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ABSTRACT 19 

 Satellite remote sensing of PM2.5 mass concentration has become one of the most 20 

popular atmospheric research aspects, resulting in the development of different models. 21 

Among them, the semi-empirical physical approach constructs the transformation 22 

relationship between the aerosol optical depth (AOD) and PM2.5 based on the optical 23 

properties of particles, which has strong physical significance. Also, it performs the 24 

PM2.5 retrieval independently of the ground stations. However, due to the complex 25 

physical relationship, the physical parameters in the semi-empirical approach are 26 

difficult to calculate accurately, resulting in relatively limited accuracy. To achieve the 27 

optimization effect, this study proposes a method of embedding machine learning into 28 

a semi-physical empirical model (RF-PMRS). Specifically, based on the theory of the 29 

physical PM2.5 remote sensing approach (PMRS), the complex parameter (VEf, a 30 

columnar volume-to-extinction ratio of fine particles) is simulated by the random forest 31 

model (RF). Also, a fine mode fraction product with higher quality is applied to make 32 

up for the insufficient coverage of satellite products. Experiments in North China show 33 

that the surface PM2.5 concentration derived by RF-PMRS has an average annual value 34 

of 57.92 μg/m³ versus the ground value of 60.23 μg/m³. Compared with the original 35 
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method, RMSE decreases by 39.95 μg/m³, and the relative deviation reduces by 44.87%. 36 

Moreover, validation at two AERONET sites presents a time series change closer to the 37 

true values, with an R of about 0.80. This study is also a preliminary attempt to combine 38 

model-driven and data-driven models, laying a foundation for further atmospheric 39 

research on optimization methods. 40 

Keywords: PM2.5; Physical approach; Machine learning; Volume-to-extinction ratio; 41 

Fine mode fraction 42 

 43 

1. Introduction 44 

Epidemiological studies have indicated that PM2.5 (fine particulate matter with an 45 

aerodynamic equivalent diameter no greater than 2.5 μm) can adversely affect human 46 

health, such as increasing the risk of diabetes and respiratory diseases (Bowe et al., 47 

2018; Pope III et al., 2002; Xu et al., 2013), and accurate surface PM2.5 concentration 48 

is the basis of air pollution-health related research. Satellite remote sensing has the 49 

advantages of high resolution and global coverage (Ma et al., 2014; Wu et al., 2020; He 50 

et al., 2022), including variables strongly associated with PM2.5 such as aerosol optical 51 

depth (AOD). Therefore, it has become a mainstream method for fine particle 52 

estimation (Zhang et al., 2021). 53 

There are mainly three satellite-based ways of retrieving PM2.5. 1) Chemical transport 54 

models-based method. It calculates a scaling factor η between AOD and PM2.5 55 

simulated by atmospheric chemical transport models (CTM) (Lyu et al., 2022; Xiao et 56 

al., 2022) and then transfers the proportional relationship to satellite AOD data when 57 

calculating surface PM2.5 concentration (Geng et al., 2015; Van Donkelaar et al., 2006). 58 

However, the assumption of a constant factor between simulated and observed values 59 

has large spatiotemporal limitations. 2) Univariate/Multivariate regression. This kind 60 

of data-driven method establishes a statistical model between AOD, auxiliary variables, 61 

and ground PM2.5 observations. Machine learning is a common tool for such regression 62 

methods due to its powerful nonlinear fitting ability between multiple variables (Irrgang 63 

et al., 2021). But the regression algorithms in machine learning are affected by the 64 

distribution and density of ground stations (Gupta and Christopher, 2009; Li et al., 65 
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2017). 3) Semi-empirical physical approach. Taking the physical theory as the basis, 66 

surface PM2.5 is derived through an empirical formula constructed from AOD and some 67 

PM-related key parameters, including an important empirical parameter related to the 68 

optical properties (S). The process steps are explicit and independent of ground station 69 

observations. Meanwhile, this approach has stronger physical interpretability than the 70 

previous two methods with a large space for optimization. 71 

Due to the complexity of the physical parameters, many studies have optimized the 72 

semi-empirical physical approach. Based on 355nm-band radar observations, Raut and 73 

Chazette (2009) introduced a specific extinction cross-section to simplify the 74 

expression of S, and PM2.5 concentration was estimated. Kokhanovsky et al. (2009) 75 

constructed a particle-effective radius model, which can obtain the particle 76 

concentrations throughout the atmospheric column. Furthermore, Zhang and Li (2015) 77 

proposed the physical PM2.5 remote sensing method (PMRS). It replaced S by defining 78 

a volume-to-extinction ratio of fine particles (VEf) and used a quadratic polynomial of 79 

fine mode fraction (FMF) to simulate VEf, showing certain advantages (Li et al., 2016; 80 

Zhang et al., 2020). 81 

However, the above semi-physical empirical models have some shortcomings. Firstly, 82 

the satellite data used in the models are blocked by clouds and fog in some areas, thus 83 

high-coverage and high-precision products need to be excavated and applied; secondly, 84 

there are still large uncertainties in estimating physical parameters (such as a simple 85 

polynomial fit to S in the PMRS method) and their expressions need to be improved. 86 

To date, machine learning (ML) has developed rapidly (He et al., 2021). It can detect 87 

complex nonlinear relationships of multiple data and model their interaction (Yuan et 88 

al., 2020; Lee et al.,2022). This provides an idea for improving the accuracy of physical 89 

parameter acquisition, so as to estimate high-precision PM2.5 through semi-physical 90 

empirical models. 91 

According to this idea, our study proposes an optimized semi-empirical physical 92 

model (RF-PMRS) based on the PMRS theory, which attempts to explore the possibility 93 

of combining physical models and ML. To be specific, we creatively embed ML (the 94 

random forest model) into the PMRS method to simulate the physical parameter (i.e., 95 
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VEf) derived from FMF and related variables, thus optimizing the previous polynomial 96 

expression. Besides, to further improve the PM2.5 retrieval accuracy, the physical-deep 97 

learning FMF (Phy-DL FMF) dataset generated by a hybrid retrieval algorithm of ML 98 

and physical mechanisms is introduced. Ultimately, we comprehensively validate the 99 

performance of the PM2.5 obtained by our optimized approach. 100 

The remained part of our article is as follows. Section 2 describes the experimental 101 

datasets. Section 3 illustrates the specific derivation process of the proposed method. 102 

