128

Table C3. "Conv (×5)" based on five stages with multiscale convolutional layer
:::
with

::::::
"Batch

:::::
norm"

::
as

::::
batch

::::::::::
normalisation.

Stage Operation Params nin nout nx ny

Stage 1 MultiConv 11 552 20 32 32 128

Batch normalisation
::::
norm 64 32 32 32 128

Gelu - 32 32 32 128

Stage 2 MultiConv 18 464 32 32 32 128

Batch normalisation
::::
norm 64 32 32 32 128

Gelu - 32 32 32 128

Stage 3 MultiConv 36 928 32 64 32 128

Batch normalisation
::::
norm 128 64 64 32 128

Gelu - 64 64 32 128

Stage 4 MultiConv 73 792 64 64 32 128

Batch normalisation
::::
norm 128 64 64 32 128

Gelu - 64 64 32 128

Stage 5 MultiConv 147 584 64 128 32 128

Batch normalisation
::::
norm 256 128 128 32 128

relu - 128 128 32 128

Our baseline "U-Net" (Ronneberger et al., 2015) has classical convolutional blocks instead of ConvNeXt blocks. Like in

the case for the U-NeXt, we have optimised the hyperparameters for this U-Net with a random hyperparameter sweep over

200 different network configuration. Similarly to the U-Next (c.f. Table B1), the here-used configuration is based on one

level of depth, where the fields are downsampled in the encoder and upsampled in the decoder part. Our convolutional blocks1005

have one convolutional layer with a 3× 3 kernel with zero padding, batch normalisation, and Gelu as activation layer. For the

downsampling in the encoder, we sequentially use: one convolutional layer with a 3×3 kernel, stride of 2×2, and zero padding;

batch normalisation, and Gelu as activation layer. For the upsampling in the decoder, we sequentially use: bilinear interpolation;

one convolutional layer with a 3×3 kernel, stride of 2×2, and zero padding; batch normalisation, and Gelu as activation layer.

The encoder and decoder are connected via a bottleneck and a shortcut connection at the non-scaled level. Because we use1010

41



several convolutional layers which extract spatial information and mix the channel at the same time, the network has much

more parameters than the U-NeXt (Table C4).

Table C4. "U-Net" with normal convolutional blocks,
:::::
where

:::::
down

:::
and

:::
up

:::::::::
correspond

::
to

:::::::::::
downsampling

::::
and

:::::::::
upsampling

:::::::::
operations,

:::::::::
respectively.

:::
Each

:::::::::::
convolutional

::::
block

::
is
::
a

:::::::
sequence

::
of

:
a
:::::::::::
convolutional

::::
layer,

:::::
batch

::::::::::
normalisation

::::
and

:
a
::::
Gelu

::::::::
activation

:::::::
function,

:::::
which

:
is
::::::
skipped

::
in

:::
the

:::
last

:::::
Output

::::
Conv

:::::
block.

Stage Operation Params nin nout nx ny

Input Conv 23 296 20 128 32 128

Down 1 Downsampling
::::
Down 295 424 128 256 16 64

Conv 590 336 256 256 16 64

Conv 590 336 256 256 16 64

Conv 590 336 256 256 16 64

Bottleneck Conv 590 336 256 256 16 64

Up 1 Upsampling
:::
Up 295 168 256 128 32 128

Conv 295 168 128 128 32 128

Conv 147 712 128 128 32 128

Conv 147 712 128 128 32 128

Output Conv (w/o Gelu) 147 712 128 128 32 128

relu – 128 128 32 128

Appendix D: Results for the loss function
:::::::::
Additional

::::::
results

::
In

:::
this

:::::::
section,

:::
we

::::::
provide

:::::::::
additional

::::::
results,

:::::::
showing

:::
the

::::::::
influence

:::
of

:::::::
different

:::::::
choices

::
in

:::
the

::::::
training

:::
on

:::
the

:::::::::::
performance

::
in

::
the

::::::
testing

:::::::
dataset.1015

D1
::::::::
Number

::
of

:::::::
training

:::::::
samples

:::::
Large

::::
NNs

::::
have

:::::
many

:::::::::
parameters,

::
in

:::
the

::::
case

::
of

:::
the

::::::
U-NeXt

:::::::::
1.2× 106,

:::
and

:::::
could

::
fit

::::::::
functions

::::
with

::
as

:::::
many

::::::::::::::::
degrees-of-freedom.

:
If
:::
the

:::::::
number

::
of

::::::::::::::::
degrees-of-freedom

:::
in

:::
the

::::::
training

::::::
dataset

::
is
::::::
similar

:::
or

::::
even

:::::
lower,

:::
the

::::
NN

:::::
might

:::::::
perfectly

:::
fit

:::
and

:::::::::
remember

::
the

:::::::
training

:::::::
dataset.

:::
As

::::
there

::
is
:::::

noise
::::
and

:::::::
spurious

::::::::::
correlations

::::::
within

:::
the

:::::::
dataset,

:::
the

:::
NN

::::::
would

::::
also

::::
learn

:::::
these

:::::::::
"features"

:::
and

::::::
overfit

::::::
towards

:::
the

:::::::
training

::::::
dataset.

