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ABSTRACT 19 

 Satellite remote sensing of PM2.5 mass concentration has become one of the most 20 

popular atmospheric research aspects, resulting in the development of different models. 21 

Among them, the semi-empirical physical approach constructs the transformation 22 

relationship between the aerosol optical depth (AOD) and PM2.5 based on the optical 23 

properties of particles, which has strong physical significance. Also, it performs the 24 

PM2.5 retrieval independently of the ground stations. However, due to the complex 25 

physical relationship, the physical parameters in the semi-empirical approach are 26 

difficult to calculate accurately, resulting in relatively limited accuracy. To achieve the 27 

optimization effect, this study proposes a method of embedding machine learning into 28 

a semi-physical empirical model (RF-PMRS). Specifically, based on the theory of the 29 

physical PM2.5 remote sensing approach (PMRS), the complex parameter (VEf, a 30 

columnar volume-to-extinction ratio of fine particles) is simulated by the random forest 31 

model (RF). Also, a fine mode fraction product with higher quality is applied to make 32 

up for the insufficient coverage of satellite products. Experiments in North China show 33 

that the surface PM2.5 concentration derived by RF-PMRS has an average annual value 34 

of 57.92 μg/m³ versus the ground value of 60.23 μg/m³. Compared with the original 35 
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method, RMSE decreases by 39.95 μg/m³, and the relative deviation reduces by 44.87%. 36 

Moreover, validation at two AERONET sites presents a time series change closer to the 37 

true values, with an R of about 0.80. This study is also a preliminary attempt to combine 38 

model-driven and data-driven models, laying a foundation for further atmospheric 39 

research on optimization methods. 40 

Keywords: PM2.5; Physical approach; Machine learning; Volume-to-extinction ratio; 41 

Fine mode fraction 42 

 43 

1. Introduction 44 

Epidemiological studies have indicated that PM2.5 (fine particulate matter with an 45 

aerodynamic equivalent diameter no greater than 2.5 μm) can adversely affect human 46 

health, such as increasing the risk of diabetes and respiratory diseases (Bowe et al., 47 

2018; Pope III et al., 2002; Xu et al., 2013), and accurate surface PM2.5 concentration 48 

is the basis of air pollution-health related research. Satellite remote sensing has the 49 

advantages of high resolution and global coverage (Ma et al., 2014; Wu et al., 2020; He 50 

et al., 2022), including variables strongly associated with PM2.5 such as aerosol optical 51 

depth (AOD). Therefore, it has become a mainstream method for fine particle 52 

estimation (Zhang et al., 2021). 53 

There are mainly three satellite-based ways of retrieving PM2.5. 1) Chemical transport 54 

models-based method. It calculates a scaling factor η between AOD and PM2.5 55 

simulated by atmospheric chemical transport models (CTM) (Lyu et al., 2022) and then 56 

transfers the proportional relationship to satellite AOD data when calculating surface 57 

PM2.5 concentration (Geng et al., 2015; Van Donkelaar et al., 2006). However, the 58 

assumption of a constant factor between simulated and observed values has large 59 

spatiotemporal limitations. 2) Univariate/Multivariate regression. This kind of method 60 

establishes a statistical model between AOD, auxiliary variables, and ground PM2.5 61 

observations. Machine learning is a common tool for such data-driven methods due to 62 

its powerful nonlinear fitting ability between multiple variables (Irrgang et al., 2021). 63 

But the regression is affected by the distribution and density of ground stations (Gupta 64 

and Christopher, 2009; Li et al., 2017). 3) Semi-empirical physical approach. Taking 65 
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the physical theory as the basis, surface PM2.5 is derived through an empirical formula 66 

constructed from AOD and some PM-related key parameters, including an important 67 

empirical parameter related to the optical properties (S). The process steps are explicit 68 

and independent of ground station observations. Meanwhile, this approach has stronger 69 

physical interpretability than the previous two methods with a large space for 70 

optimization. 71 

Due to the complexity of the physical parameters, many studies have optimized the 72 

semi-empirical physical approach. Based on 355nm-band radar observations, Raut and 73 