Section 4 analyzes the evaluation results. Some supporting experiments are discussed 103 

in Section 5. And the final part provides the conclusion. 104 

 105 

2. Data 106 

2.1. AERONET data 107 

The Aerosol Robotic Network (AERONET) is a federation of ground-based sun-sky 108 

radiometer networks, providing worldwide remote sensing aerosol data for more than 109 

25 years (Holben et al., 1998). Until now, the Version 3 dataset has been released (Giles 110 

et al., 2017). Due to its high quality, the data from AERONET have been regarded as 111 

theoretical true values to evaluate satellite-based products in related studies (Chen et 112 

al., 2020; Gao et al., 2016; Wang et al., 2019). AOD, FMF, and Volume Size 113 

Distribution products with Level 2.0 (quality-assured) are applied to calculate the true 114 

values of the physical parameters, and then to implement our modeling purpose (not 115 

involved in PM2.5 calculations). A total of 9 AERONET sites corresponding to four 116 

typical aerosol types participate in the training. Table 1 shows the specific information. 117 

 118 

Table 1. Data information of 9 AERONET sites classified by aerosol types. Location indicates the 119 

latitude and longitude, where ‘-’ means the south latitude and west longitude. Two sites in bold fonts 120 

participate in the PM2.5 validation experiment. 121 

Aerosol Type Site 
Location 

(LAT, LON) 

Training 

period 

Isolated-

validation period 

Urban–

industrial 

Beijing 39.98°, 116.38° 2001-2017 2018-2019 

Beijing-CAMS 39.93°, 116.32° 2012-2017 2018-2019 

XiangHe 39.75°, 116.96° 2004-2017 / 

Ascension Island -7.98°, -14.41° 2010-2017 2018-2019 
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Capo Verde 16.73°, -22.94° 2010-2017 2018 

Biomass 

burning 

CUIABA 

MIRANDA 
-15.73°, -56.07° 2010-2017 2018-2019 

Desert dust 
GSFC 38.99°, -76.84° 2010-2017 2018-2019 

Mexico City 19.33°, -99.18° 2010-2017 / 

Oceanic Solar Village 24.91°, 46.40° 2010-2013 / 

 122 

2.2. MODIS AOD 123 

MCD19A2, the Moderate-resolution Imaging Spectroradiometer (MODIS) C6 124 

Level-2 gridded (L2G) land AOD product (Lyapustin and Wang, 2015), is selected in 125 

this study. It is derived from the Multi-Angle Implementation of the Atmospheric 126 

Correction (MAIAC) algorithm, which can improve the accuracy in cloud detection and 127 

aerosol retrieval (Lyapustin et al., 2011). Besides, this new advanced algorithm jointly 128 

combines MODIS Terra and Aqua into a single sensor (Lyapustin et al., 2014). The 129 

product is produced daily with a 1km resolution, including aerosol parameters such as 130 

470nm/550nm AOD, quality assurance (QA), and uncertainty factors.  131 

The processing of MCD19A2 data (HDF format) is mainly divided into five steps: 132 

AOD/QA band extraction, best quality AOD selection, Terra/Aqua data synthesis, 133 

missing information reconstruction, and mosaic. Finally, the daily AOD distribution in 134 

GeoTiff format is obtained. 135 

 136 

2.3. Phy-DL FMF dataset 137 

The original global land FMF products have poor data integrity and low accuracy. To 138 

enhance their reliability, Yan et al. (2022) have released a satellite-based dataset called 139 

Phy-DL FMF, which integrates physical and deep learning methods. Specifically, it 140 

selects the FMF data obtained by a physical method (i.e., Look-Up-Table-based 141 

Spectral Deconvolution Algorithm, LUT-SDA) as the optimization target (Yan et al., 142 

2017). Then it combines the Phy-based FMF into a deep-learning model along with 143 

multiple auxiliary data such as satellite observations for the final Phy-DL results. Note 144 

that the process is trained with AERONET data as the ground truth. The product has a 145 

spatial resolution of 1° and covers from 2001 to 2020 (daily scale). In the comparison 146 
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experiment against the ground FMF, Phy-DL FMF shows a higher accuracy (R = 0.78, 147 

RMSE = 0.100) than MODIS FMF (R = 0.37, RMSE = 0.282) (Yan et al., 2022). 148 

 149 

2.4. Meteorological data 150 

The meteorological data are obtained from the ERA5 dataset, including the values of 151 

planetary boundary layer height (PBLH) and relative humidity (RH). As the fifth-152 

generation reanalysis product released by the European Center for Medium-Range 153 

Weather Forecasts (ECMWF), ERA5 provides atmospheric data at 0.25° every hour 154 

based on the data assimilation principle (Hersbach et al., 2018). It should be noted that 155 

RH is not archived directly in ERA5, thus should be calculated by 2m temperature T  156 

and dew point temperature dT  (referred to ERA-Interim: documentation). 157 

 s

s

e  ( )
100

e  ( )

dT
RH

T
   (1) 158 

Here, se  ( )t represents the saturation vapor pressure related to a Celsius temperature 159 

t  (Simmons et al., 1999). 160 

 

17.67
e ( ) 6.112 exp

243.5
s

t
t

t

       (2) 161 

 162 

2.5. Ground PM2.5 measurements 163 

The North China Region (NC) is chosen as the main experimental validation area for 164 

the final PM2.5 calculations. The near-surface hourly PM2.5 values are obtained from the 165 

China National Environmental Monitoring Center (CNEMC). Nowadays, over 1600 166 

ground-based monitors are working continuously and a total of 232 stations (in 2017) 167 

participate in this work. Fig. 1 displays the site distributions of the NC region. 168 