:::
In

:::
this

:::::::::
overfitting

::::
case,

:::
the

:::
NN

::::::
would

:::
fail

::
to

:::::::::
generalise

:::
and

::
to

::::
give

::::
good

::::::::::
predictions

::
to1020

:::
data

::::::
unseen

::::::
during

:::::::
training.

:

::
In

:::
the

::::::::
following,

:::
we

:::::::
analyse

:::
the

:::::::
training

::::::::
behaviour

:::
of

:::
the

:::
NN

::::
and

:::
see

::::
what

:::::::
happens

::
if
:::
we

:::::::::
artificially

::::
train

:::
on

:
a
::::::
portion

:::
of

:::
data

::::
only

:::::
(Fig.

::::
D1).

:::
For

:::
the

::::::::
validation

:::::::
dataset,

::::
over

:::
the

:::::
course

:::
of

:::
the

:::::::
training,

:::
we

::::
show

:::
the

:::::::
negative

::::::::::::
log-likelihood

::::::
(NLL)

::::
with
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Figure D1.
:::
The

::::::
negative

:::::::::::
log-likelihood

:::
for

:
a
::::::
Laplace

:::::::::
distribution,

::::::::::
proportional

::
to

:::
the

::::
mean

:::::::
absolute

::::
error

::::::
(MAE),

::::
with

:
a
::::
fixed

::::::::
weighting

:
in
:::

the
::::::::
validation

:::::
dataset

::
as
:::::::

function
::
of

::::::
epochs

::
for

:::::::
different

:::::::
fractions

::
of

::::::
training

::::
data,

:::
the

::::::
brighter

:::
the

:::::
colour,

:::
the

:::
less

::::::
training

::::
data

:
is
:::::

used.

:::
The

::::::
smaller

:::::
Figure

:::::
shows

::
the

:::::::
averaged

:::::
MAE

::
in

::
the

:::
test

::::::
dataset

::
as

::::::
function

::
of

:::
the

::::::
fraction

::
of

::::::
training

::::
data.

::
A

::::::
fraction

::
of

:::
1.0

:::::::::
corresponds

::
to

:::::
around

::::::::
12.3× 106

:::::::::::::::
degrees-of-freedom

::
in

:::
the

::::::
training

::::::
dataset.

:
a
:::::::
Laplace

:::::::::
assumption

::::
and

::::::
scaling

:::::::::
parameters

:::::
fixed

::
to

::::
their

::::::::::::
climatological

::::::
values.

::::
This

::::
loss

::
is

::::::::::
proportional

::
to

::
a

:::::
mean

:::::::
absolute

::::
error

::::::
(MAE)

::::
with

::
a
::::
fixed

:::::::::
weighting,

::::::
where

:::
the

:::::::
weights

:::
are

::::
given

:::
by

:::
the

::::::
inverse

::::::
scaling

::::::::::
parameters.

:::::::::::
Additionally,

:::
we

:::::::
analyse1025

::
the

::::::::
weighted

:::::
MAE

::
in

:::
the

::::::
testing

::::::
dataset

:::
for

:::
the

:::::::
different

::::
NNs

:::::
after

:::::::
training.

:::
For

::
all

::::::::
fractions

::
of

::::::
training

:::::
data,

::
the

:::::::::
validation

::::
NLL

::::::::
smoothly

::::::::
decreases

::::
over

:::
the

::::::
course

::
of

:::::::
training.

::::::::::::
Consequently,

::
we

:::
see

:::
no

:::::::::
overfitting,

::::
even

::::
with

::::
only

::::
10%

:::::::
training

::::
data.

:::::::::::
Additionally,

:::
the

::::
loss

:::
and

:::
the

::::::::
weighted

:::::
MAE

::::::::
saturates

::
as

:::::::
function

::
of

:::::::
fraction

::
in

::
the

:::::::
training

::::
data:

:::
the

::::
gain

:::::::
training

::
on

:::::
more

::::
data

:
is
::::::
larger

::
for

:::::
small

::::::
sample

:::::
sizes

:::
than

:::
for

:::::
larger

::::::
sample

:::::
sizes.

:::::
Such

:
a
::::::::::
logarithmic

:::
data

:::::::
scaling

::::::::
behaviour

::
is

::::::::
expected

:::
and

:::
can

:::
be

::::
even

::::::::
observed

:::
for

::::
very

::::
large

::::::::
language

::::::
models

:::::::::::::::::
(Kaplan et al., 2020)

:
.
:::::
Given

::::
this1030

::::::
scaling,

:::
we

:::::
would

:::::
need

:::::
much

::::
more

::::
data

::
to

:::::
scale

:::
the

::::::::::
performance

:::::::
further.