Chazette (2009) introduced a specific extinction cross-section to simplify the 74 

expression of S and PM2.5 concentration was estimated. Kokhanovsky et al. (2009) 75 

constructed a particle-effective radius model, which can obtain the particle 76 

concentrations throughout the atmospheric column. Furthermore, Zhang and Li (2015) 77 

proposed the physical PM2.5 remote sensing method (PMRS). It replaced S by defining 78 

a volume-to-extinction ratio of fine particles (VEf) and used a quadratic polynomial of 79 

fine mode fraction (FMF) to simulate VEf, showing certain advantages (Li et al., 2016; 80 

Zhang et al., 2020). 81 

However, the above semi-physical empirical models have some shortcomings. Firstly, 82 

the satellite data used in the models are blocked by clouds and fog in some areas, thus 83 

high-coverage and high-precision products need to be excavated and applied; secondly, 84 

there are still large uncertainties in estimating physical parameters (such as a simple 85 

polynomial fit to S in the PMRS method) and their expressions need to be improved. 86 

To date, machine learning (ML) has developed rapidly (He et al., 2021). It can detect 87 

complex nonlinear relationships of multiple data and model their interaction (Yuan et 88 

al., 2020; Lee et al.,2022). This provides an idea for improving the accuracy of physical 89 

parameter acquisition, so as to estimate high-precision PM2.5 through semi-physical 90 

empirical models. 91 

According to this idea, our study proposes an optimized semi-empirical physical 92 

model (RF-PMRS) based on the PMRS theory, which attempts to explore the possibility 93 

of combining physical models and ML. To be specific, we creatively embed ML (the 94 

random forest model) into the PMRS method to simulate the physical parameter (i.e., 95 
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VEf) derived from FMF and related variables, thus optimizing the previous polynomial 96 

expression. Besides, to further improve the PM2.5 retrieval accuracy, the physical-deep 97 

learning FMF (Phy-DL FMF) dataset generated by a hybrid retrieval algorithm of ML 98 

and physical mechanisms is introduced. Ultimately, we comprehensively validate the 99 

performance of the PM2.5 obtained by our optimized approach. 100 

The remained part of our article is as follows. Section 2 describes the experimental 101 

datasets. Section 3 illustrates the specific derivation process of the proposed method. 102 

Section 4 analyzes the evaluation results. Some supporting experiments are discussed 103 

in section 5. And the final part provides the conclusion. 104 

 105 

2. Data 106 

2.1. AERONET data 107 

The Aerosol Robotic Network (AERONET) is a federation of ground-based sun-sky 108 

radiometer networks, providing worldwide remote sensing aerosol data for more than 109 

25 years (Holben et al., 1998). Until now, the Version 3 dataset has been released (Giles 110 

et al., 2017). Due to its high quality, the data from AERONET have been regarded as 111 

theoretical true values to evaluate satellite-based products in related studies (Chen et 112 

al., 2020; Gao et al., 2016; Wang et al., 2019). AOD, FMF, and Volume Size 113 

Distribution products with Level 2.0 (quality-assured) are applied to calculate the true 114 

values of the physical parameters, and then to implement our modeling purpose (not 115 

involved in PM2.5 calculations). A total of 9 AERONET sites corresponding to four 116 

typical aerosol types participate in the training. Table 1 shows the specific information. 117 

 118 

Table 1. Data information of 9 AERONET sites classified by aerosol types. Location indicates the 119 

latitude and longitude, where ‘-’ means the south latitude and west longitude. Two sites in bold fonts 120 

participate in the PM2.5 validation experiment. 121 

Aerosol Type Site 
Location 

(LAT, LON) 

Training 

period 

Isolated-

validation period 

Urban–

industrial 

Beijing 39.98°, 116.38° 2001-2017 2018-2019 

Beijing-CAMS 39.93°, 116.32° 2012-2017 2018-2019 

XiangHe 39.75°, 116.96° 2004-2017 / 

Ascension Island -7.98°, -14.41° 2010-2017 2018-2019 
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Capo Verde 16.73°, -22.94° 2010-2017 2018 