 169 



7 
 

 170 

Fig. 1. The location of PM2.5 ground monitoring stations in the NC region (35°-45°N, 110°-120°E). 171 

The red points represent the PM2.5 stations. 172 

 173 

3. Methods 174 

Based on the basic physical properties of atmospheric aerosols, the semi-physical 175 

empirical approach starts from the integration of PM mass concentration and AOD. 176 

Then it combines several key factors related to PM2.5, to derive the in situ PM2.5 177 

concentration through multiple remote sensing variables (Koelemeijer et al., 2006). The 178 

overall empirical relationship can be represented as: 179 

 2.5
( )

PM AOD S
H f RH





  (3) 180 

where   denotes the particle density and H  denotes the atmospheric boundary layer 181 

height. ( )f RH represents the hygroscopic growth factor related to relative humidity 182 

( )RH . S is an optical characteristic parameter that should be simulated. 183 

 184 
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3.1. PMRS method 185 

3.1.1. The expression of VEf 186 

To illustrate S more precisely, PMRS defines the columnar volume-to-extinction ratio 187 

of fine particles (i.e., fVE ), which can be regarded as the basis of our optimization 188 

method. So equation (3) is transformed into: 189 

 2.5
( )

fPM AOD VE
H f RH





  (4) 190 

 Related to particle size, aerosol extinction, and other properties, fVE can be expressed 191 

as: 192 

 

f,column
f

f

V
VE

AOD


 (5) 193 

 fAOD AOD FMF   (6) 194 

Here, fAOD  is the fine particle AOD and FMF is the fine mode fraction. f,columnV  195 

can be expressed by the vertical integral of particle volume size distributions (PVSD) 196 

within a certain aerodynamic diameter range: 197 

 0
( )

p,c

pf,colu pmn

D
V D DV d   (7) 198 

p, cD  represents the cutting diameter, and the empirical value of 2.0 μm is chosen based 199 

on previous literature (Hand and Kreidenweis, 2002; Hänel and Thudium, 1977). And 200 

( )pV D  represents the PVSD corresponding to the geometric equivalent diameter ( pD ). 201 

 202 

3.1.2. Specific process and limitations 203 

The PMRS method is developed from equation (4). Based on satellite AOD, the near-204 

surface PM2.5 can be obtained through multi-step transformation. Fig. 2(a) shows its 205 

specific process. Each arrow refers to a step, respectively: size cutting (output: fAOD ), 206 

volume visualization (output: f,columnV  ), bottom isolation (output: fV  , fine particle 207 

volume near the ground), particle drying (output: f,dryV , dry fV ) and PM2.5 weighting. 208 

The overall expression is as follows: 209 

 ( )
f f,dry

2.5
0

FMF VE
PM AOD

PBLH f RH

 


  (8) 210 
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1

0 ( ) 1
100

RH
f RH


   
 

 (9) 211 

where FMF  denotes the fine mode fraction, f,dry   denotes the dry mass density of 212 

2.5PM , and PBLH represents the planet boundary layer height. ( )0f R H represents the 213 

approximation of ( )f RH in equation (4), as expressed in equation (9). Considering the 214 

aerosol types in different regions, PMRS fits fVE to a quadratic polynomial relation of 215 

FMF  (Zhang and Li, 2015): 216 

 
20.2887 0.4663 0.356 (0.1 1.0)fVE FMF FMF FMF    

 (10) 217 

 218 

 219 
Fig. 2. Surface PM2.5 estimation flow of RF-PMRS. a) The five steps of the PMRS method. Gray 220 

boxes are the intermediate outputs, blue boxes are the input data, and orange ones denote the 221 

variables to be optimized. b) The specific optimization of RF-PMRS: FMF dataset replacement and 222 

VEf simulation by RF model. 223 

 224 

PMRS has strong physical significance, the calculation steps are well-defined and 225 

site-independent. Zhang and Li (2015) tested the performance of PMRS on 15 stations, 226 

and the validation results had an uncertainty of 34%. Compared with the ground value 227 

of Jinhua city in China, a 31.3% relative error was generated in Li et al. (2016). Besides, 228 

Zhang et al. (2020) applied it to the PM2.5 change analysis and prediction experiments 229 
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in China over 20 years. However, there may be a more complex nonlinear relationship 230 

between VEf with FMF, not just a simple quadratic formula. Since VEf is related to the 231 

aerosol type, adding other spatiotemporal variables may optimize the fitting process. 232 

Additionally, high-quality FMF data is the basic guarantee for the estimated PM2.5 233 

quality. In a word, to further improve the physical method, a better nonlinear model 234 

between VEf and related variables from reliable datasets needs to be explored. 235 

 236 

3.2. Optimization method: RF-PMRS 237 

Therefore, to overcome the above disadvantages, an optimized method called RF-238 

PMRS is proposed. Fig. 2(b) shows the process of our method, while optimizations for 239 

FMF and VEf are described separately below. 240 

1) FMF dataset selection 241 

We introduce the Phy-DL FMF dataset into the PMRS method to improve the 242 

accuracy of size-cutting results. In terms of performance, it exhibits higher accuracy 243 

and wider space-time coverage than satellite products (Yan, 2021). See the data section 244 

for details. 245 

 246 

2) VEf simulation based on ML 247 

The main idea is to establish an ML model between the VEf truth obtained from 248 

multiple AERONET sites and related variables, thus improving the subsequent VEf-249 

simulation accuracy (Fig. 3). 250 

 251 

Step 1 VEf calculation 252 

The VEf true values are calculated concerning equations (5)-(7). Due to the 253 

spatiotemporal variability of different aerosol types, we calculate the VEf values at 9 254 

AERONET stations around the world (Table 1) to train a universal model. The first step 255 

in Fig. 3 shows their distribution characteristics. Among them, Beijing and Beijing-256 

CAMS sites are highlighted since they participate in the subsequent point validation 257 

experiment. 258 

 259 
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 260 

Fig. 3. Specific steps for simulating VEf based on ML in our RF-PMRS method. The map used in 261 

step 1 is from NASA Visible Earth (https://visibleearth.nasa.gov/images/57752/blue-marble-land-262 

surface-shallow-water-and-shaded-topography). The red points in step 1 represent the distribution 263 

of the 9 AERONET sites and the two yellow quadrangles in the zoom-in view highlight the Beijing 264 