:::
We

:::
can

::::
now

:::::::
wonder

::::
why

:::
the

::::
NN

::::::
trained

:::
on

::::
only

:::::
10%

:::::::
training

::::
data

::::::
shows

:::
no

:::::::::
overfitting,

:::::
even

::::::
though

:::
the

::::
NN

:::
has

:::
as

::::::
roughly

:::::
much

:::::::::::::::::
degrees-of-freedom

::
as

:::
the

:::::::
training

::::
data.

:::
We

:::::::
attribute

::::
this

::::::::
behaviour

::
to
::::
our

::::::::
projection

::::
step

::
or

::
to
::::::

fitting
:::
one

::::
NN

::
on

:::
all

:::::
model

:::::::::
variables.

::::
The

::::
most

::::
NN

:::::::::
parameters

:::
are

::::::
stored

::::::
within

:::
the

::::::
feature

::::::::
extractor

::
in

:::::::::
Cartesian

:::::
space.

:::::::
Caused

:::
by

:::
the

:::::::::::::
back-projection

:::
step

::::::::
mapping

::::
from

:::::::::
Cartesian

::
to

::::::::
triangular

::::::
space,

:::
the

:::::::
features

:::
are

:::::::
averaged

::::::
across

::::
grid

::::::
points.

::::::::::::
Consequently,1035

::
we

::::::::::
hypothesise

::::
that

:::
the

::::
true

:::::::
number

::
of
::::

NN
::::::::::
parameters

::
as

::::
seen

:::::
from

:::
the

:::::::::
triangular

:::::
space

::
is

:::::
much

:::::::
smaller

::::
than

:::::::::
1.2× 106.

::::::::::
Furthermore,

::::::
fitting

:::
one

::::
NN

::
on

:::
all

::::::
model

:::::::
variables

::::
acts

::
as

:::::
kind

::
of

::::::::::::
regularisation.

:::
To

::::
gain

:
a
::::::::
balanced

:::::::::::
performance

:::::
across

:::
all

::::::::
variables,

:::
the

:::
NN

:::
has

::
to
::::::

extract
:::::::

features
::::::
shared

::::::
across

::::::::
variables.

::::
Seen

:::
for

::
a
:::::
single

:::::::
variable

:::::
alone,

:::::::
feature

::::::
sharing

:::::::
reduces

:::
the

:::::::
capacity

::
of

:::
the

::::
NN.

:::::::::::
Additionally,

:::
by

:::::::
sharing,

:::
the

::::
NN

::
is

::::::::::
encouraged

::
to

::::::
extract

:::::
more

:::::::::::
generalisable

::::::::
features.

::
In

:::::::
general,

::::
this

:::::
would

:::::
mean

:::
that

:::::::
training

::
a

:::::
single

:::
big

:::
NN

:::
for

::::::::
multiple

:::::::
variables

:::::
could

:::::
really

::::::::
improve

:::::::::
data-driven

::::::::::
forecasting,

::::
even

:::
for

::::
only

::
a1040

::::::
limited

::::::
amount

::
of

:::::
data.

D2
:::::
Lead

::::
time

::::::::
between

:::
two

:::::::::
correction

:::::
steps
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Figure D2.
::::::::
Normalised

:::::
RMSE

:::
for

:::
(a)

::
the

:::::::
velocity

:
in
:::::::::
y-direction,

:::
(b)

:::
the

:::::::
divergent

::::
stress

::
in
:::::::::
y-direction,

:::
(c)

::
the

:::::::
damage,

:::
and

:::
(d)

::
the

::::::
sea-ice

:::
area

::
as

::::::
function

::
of
::::
lead

:::
time

:::
on

::
the

:::
test

::::::
dataset,

:::::::::
normalised

::
by

::
the

:::::::
expected

::::::
RMSE

::
on

:::
the

::::::
training

:::::
dataset

:::
for

:
a
:::
lead

::::
time

::
of

::::::
10 min

:::
and

:::
8 s.

:
In
:::

the
:::::
hybrid

::::::
models,

:::
the

::::::
forecast

::
is

:::::::
corrected

::::
after

:::
each

:::::::
specified

::::
lead

:::
time

::
in
:::::::
brackets.

:

:::
One

:::
of

:::
our

:::::
fixed

:::::::::
parameters

::
is
:::
the

::::
lead

:::::
time

:::
for

:::::
which

:::
the

::::
NN

::
is

::::::
trained

::::
and

::::::
applied

:::
for

::::::::::
forecasting.

:::
In

:::
the

:::::::::
following,

:::
we

:::
will

::::::
shortly

:::::::
discuss

:::
the

::::::
impact

::
of

::::
the

::::
lead

::::
time

:::::::
between

::::
two

:::::::::
correction

::::
steps

:::::::::
(hereafter

::::::::
correction

:::::
time)

:::
on

:::
the

::::::::::
forecasting

:::::::::::
performance,

::::
again

:::::::::
measured

::
by

:::
the

:::::::::
normalised

:::::::
RMSE.1045

:::::::::
Decreasing

:::
the

:::::::::
correction

::::
time

::::::::
decreases

:::::
how

::::
long

:::
the

::::::::
trajectory

::::::
freely

::::
drifts

:::::::
towards

::::
the

:::::::
attractor

::
of

:::
the

:::::::
sea-ice

::::::
model.