Biomass 

burning 

CUIABA 

MIRANDA 
-15.73°, -56.07° 2010-2017 2018-2019 

Desert dust 
GSFC 38.99°, -76.84° 2010-2017 2018-2019 

Mexico City 19.33°, -99.18° 2010-2017 / 

Oceanic Solar Village 24.91°, 46.40° 2010-2013 / 

 122 

2.2. MODIS AOD 123 

MCD19A2, the Moderate-resolution Imaging Spectroradiometer (MODIS) C6 124 

Level-2 gridded (L2G) land AOD product (Lyapustin and Wang, 2015), is selected in 125 

this study. It is derived from the Multi-Angle Implementation of the Atmospheric 126 

Correction (MAIAC) algorithm, which can improve the accuracy in cloud detection 127 

and aerosol retrieval (Lyapustin et al., 2011). Besides, this new advanced algorithm 128 

jointly combines MODIS Terra and Aqua into a single sensor (Lyapustin et al., 2014). 129 

The product is produced daily with a 1km resolution, including aerosol parameters such 130 

as 470nm/550nm AOD, quality assurance (QA), and uncertainty factors.  131 

The processing of MCD19A2 data (HDF format) is mainly divided into five steps: 132 

AOD/QA band extraction, best quality AOD selection, Terra/Aqua data synthesis, 133 

missing information reconstruction, and mosaic. Finally, the daily AOD distribution in 134 

GeoTiff format is obtained. 135 

 136 

2.3. Phy-DL FMF dataset 137 

The original global land FMF products have poor data integrity and low accuracy. 138 

To enhance their reliability, Yan et al. (2022) have released a satellite-based dataset 139 

called Phy-DL FMF, which integrates physical and deep learning methods. Specifically, 140 

it selects the FMF data obtained by a physical method (i.e., Look-Up-Table-based 141 

Spectral Deconvolution Algorithm, LUT-SDA) as the optimization target (Yan et al., 142 

2017). Then it combines the Phy-based FMF into a deep-learning model along with 143 

multiple auxiliary data such as satellite observations for the final Phy-DL results. Note 144 

that the process is trained with AERONET data as the ground truth. The product has a 145 

spatial resolution of 1° and covers from 2001 to 2020 (daily scale). In the comparison 146 
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experiment against the ground FMF, Phy-DL FMF shows a higher accuracy (R = 0.78, 147 

RMSE = 0.100) than MODIS FMF (R = 0.37, RMSE = 0.282) (Yan et al., 2022). 148 

 149 

2.4. Meteorological data 150 

The meteorological data are obtained from the ERA5 dataset, including the values of 151 

planetary boundary layer height (PBLH) and relative humidity (RH). As the fifth-152 

generation reanalysis product released by the European Center for Medium-Range 153 

Weather Forecasts (ECMWF), ERA5 provides atmospheric data at 0.25° every hour 154 

based on the data assimilation principle (Hersbach et al., 2018). It should be noted that 155 

RH is not archived directly in ERA5, thus should be calculated by 2m temperature T  156 

and dew point temperature dT  (referred to ERA-Interim: documentation). 157 

 s

s

e  ( )
100

e  ( )

dT
RH

T
   (1) 158 

Here, se  ( )t represents the saturation vapor pressure related to a Celsius temperature t  159 

(Simmons et al., 1999). 160 
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s

t
t
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       (2) 161 

 162 

2.5. Ground PM2.5 measurements 163 

The North China Region (NC) is chosen as the main experimental validation area for 164 

the final PM2.5 calculations. The near-surface hourly PM2.5 values are obtained from the 165 

China National Environmental Monitoring Center (CNEMC). Nowadays, over 1600 166 

ground-based monitors are working continuously and a total of 232 stations (in 2017) 167 

participate in this work. Fig. 1 displays the site distributions of the NC region. 168 

 169 
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 170 

Fig. 1. The location of ground stations in the NC region (35°-45°N, 110°-120°E). The red points 171 

represent NC stations. 172 

 173 

3. Methods 174 

Based on the basic physical properties of atmospheric aerosols, the semi-physical 175 

empirical approach starts from the integration of PM mass concentration and AOD. 176 

Then it combines several key factors related to PM2.5, to derive the in situ PM2.5 177 

concentration through multiple remote sensing variables (Koelemeijer et al., 2006). The 178 

overall empirical relationship can be represented as: 179 

 2.5
( )

PM AOD S
H f RH





  (3) 180 

where   denotes the particle density and H  denotes the atmospheric boundary layer 181 

height. ( )f RH  represents the hygroscopic growth factor related to relative humidity 182 