(BJ) and Beijing-CAMS (BC) sites.  265 

Step 2 VEf-related variables selection 266 

According to the theory, FMF is selected as the most important modeling variable. 267 

Previous studies have also shown that the FMF-VEf relationship has a good single-268 

value correspondence, which is not affected by AOD. Compared with AODf and 269 

Vf,column, FMF is a better indicator for estimation (Zhang and Li, 2015). In addition, 270 

considering the spatiotemporal heterogeneity of VEf, the latitude, longitude (LAT, 271 

LON), and data time (month, day) of each site are added to the training. 272 

 273 

Step 3 RF model establishment 274 

From step 2, fVE can be expressed as: 275 

 
( , , , , )f f FMF LAT LV ON monthE day

 (11) 276 



12 
 

We optimize VEf expression based on random forest (RF). RF is made up of multiple 277 

decision trees that can build high-accuracy models based on fewer variables (Ho, 1995; 278 

Yang et al., 2020). This ensemble ML method randomly samples the training dataset to 279 

form multiple subsets and random combinations of features are selected in node 280 

splitting (Belgiu and Drăguţ, 2016). The specific process is to 1) generate training 281 

subsets, 2) build an optimal model, and 3) calculate the result (Fig. 3 shows its 282 

flowchart). Note that the station FMF values (S-FMF) from AERONET sites are used 283 

when training. 284 

 285 

Step 4 Accuracy validation 286 

The VEf estimation is also based on equation (11), where f is the optimal relationship 287 

after RF parameter adjustment, and Phy-DL FMF is applied to realize the extension of 288 

model results from point to surface. 10-fold cross-validation (CV) (Rodriguez et al., 289 

2009) and isolated-validation (IV) are used to evaluate model performance (For details 290 

of the validation methods, see Appendix A1). 291 

 292 

3) PM2.5 value estimation and evaluation 293 

Then, we calculate PM2.5 according to the corresponding process (equation (8)). The 294 

variables (in sections 2.2 to 2.4) are spatially matched to ground sites at their respective 295 

resolutions. And based on UTC, the PM2.5 validation is conducted on a daily scale in 296 

2017. Because of the effective quantity of the AERONET public dataset and MODIS 297 

data, we choose 2017 as the representative year. Note that we select the measured 298 

empirical value of ρf,dry (i.e., 1.5 g/cm3) for the NC region from Gao et al. (2007).  299 

The statistical indicators used in the evaluation include correlation coefficient (R), 300 

mean bias (MB), relative mean bias (RMB), root mean square error (RMSE), and mean 301 

absolute error (MAE). In addition, relative predictive error (RPE) is added to validate 302 

the accuracy of the RF-based VEf model. See Appendix A2 for the specific information 303 

on these indicators. 304 

 305 
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4. Experiment results 306 

Three main experiments are conducted to verify the proposed RF-PMRS method, 307 

and the specific information is shown in Table 2. 308 

Table 2. A brief information summary of the experiments conducted in our study. 309 

Experiment Object Region Period 
Time 

scale 

Model performance for 

training VEf 
VEf 

Global scale 

(Nine AERONET sites) 

CV: Training period in Table 1 

IV: Isolated-validation period 

in Table 1 

(See Appendix A1) 

Daily 

Accuracy evaluation of 

PMRS/RF-PMRS 
PM2.5 

Two AERONET Sites: 

Beijing, Beijing-CAMS 
2017 Daily 

Generalization performance 

of RF-PMRS 
PM2.5 North China region 2017 Daily 

 310 

4.1. RF model performance for training VEf 311 

The simulation model of VEf is trained based on the data in Table 1. Specifically, the 312 

10-fold CV result is used to determine the optimal combination of parameters for the 313 

model, and see Appendix A3 for the adjustment of the model parameters. Considering 314 

that the completeness of the training data will optimize the generalization performance 315 

of the model, the experiment fine-tunes the model based on all the original datasets (the 316 

training period of Table 1) under the optimal parameters, then the final RF model is 317 

constructed. This is also the most common method for ML model construction. Next, 318 

the IV experiment provides independent time validation of the final model. 319 

Table 3 shows the CV and IV results to respectively demonstrate the internal and 320 

external accuracy of the final RF model. It can be seen that RF can capture the complex 321 

relationship between VEf and related variables well. R is as high as 0.974 (0.975), 322 

RMSE and MAE are both small, and RPE is around 30%, which suggests the desired 323 

estimation accuracy. Overall, the CV results represent the great performance of the RF 324 

model for extracting information, that is, the relationship of multi-source data to VEf. 325 

In the meantime, the statistical results in CV and IV experiments are similar, indicating 326 

that the RF model has no obvious overfitting phenomenon.  327 

 328 
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Table 3. Performance statistics of the RF model for training VEf. N represents the number of data, 329 

and VEf has no unit. 330 
 R RMSE RPE MAE N 

Cross-validation（CV） 0.974 0.076 32.9%  0.034 6463 

Isolated-validation（IV） 0.975 0.067 29.8% 0.037 814 

 331 

4.2. Accuracy evaluation of PMRS/RF-PMRS at AERONET stations 332 

The purpose of RF-PMRS is to construct an optimal model from the obtained point 333 

matching data pairs, and generalize it to the space-time continuous surface data for VEf 334 

derivation. In the subsequent experiments in sections 4.2 and 4.3, the VEf values are 335 

obtained by introducing the Phy-DL FMF dataset (surface data) to the final RF model. 336 

At the same time, the Phy-DL FMF data is also applied to the PM2.5 calculation process 337 

