Preprints
https://doi.org/10.5194/egusphere-2022-946
https://doi.org/10.5194/egusphere-2022-946
27 Oct 2022
 | 27 Oct 2022

An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters

Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang

Abstract. Satellite remote sensing of PM2.5 mass concentration has become one of the most popular atmospheric research aspects, resulting in the development of different models. Among them, the semi-empirical physical approach constructs the transformation relationship between the aerosol optical depth (AOD) and PM2.5 based on the optical properties of particles, which has strong physical significance. Also, it performs the PM2.5 retrieval independently of the ground stations. However, due to the complex physical relationship, the physical parameters in the semi-empirical approach are difficult to calculate accurately, resulting in relatively limited accuracy. To achieve the optimization effect, this study proposes a method of embedding machine learning into a semi-physical empirical model (RF-PMRS). Specifically, based on the theory of the physical PM2.5 remote sensing approach (PMRS), the complex parameter (VEf, a columnar volume-to-extinction ratio of fine particles) is simulated by the random forest model (RF). Also, a fine mode fraction product with higher quality is applied to make up for the insufficient coverage of satellite products. Experiments in North China show that the surface PM2.5 concentration derived by RF-PMRS has an average annual value of 57.92 μg/m3 versus the ground value of 60.23 μg/m3. Compared with the original method, RMSE decreases by 39.95 μg/m3, and the relative deviation reduces by 44.87%. Moreover, validation at two AERONET sites presents a trend closer to the true values, with an R of about 0.80. This study is also a preliminary attempt to combine model-driven and data-driven models, laying a foundation for further atmospheric research on optimization methods.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

24 Jul 2023
An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters
Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang
Geosci. Model Dev., 16, 4137–4154, https://doi.org/10.5194/gmd-16-4137-2023,https://doi.org/10.5194/gmd-16-4137-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The semi-empirical physical approach derives PM2.5 with strong physical significance. However,...
Share