( )RH . S  is an optical characteristic parameter that should be simulated. 183 

 184 
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3.1. PMRS method 185 

3.1.1. The expression of VEf 186 

To illustrate S more precisely, PMRS defines the columnar volume-to-extinction ratio 187 

of fine particles (i.e., fVE  ), which can be regarded as the basis of our optimization 188 

method. So equation (3) is transformed into: 189 

 2.5
( )

fPM AOD VE
H f RH





  (4) 190 

 Related to particle size, aerosol extinction, and other properties, fVE can be expressed 191 

as: 192 

 

f,column
f

f

V
VE

AOD


 (5) 193 

 fAOD AOD FMF   (6) 194 

Here, fAOD   is the fine particle AOD and FMF  is the fine mode fraction. f,columnV  195 

can be expressed by the vertical integral of particle volume size distributions (PVSD) 196 

within a certain aerodynamic diameter range: 197 

 0
( )

p,c

pf,colu pmn

D
V D DV d   (7) 198 

p,cD  represents the cutting diameter, and the empirical value of 2.0 μm is chosen based 199 

on previous literature (Hand and Kreidenweis, 2002; Hänel and Thudium, 1977). And 200 

( )pV D  represents the PVSD corresponding to the geometric equivalent diameter ( pD ). 201 

 202 

3.1.2. Specific process and limitations 203 

The PMRS method is developed from equation (4). Based on satellite AOD, the near-204 

surface PM2.5 can be obtained through multi-step transformation. Fig. 2(a) shows its 205 

specific process. Each arrow refers to a step, respectively: size cutting (output: fAOD ), 206 

volume visualization (output: f,columnV ), bottom isolation (output: fV , fine particle volume 207 

near the ground), particle drying (output: f,dryV  , dry fV  ) and PM2.5 weighting. The 208 

overall expression is as follows: 209 

 ( )
f f,dry

2.5
0

FMF VE
PM AOD

PBLH f RH

 


  (8) 210 
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1

0 ( ) 1
100

RH
f RH


   
 

 (9) 211 

where FMF  denotes the fine mode fraction, f,dry   denotes the dry mass density of 212 

2.5PM  , and PBLH  represents the planet boundary layer height. ( )0f RH   represents 213 

the approximation of ( )f RH   in equation (4), as expressed in equation (9). 214 

Considering the aerosol types in different regions, PMRS fits fVE   to a quadratic 215 

polynomial relation of FMF  (Zhang and Li, 2015): 216 

 
20.2887 0.4663 0.356 (0.1 1.0)fVE FMF FMF FMF    

 (10) 217 

 218 

 219 
Fig. 2. Surface PM2.5 estimation flow of RF-PMRS. a) The five steps of the PMRS method. Gray 220 

boxes are the intermediate outputs, blue boxes are the input data, and orange ones denote the 221 

variables to be optimized. b) The specific optimization of RF-PMRS: FMF dataset replacement and 222 

VEf simulation by RF model. 223 

 224 

PMRS has strong physical significance, the calculation steps are well-defined and 225 

site-independent. Zhang and Li (2015) tested the performance of PMRS on 15 stations, 226 

and the validation results had an uncertainty of 34%. Compared with the ground value 227 

of Jinhua city in China, a 31.3% relative error was generated in Li et al. (2016). Besides, 228 

Zhang et al. (2020) applied it to the PM2.5 change analysis and prediction experiments 229 

in China over 20 years. However, there may be a more complex nonlinear relationship 230 
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between VEf with FMF, not just a simple quadratic formula. Since VEf is related to the 231 

aerosol type, adding other spatiotemporal variables may optimize the fitting process. 232 

Additionally, high-quality FMF data is the basic guarantee for the estimated PM2.5 233 

quality. In a word, to further improve the physical method, a better nonlinear model 234 

between VEf and related variables from reliable datasets needs to be explored. 235 

 236 

3.2. Optimization method: RF-PMRS 237 

Therefore, to overcome the above disadvantages, an optimized method called RF-238 

PMRS is proposed. Fig. 2(b) shows the process of our method, while optimizations for 239 