:::::
Model

:::::
errors

::::
can

::
be

::::::::::
additionally

:::::
earlier

:::::::::
corrected,

:::::
before

::::
they

::::
have

::
a
:::
too

::::
large

::::::
impact

:::
on

::
the

::::::::
forecast.

::::::::::::
Consequently,

::
we

::::::
would

:::::
expect

:::
the

::::::
shorter

:::
the

::::::::
correction

:::::
time,

:::
the

:::::
better

::
the

::::::::::
forecasting

:::::::::::
performance.

::::::::
However,

::
in

:::
our

::::
case,

:::
the

:::::::::
forecasting

:::::::::::
performance

:
is
::::::
worse

::
for

::
a
::::
lead

::::
time

::
of

:::
80s

::::
than

:::
for

::::::
10min

::::
and

:::
8s.

:::::::::
Decreasing

:::
the

:::::::::
correction

::::
time

::::
also

:::::::
increases

:::
the

:::::::
number

::
of

:::::::::
correction

::::
steps

::
in

::
a

::::
given

:::::
time

:::::::
window.

::::
The

::::
more

:::::::::
correction

:::::
steps,

:::
the

:::::
more

:::
the

::::
error

::::::::::
distribution

:::
can

:::::
shift.

:::
We

::::
have

:::::::
already

::::::::
identified1050

::
the

::::::::::
distribution

::::
shift

::
as

:::
one

::
of
:::
the

:::::
main

:::::::::
challenges

::::::
towards

:::
the

:::::::::
application

:::
of

::::
such

:::::
model

::::
error

::::::::::
corrections

::
for

::::::::::
forecasting.

:::
For

::
a

::::::::
decreased

::::::::
correction

:::::
time,

:::
the

::::::
impact

::
of

:::
the

::::::::::
distribution

::::
shift

:::::::::
outweighs

::
the

:::::::
positive

::::::
impact

::
of

::::::
earlier

:::::
model

:::::
error

::::::::::
corrections.
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::::
This

:::::
results

::::
into

::
a
:::::::
negative

::::::
model

:::::
error

::::::::
correction

:::::::
impact

::::
after

:
a
::::::::::

forecasting
::::
lead

::::
time

:::
of

:::::::
60min,

:
if
::::

the
::::::::
correction

:::::
time

::
is

::::::::
decreased.

:

:::
For

::
an

:::::::::
increased

::::::::
correction

:::::
time

::
of

:::::::
20min,

:::
we

:::
get

:
a
:::::::
slightly

::::::::
improved

:::::::::::
performance

::
at

:::::::::
correction

:::::
times

::::::::
compared

:::
to

:::
the1055

::::::
shorter

::::::::
correction

::::
time

::
of

::::::
10min

::::
and

:::
8s.

:::::
Their

::::::::::
performance

::
is

:::::::
however

::::::::
generally

:::::::::::
comparable.

::::::::
Therefore,

:::::
these

::::::
results

::::::
clearly

::::
point

:::
out

:::::
again

:::
the

:::::::
negative

::::::
impact

::
of

:::
the

::::::::::
distribution

::::
shift

::
on

:::
the

::::::::::
forecasting

:::::::::::
performance.

D3
::::
Loss

:::::::::
functions

Optimising the Laplace log-likelihood corresponds to minimising the MAE, whereas an optimisation of a Gaussian log-

likelihood minimises the mean-squared error. Thus, we report the averaged root-mean-squared error (RMSE) and MAE over1060

all variables to measure the influence of the loss function on the performance of the NNs (Table D1). As the RMSE and MAE

are normalised by their climatological values in the training dataset, the weighting between the model variables is fixed to their

climatological values, favouring fitting networks with fixed climatological weighting.

Table D1. The average RMSE and MAE, normalised by their expected climatology, on the test dataset for different training loss functions.

Bold indicates
:::
The

:::
bold

::::
loss

::::::
function

::
is the selected loss function

:::::::
functions, and

:::
bold

:::::
scores

:::
are

:
the best scores

::
in

:
a
::::::
column.

Name RMSE MAE

Gaussian (fixed) 0.34 0.30

Gaussian (trained) 0.33 0.29

Laplace (fixed) 0.33 0.25

Laplace (trained) 0.32 0.24

Compared to a Gaussian log-likelihood with trainable variance parameters, the Laplace log-likelihood as loss function im-

proves not only the MAE by around 17%, but also the RMSE by around 3%. Despite the fixed weighting, fitting the uncertainty1065

parameters together with the NN marginally improves these metrics in both cases. Using adaptive uncertainty parameters mod-

ulates the gradient during training, and the optimisation benefits from this adaption, resulting into the shown error decrease.