(FMF variable in Equation 8) for a wide range of PM2.5 concentration. 338 

Then, the experiment compares PM2.5 results of PMRS and RF-PMRS at Beijing (BJ) 339 

and Beijing-CAMS (BC) AERONET sites in 2017. Here, RF-PMRS simulates VEf 340 

based on RF, and replaces the polynomial of the PMRS method. Note that the results of 341 

the two sites are compared with their respective nearest ground PM2.5 stations (distances 342 

of 3.64 km and 3.91 km, respectively, in line with the representative range of ground 343 

stations in previous studies (Shi et al., 2018)). Fig. 4 displays the time series of PM2.5 344 

values for different models at two sites. The blue line fits the red line better than the 345 

gray one, confirming that the PM2.5 results of RF-PMRS are closer to the true values. 346 

Within the range of the black circles at positions 1 and 2, the variation of RF-PMRS 347 

results has better consistency with the ground truth, while the PMRS results show 348 

dislocation and excessive growth. The overall performance of the RF-PMRS 349 

estimations can signify the effectiveness of our proposed method framework. As 350 

observed in the red boxes at positions 3 and 4, both models have a certain degree of 351 

deviation, which is found to be consistent with the time regularity of the AOD high 352 

values. Meanwhile, Fig. B1 (in Appendix B) plots the bias time series between 353 

PMRS/RF-PMRS and in-situ values. As can be seen, the bias of the optimization 354 

method (RF-PMRS) is stably distributed around zero, which greatly reduces the 355 

numerical uncertainty. And it is worth noting that our method has well mitigated the 356 
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apparent overestimation of the original model (PMRS) in the case of above-normal 357 

aerosol loadings. Furthermore, the average PM2.5 values from ground stations, PMRS, 358 

and RF-PMRS are compared. As for the two sites, the RF-PMRS results are satisfactory. 359 

As depicted in Fig. 5, the RF-PMRS and station mean values are close, with a difference 360 

of 4.82 μg/m³ (BJ) and 2.73 μg/m³ (BC), suggesting a good estimation. Nevertheless, 361 

the PMRS results have deviations greater than 40 μg/m³, and overestimation exists at 362 

both sites. It can be inferred that, in our proposed method, the optimization of VEf can 363 

greatly improve the PM2.5 estimation accuracy. 364 

 365 
Fig. 4. Three PM2.5 time series at the Beijing (BJ) and Beijing-CAMS (BC) sites under their 366 

respective DOYs in 2017. Here, DOY (valid) means the day of the year with valid AOD, FMF, and 367 

other PM2.5-related data. Grey, blue, and red lines represent PM2.5 values of PMRS, RF-PMRS, and 368 

stations (STA), respectively. The red boxes and black circles select a specific period for analysis. 369 

 370 
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 371 

Fig. 5. Annual average PM2.5 values from stations (left), RF-PMRS (middle), and PMRS model 372 

(right) at the BJ and BC sites. 373 

To visually compare the optimization effect, Fig. 6 plots the PM2.5 bias distribution 374 

patterns for two methods. From the boxplot, the average PM2.5 bias of RF-PMRS is 375 

close to zero (less than 5 μg/m³), which is greatly lower than that of PMRS. Besides, 376 

PMRS PM2.5 has a larger deviation range, which manifests in two aspects. One is the 377 

maximum bias, specifically, it has exceeded 100 μg/m³ at the BC site. The other is the 378 

overall distribution of the data bias, the BJ site ones are mostly distributed below zero, 379 

indicating an obvious overestimation. As for RF-PMRS, the above circumstances are 380 

not obviously reflected in it. In addition, as can be seen from the indicators, RMSE and 381 

MAE of RF-PMRS PM2.5 decrease by about half in comparison with PMRS. And the 382 

experiment has confirmed that the RF-PMRS PM2.5 values have a strong linear 383 

relationship with the ground truth at both sites, with R around 0.8 (0.82 at BJ and 0.78 384 

at BC). Such a large optimization effect is attributed to the VEf expression replacement 385 

to the fitted RF model. 386 

 387 
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 388 

Fig. 6. Boxplots of RF-PMRS (a) and PMRS (b) PM2.5 bias at the BJ and BC sites. The upper (lower) 389 

black line of each box represents the largest (smallest) value, the blue upper (lower) border 390 

represents the upper (lower) quartile, and the red line denotes the median. Besides, the yellow, 391 

orange, and gray symbols are the MB, RMSE, and MAE of the corresponding PM2.5 concentration. 392 

 393 

4.3. Generalization performance of RF-PMRS 394 

Then, we estimate PM2.5 based on PMRS and RF-PMRS within North China in 2017 395 

(Fig. 1 exhibits the distribution pattern of the validation stations). Table 4 shows the 396 

accuracy statistics. It can be seen that RF-PMRS greatly reduces the bias (about 397 

44.87%), with MB of about 2.31 μg/m³. Similar to the results at the sites, the RF-PMRS 398 

method can derive PM2.5 concentration with practically no overestimation 399 

(underestimation). Although there is not much difference in R values of the two models 400 

(R of RF-PMRS is only improved by 0.01), RMSE and MAE of which decrease by 401 

about 39.96 μg/m³ and 18.86 μg/m³, respectively. As a result, the optimized method 402 

deserves to be considered excellent. 403 

 404 
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Table 4. Validation results of PMRS and RF-PMRS PM2.5 in North China. 405 

Method R 
MB 

(μg/m³) 

RMB 

(%) 

RMSE 

(μg/m³) 

MAE 

(μg/m³) 