FMF and VEf are described separately below. 240 

1) FMF dataset selection 241 

We introduce the Phy-DL FMF dataset into the PMRS method to improve the 242 

accuracy of size-cutting results. In terms of performance, it exhibits higher accuracy 243 

and wider space-time coverage than satellite products (Yan, 2021). See the data section 244 

for details. 245 

 246 

2) VEf simulation based on ML 247 

The main idea is to establish an ML model between the VEf truth obtained from 248 

multiple AERONET sites and related variables, thus improving the subsequent VEf-249 

simulation accuracy (Fig. 3). 250 

 251 

Step 1 VEf calculation 252 

The VEf true values are calculated concerning equations (5)-(7). Due to the 253 

spatiotemporal variability of different aerosol types, we calculate the VEf values at 9 254 

AERONET stations around the world (Table 1) to train a universal model. The first step 255 

in Fig. 3 shows their distribution characteristics. Among them, Beijing and Beijing-256 

CAMS sites are highlighted since they participate in the subsequent point validation 257 

experiment. 258 

 259 
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 260 

Fig. 3. Specific steps for simulating VEf based on ML in our RF-PMRS method. The map used in 261 

step 1 is from NASA Visible Earth (https://visibleearth.nasa.gov/images/57752/blue-marble-land-262 

surface-shallow-water-and-shaded-topography). The red points in step 1 represent the distribution 263 

of the 9 AERONET sites and the two yellow quadrangles in the zoom-in view highlight the Beijing 264 

(BJ) and Beijing-CAMS (BC) sites.  265 

Step 2 VEf-related variables selection 266 

According to the theory, FMF is selected as the most important modeling variable. 267 

Previous studies have also shown that the FMF-VEf relationship has a good single-268 

value correspondence, which is not affected by AOD. Compared with AODf and 269 

Vf,column, FMF is a better indicator for estimation (Zhang and Li, 2015). In addition, 270 

considering the spatiotemporal heterogeneity of VEf, the latitude, longitude (LAT, 271 

LON), and data time (month, day) of each site are added to the training. 272 

 273 

Step 3 RF model establishment 274 

From step 2, fVE can be expressed as: 275 

 
( , , , , )f f FMF LAT LV ON monthE day

 (11) 276 
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We optimize VEf expression based on random forest (RF). RF is made up of multiple 277 

decision trees that can build high-accuracy models based on fewer variables (Svetnik 278 

et al., 2003; Yang et al., 2020). This ensemble ML method randomly samples the 279 

training dataset to form multiple subsets and random combinations of features are 280 

selected in node splitting (Belgiu and Drăguţ, 2016). The specific process is to 1) 281 

generate training subsets, 2) build an optimal model, and 3) calculate the result (Fig. 3 282 

shows its flowchart). Note that the station FMF values (S-FMF) are used when training. 283 

 284 

Step 4 Accuracy validation 285 

The VEf estimation is also based on equation (11), where f is the optimal relationship 286 

after RF parameter adjustment, and Phy-DL FMF is applied to realize the extension of 287 

model results from point to surface. 10-fold cross-validation (CV) (Rodriguez et al., 288 

2009) and isolated-validation (IV) are used to evaluate model performance (For details 289 

of the validation methods, see Appendix A1). 290 

 291 

3) PM2.5 value estimation and evaluation 292 

Then, calculate PM2.5 according to the corresponding process (equation (8)). The 293 

variables (in sections 2.2 to 2.4) are spatially matched to ground sites at their respective 294 

resolutions. And based on UTC, the PM2.5 validation is conducted on a daily scale in 295 

2017. Because of the effective quantity of the AERONET public dataset and MODIS 296 

data, we choose 2017 as the representative year. Note that we select the measured 297 

empirical value of ρf,dry (i.e., 1.5 g/cm3) for the NC region from Gao et al. (2007).  298 

The statistical indicators used in the evaluation include correlation coefficient (R), 299 

mean bias (MB), relative mean bias (RMB), root mean square error (RMSE), and mean 300 

absolute error (MAE). In addition, relative predictive error (RPE) is added to validate 301 

the accuracy of the RF-based VEf model. See Appendix A2 for the specific information 302 

on these indicators. 303 

 304 

4. Experiment results 305 

Three main experiments are conducted to verify the proposed RF-PMRS method, 306 
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and the specific information is shown in Table 2. 307 