The loss function influences the output of the NN and the learned features before they are linearly combined to the output

(Fig. D3). In the learned features, a Laplace log-likelihood increases the contrast between highly-activated, active, regions and

passive regions in the background with a low activation value, Fig. D3, (a) and (b). Here, we define the contrast of a feature1070

map as the ratio between its spatially-averaged standard deviation σ to its spatially-averaged mean value µ. For the Laplace

log-likelihood, the median contrast (1.15) is higher than for the Gaussian log-likelihood (0.93), as can be seen in Fig. D3,

(c). The distribution for the Laplace log-likelihood is additionally more balanced, meaning that less extreme values appear

on both ends. We attribute these differences to the different behaviour of the loss function (Hodson, 2022). As the Gaussian

log-likelihood is more sensitive to larger errors in the training dataset, the NN has to learn specialised feature maps for these1075

cases. The Laplace log-likelihood leads to a higher contrast in the feature maps and to more balanced feature maps. Based on

its increased contrast, we hypothesise that the Laplace log-likelihood results into better linearly separable feature maps. On
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Figure D3. Two typical feature maps for a NN trained with either (a) a Gaussian log-likelihood or (b) a Laplace log-likelihood. For visu-

alisation purpose, the feature maps are again normalised by their 99-th percentile, as in Fig. 5. The contrast (c) is estimated as the spatial

standard deviation σ divided by the spatial mean µ of each feature map, extracted from the test dataset. The number of inactivate features

maps (=constant zero) is normalised by the same value as the CDF. A higher contrast indicates better linear separable features.

their basis, the linear functions can more easily combine the features to predict sharper and more localised residuals, improving

the performance of the NN.

Appendix E: Results for the activation functions1080

D1
:::::::::
Activation

:::::::::
functions

Another decision that we took in our architecture is to use the Gaussian error linear unit (Gelu) in the blocks and the rectified

linear unit activation (relu) function as activation of the features, before they are projected back into triangular space and linearly

combined. The Gelu activation function is recommended for use in a ConvNeXt block (Liu et al., 2022), but its performance

seems to us to be on par with the relu activation function. Whereas the Gelu activation function is a smooth function inspired by1085

dropout Hendrycks and Gimpel (2020)
:::::::::::::::::::::::::
(Hendrycks and Gimpel, 2020), relu is a non-smooth function, which induces sparsity

in the feature maps.

As similarly found in Liu et al. (2022), replacing the Gelu activation function with a relu activation function in the ConvNeXt

blocks leads to almost the same results on the test dataset (Table D1). Furthermore, also the activation function for the extracted
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Table D1. Normalised MAE on the test dataset for different activation functions in the ConvNeXt blocks and as feature activation (w/o: no

activation function). The error components are estimated as in Table 2 and the same acronyms are used. Bold indicates
:::
The

:::
bold

::::::::::
combination

::::
shows

:
the selected activation functions,

:
and

:::
bold

:::::
scores

:::
are the best scores

::
in

:
a
::::::
column.

Activation v σyy d A Σ

relu & relu 0.33
:::
0.24 0.37 0.17 0.24

:::
0.37

:::
0.34

:
0.24

Gelu & Gelu 0.33
:::
0.23 0.39 0.17 0.23

:::
0.39

:::
0.33 0.24

Gelu & w/o 0.34
:::
0.22 0.42 0.16 0.22

:::
0.42

:::
0.34

:
0.25

Gelu & relu 0.33
:::
0.23 0.38 0.17 0.23

:::
0.38

:::
0.33 0.24

features at the end of the feature extractor has only a small influence. Even using no activation function at this position degrades1090

the mean performance by 4 %, for some variables like the damage or area using no activation function leads to the best results.

Because the Gelu activation function is state-of-the-art in many deep learning tasks and recommended Liu et al. (2022), we use

the Gelu within the ConvNeXt blocks.

(a) w/o .75 = 0.18
.50 = −0.01
.25 = −0.09

(c) relu .75 = 0.04
.50 = 0.00
.25 = 0.00

(b) Gelu .75 = 0.06
.50 = 0.00
.25 = −0.02
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Figure D1. Snapshot of typical feature maps for (a) no feature activation (w/o), (b) the Gaussian error linear unit (Gelu), or (c) the rectified

linear unit (relu). For visualisation purpose, the feature maps are normalised by their 99-th percentile. The numbers indicate the percentiles

of the normalised feature maps. The histogram (d) represents the unnormalised feature activation values over the whole test dataset. As the

histogram for the relu activation function have a large spike at 0 in (d), the y-axis is broken.
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In the following, we show feature maps for different activation functions at the feature output of the U-Net as qualitative

measure (Fig. D1). Using no activation function (Fig. D1, a), extracts continuous features. These features roughly follow a1095

Cauchy distribution around 0 without enforcing sparsity (Fig. D1, d, the black contour line is the Cauchy distribution fitted

via maximum likelihood). Caused by its weighting with the Gaussian error function, Gelu squashes the negative values of the

activation values together, leading to a peak of the values around zero. Nevertheless, only few values are truly zero, as GELU

do not set values explicitly to zero. In contrast, using relu enforces sparsity, and the NN can extract localised and "patchified"

features (Fig. D1, c). Consequently, the relu activation generates many deactivated pixels. Although the performance of the1100

relu activation is the same as for the Gelu activation, we hypothesize that sparse features can improve the representation of

subgrid-scale processes, as sea ice
:::
has

:
a
:::::::
discrete

::::::::
character, especially at the marginal ice zone , has a discrete character

::
or

::::::
around

::::
leads. Therefore, we use for our experiments the Gelu activation function as activation in the ConvNeXt blocks and the

relu activation function as feature activation, before the features are linearly combined.

