Preprints
https://doi.org/10.5194/egusphere-2022-1263
https://doi.org/10.5194/egusphere-2022-1263
31 Jan 2023
 | 31 Jan 2023

Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy

Daniel I. Herman, Griffin Mead, Fabrizio R. Giorgetta, Esther Baumann, Nathan Malarich, Brian R. Washburn, Nathan R. Newbury, Ian Coddington, and Kevin C. Cossel

Abstract. We present an open-path mid-infrared dual-comb spectrometer (DCS) capable of precise measurement of the stable water isotopologues H216O and HD16O. This system ran in a remote configuration at a rural test site for 3.75 months with 60 % uptime and achieved a precision of <2 ‰ on the normalized ratio of H216O and HD16O (δD) in 1000 seconds. Here, we compare the δD values from the DCS to those from the National Ecological Observatory Network (NEON) isotopologue point sensor network. Over the multi-month campaign, the mean difference between the DCS δD values and the NEON δD values from a similar ecosystem is <2 ‰ with a standard deviation of 18 ‰, which demonstrates the inherent accuracy of DCS measurements over a variety of atmospheric conditions. We observe time-varying diurnal profiles and seasonal trends that are mostly correlated between the sites on daily time scales. This observation motivates the development of denser ecological monitoring networks aimed at understanding regional and synoptic scale water transport. Precise and accurate open-path measurements using DCS provide new capabilities for such networks.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Sep 2023
Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy
Daniel I. Herman, Griffin Mead, Fabrizio R. Giorgetta, Esther Baumann, Nathan A. Malarich, Brian R. Washburn, Nathan R. Newbury, Ian Coddington, and Kevin C. Cossel
Atmos. Meas. Tech., 16, 4053–4066, https://doi.org/10.5194/amt-16-4053-2023,https://doi.org/10.5194/amt-16-4053-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Measurements of the isotope ratio of water vapor provide information about the sources and...
Share