PMRS 0.69 -29.34 48.71% 79.98 44.72 

RF-PMRS 0.70 2.31 3.84% 40.02 25.86 

 406 

Meanwhile, PM2.5 scatterplots are presented below. As depicted in Fig. 7, there are 407 

sufficient estimated samples (28305) in the NC region, which guarantees the credibility 408 

of our validation results. In general, the RF-PMRS PM2.5 values are distributed around 409 

the 1:1 reference line evenly, with a slightly higher R of 0.70 compared to that of the 410 

original method. And the slope of the linear fitting relationship reaches 0.82, which 411 

indicates that the proposed method greatly reduces the overestimation of PMRS with a 412 

linear slope of 1.46. Although the overall performance of the RF-PMRS estimations 413 

maintains an excellent level, defects do remain. To be specific, in areas with high PM2.5 414 

concentration (especially greater than 150 μg/m³), RF-PMRS results exist a slight 415 

underestimation. It may be caused by the relatively small number of high-value PM2.5 416 

points (only 1319 out of 28305), which is difficult to adequately reflect the fitting effect 417 

of the method.  418 

 419 

 420 
Fig. 7. Validation scatterplots of PM2.5 results from PMRS (left) and RF-PMRS (right). Red dashed 421 

lines are 1:1 reference lines, and blue solid lines stand for the linear fits. The right legends show the 422 

point densities (frequency) represented by different colors. 423 

 424 

As for RF-PMRS, the deviation is reduced to a large extent, so the probability density 425 
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function maps based on the bias of PMRS and RF-PMRS are further drawn. Fig. 8 426 

visualizes the probability densities within different bias ranges. In terms of distribution 427 

characteristics, the overall bias of RF-PMRS from the zero value (black solid line) is 428 

small. About the curve shape, it is high and narrow, manifesting that the bias has a lower 429 

standard deviation (STD) and is more prone to appear around the mean. However, 430 

PRMS shows a more discrete distribution pattern, and there are many outliers outside 431 

the range of greater than 600 μg/m³. Simultaneously, as can be concluded from the three 432 

boxes, within the bias range of ±20 μg/m³ and ±40 μg/m³, the data numbers of RF-433 

PMRS results increase by 8.32% and 12.81%, respectively. Outside the range of ±100 434 

μg/m³, the number decreases by 9.10%. Therefore, as far as the accuracy is concerned, 435 

RF-PMRS results have lower bias and better stability. 436 

 437 

In addition to the above general performance comparison in Section 4.3, Fig. 9 438 

presents the annual average RMSE spatial distribution of PMRS and RF-PMRS PM2.5 439 

at NC stations. The two methods show a large deviation in the middle and southeast, 440 

and the RMSE map of PMRS has more red points. However, RF-PMRS can weaken 441 

this phenomenon very well since its RMSE representative colors are generally light. In 442 

particular, the proportion of dark red sites (RMSE greater than 60 μg/m³) decreases 443 

from 65.44% (PMRS) to 4.15% (RF-PMRS). In the areas where the ground stations are 444 

clustered, the deviation also reduces significantly. 445 

 446 

 447 
Fig. 8. Probability density functions of PMRS (yellow) and RF-PMRS (green) PM2.5 bias. The red, 448 
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blue and grey dotted lines indicate the bias boundaries of ±20 μg/m³, ±40 μg/m³, and ±100 μg/m³, 449 

respectively. μ and σ represent the mean value and standard deviation of each data. 450 

 451 

 452 

Fig. 9. RMSE of the year-average PM2.5 concentration values between different models and ground 453 

stations (left: PMRS PM2.5, right: RF-PMRS PM2.5). Note that the top red of the RMSE legend 454 

indicates RMSE values equal to or greater than 60 μg/m³. 455 

 456 

In a word, the above analysis demonstrates that compared with the simple quadratic 457 

polynomial relationship (equation (10)), the established RF model in RF-PMRS can 458 

more accurately capture the relationship between VEf and multiple variables, thereby 459 

improving the PM2.5 estimation accuracy. 460 

 461 

5. Discussion 462 

5.1. Accuracy comparison of PMRS using MODIS/Phy-DL FMF 463 

To confirm the superiority of the Phy-DL FMF data adopted in our method 464 

framework, the experiment takes the BJ and BC sites as examples (in 2017), and then 465 

compares the PM2.5 accuracy and the number of effective days calculated by PMRS 466 

based on different FMF. Table 5 presents the overall day-level results. Here, ‘DOY’ 467 

means the day of the year and ‘valid’ means that all variables related to the PM2.5 468 

calculation are valid. As can be seen, after the FMF replacement, the valid DOY turns 469 

out to become more (an increase of 113 days), which illustrates that the number of 470 
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effective PM2.5 concentrations has gone up by about 5 times. Moreover, the accuracy 471 

has been significantly enhanced, with R increased by about 0.30, RMSE and MAE 472 

decreased by 26.14% and 16.47% accordingly. On the whole, Phy-DL FMF contributes 473 

to the improvement of PMRS results, signifying the first step optimization of the 474 

proposed RF-PMRS method is effective. 475 

 476 

Table 5. Validation results of the PMRS method using different FMF data. The valid DOY refers to 477 

the number of days that the AOD, FMF, and other data are not missing when calculating PM2.5. Note 478 

that since the valid days of the two schemes are different, the MB and RMB are not compared. 479 

 Valid DOY  R 
RMSE 

(μg/m³) 

MAE 

(μg/m³) 

PMRS with MODIS FMF 30 0.38 63.01 35.64 

PMRS with Phy-DL FMF 143 0.68 46.54 29.77 

 480 

5.2. Performance compared with other ML models 481 

Different machine learning models are suitable for diverse research data, and 482 

decision tree (DT) models can better fit experiments with fewer variables, such as this 483 

study. For comparison, except for RF, the Extremely Randomized Tree (ERT) (Geurts 484 

et al., 2006) and Gradient Boosting Decision Tree (GBDT) (Friedman, 2001) models 485 

have also been established. The results of training VEf based on the above three DT 486 

models are presented in Table 6 and Table 7. By contrast, RF performs best in CV and 487 

IV experiments, as indicated by the multiple accuracy indicators. Although ERT and 488 

GBDT models are comparable to RF in some indicators, there exists a certain degree of 489 

overfitting in the above two models, which is manifested in that their IV results are 490 

clearly worse than their respective CV ones. Thus, the RF model is applied to our study. 491 