D2
:::::::::::
Permutation

:::::::
feature

::::::::::
importance

:::
for

::::::::
variable

::::::
groups1105

:::::
Using

:::
the

::::::::::
permutation

::::::
feature

::::::::::
importance,

::
we

::::
have

::::::::
analysed

:::
that

:::
all

:::::
model

::::::::
variables

::
are

::::
very

::::::::
sensitive

::
to

::::
their

::::
own

::::::::
dynamics

::
as

::::::::
predictor.

:::::::::::
Nevertheless,

::
by

:::::::::
permuting

:::::
single

:::::::::
predictors

::::::::::::
independently,

:::
we

::::
only

::::::
destroy

::::::::::
information

::::::::
contained

::
in

::::
this

::::::::
predictor.

::
As

:::::
other

::::::::
variables

:::::
might

:::::
hold

::::::
similar

:::::::::::
information,

::::
e.g.,

:::
for

:::
the

::::::
sea-ice

::::
area

::::
and

::::::::
thickness,

::::
the

:::::::::::
inter-variable

::::::::::
importance

::
is

:::::
likely

::
to

::
be

:::::::::::::
underestimated,

::::
and

:::
the

:::::::::::
permutations

:::
can

::::
lead

::
to

:::::::::
unphysical

::::::::
instances.

:::
To

:::
see

:::
the

:::::
effect

::
of

:::
the

::::::::::
correlations

:::
on

:::
the

:::::::::
importance,

:::
we

:::::::
permute

::::::::
different

:::::::
variable

::::::
groups

:::
and

:::::::
estimate

::::
their

::::::::::
importance

::
on

:::
the

::::
nine

::::::
output

::::::::
variables.1110

:::
For

:::
the

::::::
sea-ice

::::::::
velocities,

:::::
their

::::::::
dynamics

:::
are

::::::
clearly

:::
the

::::::::
predictors

::::
with

:::
the

::::::
biggest

:::::::
impact.

::::::::
However,

:::
the

:::::::
absolute

::::::
values

::
of

::::::
sea-ice

:::
area

::::
and

::::::::
thickness

::::
have

::::::::
combined

::
a
:::::
small

:::
but

::::::::::
considerable

::::::
impact

:::
on

:::
the

:::::::
velocity

::
in

:::::::::
y-direction,

::::::::
probably

::::::::::
explainable

::
by

::::
their

::::::::
coupling

:::
via

:::::::::
momentum

::::::::
equation.

:

:::
The

:::::
stress

::::::::::
components

::::
and

::::::
damage

:::
are

::::::
highly

:::::::
sensitive

::
to

::::
their

::::
own

::::::::
dynamics

::
if
::::
only

::
a

:::::
single

:::::::
variable

::
is

:::::::
shuffled,

::
as

::::::
shown

::
for

::::
the

::::::::
reference

::::::
feature

::::::::::
importance;

::::::::
however,

::::
they

::::
are

:::::::::
insensitive

::
if

:::
the

:::::
stress

:::::::::::
components

:::
and

:::::::
damage

::::
are

:::::::
shuffled

::
as

::
a1115

:::::
group.

:::
For

:::::
their

:::::::::
correction,

:::
the

:::
NN

::::::
seems

::
to

:::
rely

:::
on

:::::::
features

:::
that

::::::
extract

:::::::
relative

:::::::::::
combinations

::
of

:::::
these

::::::::
variables.

::::::::
Shuffling

::
a

:::::
single

:::::::
variable

::::
then

::::::
creates

:::::::::
unphysical

:::::::::
instances,

:::::
which

::::::::
destroys

::::
such

:::::::
features,

:::::::
whereas

::::
they

::::
are

::::
kept

:::::
intact

:::::
when

:::
the

:::::
stress

::::::::::
components

:::
and

:::
the

:::::::
damage

:::
are

::::::
shuffled

::::::::
together.

::::
The

::::
same

::::::
feature

::::::::::
importance

::
as

:::
for

:::
the

:::::::
reference

::
is
:::::::
reached

::
if

:::
the

::::::::
velocities

:::
and

:::
the

:::::
stress

:::::::
variables

:::
are

:::::::
shuffled

::::::::
together.

:::::
Here,

:::
the

::::::::
dynamics

:::
are

::
as

::::::::
important

::
as

:::
the

:::::::
absolute

::::::
values.

::::::::
Because

:::
the

:::
area

::::
and

:::::::
thickness

:::::
have

::
no

:::::::::
influence,

:::
also

:::
the

::::::
errors

::
of

:::
the

:::::
stress

::::::::::
components

:::
and

:::::::
damage

:::
are

::::::
driven

::
by

:::
the

:::::::::
dynamical

::::::::
variables,

:::
as

::
in1120

:::
our

::::::
sea-ice

::::::
model.