 492 

Table 6. Cross-validation results in comparison of the decision tree models for training VEf. N 493 

represents the number of data, and VEf has no unit. 494 

CV results 
 

R RMSE RPE MAE N 

RF 0.974  0.076  0.330  0.034  

6463 ERT 0.972  0.079  0.343  0.035  

GBDT 0.973  0.078  0.339  0.036  

 495 
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Table 7. Isolated-validation results in comparison of the decision tree models for training VEf. The 496 

indicators are the same as those in Table 6. 497 

IV results 
 

R RMSE RPE MAE N 

RF 0.975  0.067  0.299  0.037  

814 ERT 0.967  0.076  0.340  0.042  

GBDT 0.969  0.074  0.331  0.040  

 498 

5.3. Feature importance of the embedded RF model 499 

Additionally, the feature importance of RF is calculated to evaluate the contribution 500 

of model predictors to VEf simulation. Fig. B2 (in Appendix B) shows the results by 501 

normalization (taking 100 as the total). Without a doubt, FMF accounts for the largest 502 

proportion, about 76.4%, which is consistent with the analysis when selecting the VEf-503 

related variables (see Section 3.2). The contribution of spatiotemporal variables is about 504 

1/3 of FMF, which indirectly affirms the credibility of RF feature learning. Also, it 505 

provides a basis for further uncertainty optimization of VEf and PM2.5 accuracy. 506 

 507 

5.4. Advantages and disadvantages 508 

5.4.1. Advantages of the RF-PMRS method 509 

From the perspective of model parameter optimization, this paper embeds RF to 510 

replace the subprocess parameter of the semi-empirical physical model. As a result, the 511 

proposed method, RF-PMRS, reduces the uncertainty of the complex physical 512 

parameter (i.e., VEf) based on the estimation steps of strong physical significance, and 513 

realizes the coupling of machine learning and model mechanism. The proposed method 514 

does not rely on the PM2.5 values of ground stations and is not affected by the station 515 

density and distribution mode, which can estimate the PM2.5 concentration 516 

independently. 517 

Meanwhile, as for the method, we construct the VEf model based on RF using high-518 

precision point data and extend it to surface data for PM2.5 estimations. The 519 

experimental results demonstrate the overall performance of the model (Section 4.1) 520 

and its applicability in North China (Sections 4.2 to 4.3), showing that the method has 521 
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certain universality from point scale to surface scale. 522 

1) The overall performance of the model is high. We use the ground data of 9 523 

AERONET sites around the world to train the RF model and simulate the VEf values, 524 

the site distribution is relatively uniform and the amount of training data is sufficient. 525 

Table 1 shows a total of 6463 data matching pairs in the training period, which is enough 526 

to establish a credible RF model. Table 3 results show that in IV experiments, the 527 

accuracy of the model is well and can be generalized in different periods. For VEf, the 528 

model shows both high internal accuracy (CV) and external accuracy (IV), so it can be 529 

generalized in regions with different aerosol types. 530 

2) In the subsequent PM2.5 estimation, the model displays high applicability in North 531 

China. From the perspective of model construction, the four aerosol types are the 532 

classification basis of the training data, and comprehensive modeling can improve the 533 

generalization performance. Also, the addition of spatiotemporal variables can increase 534 

the model applicability in North China. On the other hand, the number of stations used 535 

in an area does not determine the regional accuracy of the established model, which can 536 

be derived from our results. Compared with the PM2.5 ground measurements in the NC 537 

region, the relative deviation of the RF-PMRS PM2.5 is only 2.31 μg/m³, which confirms 538 

that RF can represent the relationships within North China. 539 

 540 

5.4.2. Limitations on the scope of validation region 541 

However, there are still some shortcomings, mainly manifested in the scope of the 542 

validation region. Due to limited experimental data, we only conduct experiments in 543 

North China (the main aerosol type is urban-industrial). The main reasons are: 1) 544 

insufficient ρf,dry value. As the empirical value in the semi-physical empirical model, 545 

the ρf,dry value is often obtained by field measurement and induction. The insufficient 546 

ρf,dry values hinder the derivation of PM2.5 in other regions and more research results 547 

are needed; 2) disclosure limits on global PM2.5 ground measurements. Accurate and 548 

sufficient in-situ PM2.5 values are the basic guarantee for the verification of estimated 549 

PM2.5 results; 3) fewer public AERONET sites. Therefore, only BJ and BC sites in 550 

North China are used for representative point-scale validation. 551 
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 552 

5.4.3. Data differences and uncertainty analysis 553 

In the RF-PMRS method, the VEf model constructed by high-precision site data is 554 

generalized to surface data for validation, and the data types involved are as follows. 555 

1) AERONET AOD vs. MODIS AOD 556 

Two types of AOD are used for different experimental steps, among which 557 

AERONET AOD is applied to calculate the true values of VEf for establishing the RF 558 

simulation model. And the RF model construction is a step of PM2.5 estimation (as VEf 559 

variable in equation (8)). MODIS AOD is satellite AOD data, which is the most 560 

commonly used remote sensing data for large-scale retrieval of PM2.5. It is an important 561 

variable for PM2.5 estimation in RF-PMRS (as AOD variable in equation (8)). Thus, 562 

there is no error in the PM2.5 calculation caused by AOD category replacement. 563 

As for uncertainty, AERONET AOD provides truth values for calculating VEf, which 564 

theoretically has negligible uncertainty, and the simulation accuracy of VEf represents 565 

its influence on estimating PM2.5 to a certain extent. And it is generally considered that 566 

MODIS AOD has guaranteed quality and sufficient accuracy to be used directly. 567 

2) S-FMF vs. Phy-DL FMF 568 

S-FMF is obtained directly from the AERONET monitoring sites and is one of the 569 

variables of the RF model (as FMF variable in equation (11)). In the point-to-surface 570 

extension, Phy-DL FMF is introduced into the RF model to replace S-FMF, and the 571 

2017 VEf values are obtained. The basis of the above replacement is that the accuracy 572 

of Phy-DL FMF is relatively consistent with that of S-FMF (Yan et al., 2022). Besides, 573 

Phy-DL FMF data is applied to the PM2.5 estimation steps (as FMF variable in equation 574 

(8)) for a wider range of validation experiments. The results show that the PM2.5 575 

concentration estimated by RF-PMRS has high accuracy, proving the credibility of 576 

Phy-DL FMF. 577 

3) FMF uncertainty 578 

Different surface data sources may affect the PM2.5 results, introducing some 579 

uncertainty. Section 5.1 compares the PM2.5 accuracy using two FMF data in 2017. The 580 

data missing time for MODIS FMF and Phy-DL FMF in North China are different, 581 
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which can be found in the statistics on their respective available days (refer to valid 582 

DOY). There are far more valid days based on Phy-DL FMF than MODIS FMF (143 583 

and 31 days), demonstrating the superiority of Phy-DL FMF. Although the specific 584 

validation time of two FMF varies, the overall accuracy of the PM2.5 estimation (which 585 

can be regarded as the average accuracy over the year) shows that the Phy-DL FMF 586 

increases R to 0.68 (MODIS FMF: 0.38) with low uncertainty. 587 

4) ρf,dry uncertainty 588 

As introduced earlier, the ρf,dry value is often obtained by field measurement. In our 589 

study, we select 1.5 g/cm3 as the ρf,dry value for North China. There are certain variations 590 

in the empirical values of different regions, and there will be errors (uncertainty) 591 

between the values in Beijing and other places in the NC region. However, our 592 

experimental area is not large, and we use 1.5 g/cm3 to represent ρf,dry of the whole 593 

region, which has been applied in previous articles (Zhang and Li, 2015; Li et al., 2016).  594 

5) Uncertainty between variable resolutions 595 

In most experiments, the lowest resolution of all data will be taken as the unified 596 

resolution when obtaining data values. The different data may lose some spatial details 597 

during the upsampling/downsampling process, which brings uncertainty to the 598 

estimation results. In RF-PMRS method, there is no such uncertainty problem. We set 599 

1° as the unified spatial unit, and take the longitude and latitude of each cell’s center as 600 

the reference longitude and latitude. The variables in the data section are spatially 601 

matched to ground sites at their respective resolutions and the space-time matching 602 

method has been described in the method section. So, all kinds of data uncertainties 603 

only exist in their instrument measurement or statistical release. 604 

Overall, RF-PMRS shows excellent estimation performance in North China, and the 605 

accuracy of surface PM2.5 estimation based on remote sensing data is guaranteed. Next, 606 

with the improvement of related experimental data, we will verify our proposed method 607 

in a broader range and continuously optimize it from all aspects. 608 

 609 

6. Conclusion 610 

Among various satellite remote sensing methods for PM2.5 retrieval, the semi-611 
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empirical physical approach has strong physical significance and clear calculation steps 612 

and derives the PM2.5 mass concentration independently of in situ observations. 613 

However, the parameters with the meaning of optical properties are difficult to express, 614 

which need to be optimized. Hence, the study proposes a method (RF-PMRS) that 615 

embeds machine learning in a physical model to obtain surface PM2.5: 1) Based on the 616 

PMRS method and select the Phy-DL FMF product with a combined mechanism; 2) 617 

Use the RF model to fit the parameter VEf, rather than a simple quadratic polynomial. 618 

In the point-to-surface validation, RF-PMRS shows great optimized performance. 619 

Experiments at two AERONET sites show that R reaches up to 0.8. And in North China, 620 

RMSE decreases by 39.95 μg/m³ with a 44.87% reduction in relative deviation. In the 621 

future, we will further explore the combination of atmospheric mechanism and machine 622 

learning, then research the PM2.5 retrieval methods with physical meaning and higher 623 

accuracy. 624 

 625 

Appendix A: Supplementary description 626 

A1. 10-fold cross-validation and isolated-validation 627 

The sample-based 10-fold cross-validation method is applied to tune the model 628 

parameters and test the internal accuracy of our model. The original dataset is randomly 629 

divided into ten parts, nine of which are used as the training set for model fitting, and 630 

the remaining one is used for prediction, then the cross-validation process is repeated 631 

ten rounds until each data has been used as the test set.  632 

At the same time, when verifying the RF-based VEf model, the dataset in the period 633 

that did not participate in the training in Table 1 is used for isolated-validation. 634 

 635 

A2. Statistical indicators 636 
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where m is the total number of observations, i is the number of measurements, yi is the 643 

i-th observation, fi is the corresponding estimation result. And 𝑦ത  and  𝑓 ̅ are the 644 

averages of all observations and estimates, respectively. 645 

 646 

A3. Parameter adjustments of the RF model 647 

The four parameters of RF are adjusted, that is the correlation coefficient r changes 648 

with (a) the number of trees, (b) maximum depth, (c) maximum number of features 649 

when splitting, (d) minimum number of split samples. Experiments show that the 650 

maximum depth varies greatly in a small range. To prevent overfitting, the four 651 

parameters of RF are adjusted to 60, 10, 2, and 8. It can ensure high accuracy while 652 

improving training efficiency. 653 

 654 
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Appendix B: Figures 655 

 656 

Fig. B1. The time series of PMRS/RF-PMRS PM2.5 bias at the Beijing and Beijing-CAMS sites 657 

under their respective DOYs in 2017. The orange line represents the bias between the PM2.5 values 658 

of PMRS and stations, while the blue one indicates the PM2.5 difference between RF-PMRS and 659 

stations. 660 

 661 

 662 

Fig. B2. The predictor importance results (normalized) of the RF model for training VEf. 663 

 664 

Code and data availability 665 

All relevant codes as well as the intermediate data of this work are archived at 666 

https://doi.org/10.5281/zenodo.7183822 (Jin, 2022). The MCD19A2 data can be 667 
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downloaded on https://ladsweb.modaps.eosdis.nasa.gov (last access: 30-09-2022) 668 

(Lyapustin and Wang, 2015). Detailed information about the Phy-DL FMF dataset can 669 

be found at https://doi.org/10.5281/zenodo.5105617 (Yan, 2021). Meteorological data 670 

used in this work are obtained at 671 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (last 672 

access: 30-09-2022) (Hersbach et al., 2018). AERONET data was downloaded from 673 

https://aeronet.gsfc.nasa.gov/ (last access: 30-09-2022) (Giles et al., 2019). 674 
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