:::
For

:::
the

:::
area

::::
and

::::::::
thickness,

::
if

::::
their

::::::::
dynamics

:::
are

::::::
shuffled

::::::
alone,

::::
their

:::::::::
importance

::
is

::::::
higher

:::
than

::::::::
shuffling

::::
their

::::::::
dynamics

::
at

:::
the

::::
same

:::::
time.

:::::::::::
Additionally,

::::::
similar

:::::::::
differences

::::
can

::
be

::::::::
observed,

::
if
:::
the

:::::
stress

::::::::::
components

:::
are

:::::::
shuffled

:::::::::
combined

::::
with

::
or

:::::::
without

:::::::
damage.

::::::
Again,

:::
we

:::::::
attribute

::::
this

::
to

::::
the

:::::::
naturally

:::::
high

:::::::::
correlation

::
in
:::::

some
:::::::::

variables,
::::::
which

::::
leads

:::
to

:::::::::
unphysical

:::::::::
instances,

:::::::
skewing

:::
the

::::::::::
permutation

::::::
feature

::::::::::
importance.

::::
The

:::::::::
importance

:::
of

::::::
having

::::::::
physically

:::::::::
consistent

::::::
sample

::::::::
instances

::::::::
manifests

::::
one1125

::
of

:::
the

::::::::
downsides

::
of
:::
the

::::::::::
permutation

::::::
feature

::::::::::
importance

:::
for

::::::::
correlated

:::::
input

::::::::
variables.

:::::::::::
Nevertheless,

:::
this

::::::::::
importance

:::::
shows

::::
also

:::
that

:::
the

:::
NN

:::::
takes

::::::
groups

::
of

:::::
input

:::::::
variables

::::
and

::::
their

::::::::::
correlations

:::
into

::::::::
account,

:::::
which

:::::
could

::::::
explain

:::
the

:::::::::
efficiency

::
of

:::
the

::::
NN.
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Input: x

u - Velocity

v - Velocity

σxx

σxy

σyy

Damage

Cohesion

Area

Thickness

O
u

tp
u

t:
f

(x
)

1.0 1.0 1.0 1.1 1.2 1.0 1.1 5.6 5.7 1.0 1.1 1.1 5.6 5.7 5.7

1.3 1.4 1.2 1.2 2.2 1.0 1.1 11.5 11.4 1.3 1.5 1.6 11.6 11.5 11.5

1.0 1.0 1.1 1.1 1.0 5.2 5.2 1.1 1.1 1.0 1.1 1.1 5.3 5.2 5.5

1.0 1.0 1.0 1.1 1.0 4.4 4.4 1.2 1.1 1.0 1.0 1.0 4.5 4.5 4.4

1.0 1.0 1.0 1.1 1.1 3.5 3.5 1.1 1.1 1.0 1.0 1.1 3.5 3.5 3.8

1.0 1.1 1.1 1.1 1.0 1.1 3.7 1.0 1.1 1.0 1.1 1.2 1.1 3.6 3.5

1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.3 1.0 1.0 5.2

1.2 1.2 1.1 1.2 1.9 1.2 1.1 1.1 1.2 3.2 1.3 1.4 1.3 1.3 1.8

1.2 1.2 1.1 1.2 1.8 1.2 1.1 1.2 1.2 3.2 1.3 1.4 1.3 1.3 2.1

Initial: x0 Difference: ∆x = x1 − x0

Im
p

o
rt

a
n
t

U
n

im
p

or
ta

n
t

Table D2.
:::::::::
Permutation

:::::
feature

:::::::::
importance

::
of

:::::::
different

::::::
variable

::::::
groups.

:::
The

:::::::
colouring

::
is
:::
the

::::
same

::
as

::
in

::::
Table

::
6
::
of

:::
the

::::::
original

:::::::::
manuscript.

::::
SIU

:::::
stands

::
for

:::::::
velocity

::
in

:::::::::
x-direction,

::::
SIV

::
for

:::::::
velocity

::
in

:::::::::
y-direction,

::
F

::
for

::::
wind

::::::
forcing,

::
σ
:::
for

::
all

:::::
stress

:::::::
variables,

::::::
DAM

::
for

:::::::
damage,

::::
SIA

::
for

::::::
sea-ice

::::
area,

:::
and

::::
SIT

:::
for

::::::
sea-ice

:::::::
thickness.

::::
The

:::::::
reference

::
is

:::
the

:::::::::
permutation

:::::
feature

:::::::::
importance

::
of

:::
the

::::::::
dynamics

::
for

::
a
::::::
specific

::::::
variable.

:

D3
::::::::::
Forecasting

:::::
with

:::::::::
differences

:::
as

:::::::
network

:::::
input

:::
For

:::::::::
forecasting

::::
with

:::
the

::::::
model

::::
error

:::::::::
correction,

:::
we

::::
only

:::::
show

::::::
results

::
for

:::
the

:::::
NNs

::::
with

:::
the

:::::
initial

:::::::::
conditions

:::
and

:::
the

::::::::
forecasts

::
as

:::::
input,

:::::::
although

:::
the

::::
NNs

::::
with

::::::
initial

:::::::::
conditions

:::
and

:::
the

::::::::
difference

::::::::
between

::::::
forecast

::::
and

:::::
initial

:::::::::
conditions

::::::::
performs

:::::
better

::
in1130

::
the

::::::
testing

:::::::
dataset.

:::::
Here,

:::
we

:::
will

:::::::
shortly

::::::
discuss

:::
the

:::::::::
forecasting

::::::
results

::
of

:::::
these

:::::
latter

::::
NNs

::::
with

:::
the

:::::
initial

:::::::::
conditions

::::
and

:::
the

:::::::::
differences

::
as

:::::
input

:::::
(Table

::::
D3).

:

:::
The

::::::::
dynamics

:::
are

::::::::
explicitly

::::::::::
represented

::
as

::::::::
difference

:::::::
between

:::
the

:::::::
forecast

:::
and

::::::
initial

:::::::::
conditions.

:::
On

:::
the

:::
one

:::::
hand,

:::
this

:::::
helps

::
the

::::
NN

::
to

::::::
extract

:::::
more

::::::::::
information

::::
from

:::
the

::::::::
dynamics

::::
than

:::
for

:::
the

::::::
"Initial

::
+

::::::::
Forecast"

::::::::::
experiment

:::
(see

::::
also

:::::
Table

:::
4).

:::
On

:::
the
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Table D3.
:::::::::
Normalised

:::::
RMSE

:::
on

::
the

:::
test

::::::
dataset

:::
for

:
a
::::

lead
::::
time

::
of

::::::
60 min.

::::
The

:::
last

:::::
update

::
in
:::

the
::::::
hybrid

:::::
models

::::
was

::
at

:
a
::::
lead

::::
time

::
of

:::::
50 min

::::
and

::::
40 s.

:::
The

:::::
errors

::
are

:::::::::
normalised

::
by

:::
the

:::::::
expected

:::::::
standard

:::::::
deviation

::
for

::
a
:::
lead

::::
time

::
of

::::::
60 min

::
on

:::
the

::::::
training

::::::
dataset.

::::
The

:::
two

:::::
bottom

::::::
models

::::::::
correspond

::
to

:::
the

:::
two

:::::
hybrid

:::::
models

::::
with

:::::::
different

::::
input

:::::::
variables.

:::
The

:::::::
symbolic

:::::::::::
representation

::
of

::
the

:::::::
variables

:::
has

:::
the

::::
same

::::::
meaning

::
as

::
in

::::
Table

::
6.
:

::::
Name

: :
v
: ::

σyy: :
d
: :

A
: :

Σ

::::::::
Persistence

: :::
1.13

:::
0.81

:::
0.83

: :::
2.58

: :::
1.19

:::::
Sea-ice

:::::
model

: :::
1.34

: :::
0.93

: :::
1.06

: :::
0.98

: :::
1.06

:::::
"Initial

::
+

:::::::
Forecast"

:::
1.16

: :::
0.95

: :::
0.68

:::
0.46

: :::
0.81

:::::
"Initial

::
+

:::::::::
Difference"

:::
1.20

: :::
1.00

: :::
0.71

: :::
0.41

:::
0.82

::::
other

:::::
hand,

::::
this

::::::
explicit

::::::::::::
representation

:::::::::
introduces

:::
an

::::::::::
assumption

:::
that

::::
the

::::::::
dynamics

:::
are

:::::::
additive

::
to
::::

the
:::::
initial

:::::::::
conditions.

:::
In1135

::::
some

::::::
sense,

::
the

::::
NN

:::
can

::::::
overfit

::::::
towards

:::
the

:::
use

:::
of

::
the

:::::::::
dynamics

::
for

::
a
:::::
model

:::::
error

:::::::::
correction.

::::::
Caused

:::
by

:::
this

:::
sort

::
of
::::::::::
overfitting,

::
the

::::::
hybrid

::::::
model

:::::::
performs

::::::
worse

:::
for

::
the

::::::::
velocity,

:::
the

:::::
stress,

::::
and

:::
the

::::::
damage

::::
than

:::
the

::::::
hybrid

:::::
model

::::
that

::::
uses

:::
the

:::
raw

::::::::
forecast,

:::
but

::::
their

:::::::::
differences

::::::::
generally

::::::
remain

:::::
small.

:::
As

:::
the

:::::
hybrid

::::::
model

::::
with

:::
the

:::::
initial

:::::::::
conditions

:::
and

:::
the

:::::::
forecast

::
as

:::::
input

:::
has

:::::
fewer

::::::::::
assumptions,

:::
we

::::::
present

:::
its

::::::
results

::::
with

::::::
greater

:::::
detail

::
in

::::
Sect.

::::
5.3.
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