Table 2. A brief information summary of the experiments conducted in our study. 308 

Experiment Object Region Period 
Time 

scale 

Model performance for 

training VEf 
VEf 

Global scale 

(Nine AERONET sites) 

CV: Training period in Table 1 

IV: Isolated-validation period 

in Table 1 

(See Appendix A1) 

Daily 

Accuracy evaluation of 

PMRS/RF-PMRS 
PM2.5 

Two AERONET Sites: 

Beijing, Beijing-CAMS 
2017 Daily 

Generalization performance 

of RF-PMRS 
PM2.5 North China region 2017 Daily 

 309 

4.1. RF model performance for training VEf 310 

The simulation model of VEf is trained based on the data in Table 1 and see Appendix 311 

A3 for the adjustment of the model parameters. Table 3 shows that RF can capture the 312 

complex relationship between VEf and related variables well. R is as high as 0.974 313 

(0.975), RMSE and MAE are both small, and RPE is around 30%, which suggests the 314 

desired estimation accuracy. Overall, the CV results represent the great performance of 315 

the RF model for extracting information, that is, the relationship of multi-source data 316 

to VEf. In the meantime, the statistical results in CV and IV experiments are similar, 317 

indicating that the RF model has no obvious overfitting phenomenon.  318 

 319 

Table 3. Performance statistics of the RF model for training VEf. N represents the number of data, 320 

and VEf has no unit. 321 
 R RMSE RPE MAE N 

Cross-validation（CV） 0.974 0.076 32.9%  0.034 6463 

Isolated-validation（IV） 0.975 0.067 29.8% 0.037 814 

 322 

4.2. Accuracy evaluation of PMRS/RF-PMRS at AERONET stations 323 

After applying the Phy-DL FMF data to the calculation process, the experiment 324 

compares PM2.5 results of PMRS and RF-PMRS at Beijing (BJ) and Beijing-CAMS 325 

(BC) AERONET sites in 2017. Here, RF-PMRS simulates VEf based on RF, replacing 326 

the polynomial of the PMRS method. Note that the results of the two sites are compared 327 
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with their respective nearest ground PM2.5 stations (distances of 3.64 km and 3.91 km, 328 

respectively, in line with the representative range of ground stations in previous studies 329 

(Shi et al., 2018)). 330 

Fig. 4 displays the time series of PM2.5 values for different models at two sites. The 331 

blue line fits the red line better than the gray one, confirming that the PM2.5 results of 332 

RF-PMRS are closer to the true values. Within the range of the black circles at positions 333 

1 and 2, the variation of RF-PMRS results has better consistency with the ground truth, 334 

while the PMRS results show dislocation and excessive growth. The overall 335 

performance of the RF-PMRS estimations can signify the effectiveness of our proposed 336 

method framework. As observed in the red boxes at positions 3 and 4, both models have 337 

a certain degree of deviation, which is found to be consistent with the time regularity 338 

of the AOD high values. Meanwhile, Fig. B1 (in Appendix B) plots the bias time series 339 

between PMRS/RF-PMRS and in-situ values. As can be seen, the bias of the 340 

optimization method (RF-PMRS) is stably distributed around zero, which greatly 341 

reduces the numerical uncertainty. And it is worth noting that our method has well 342 

mitigated the apparent overestimation of the original model (PMRS) in the case of 343 

above-normal aerosol loadings. Furthermore, the average PM2.5 values from ground 344 

stations, PMRS, and RF-PMRS are compared. As for the two sites, the RF-PMRS 345 

results are satisfactory. As depicted in Fig. 5, the RF-PMRS and station mean values 346 

are close, with a difference of 4.82 μg/m³ (BJ) and 2.73 μg/m³ (BC), suggesting a good 347 

estimation. Nevertheless, the PMRS results have deviations greater than 40 μg/m³, and 348 

overestimation exists at both sites. It can be inferred that, in our proposed method, the 349 

optimization of VEf can greatly improve the PM2.5 estimation accuracy. 350 
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 351 
Fig. 4. Three PM2.5 time series at the Beijing (BJ) and Beijing-CAMS (BC) sites under their 352 

respective DOYs in 2017. Here, DOY (valid) means the day of the year with valid AOD, FMF, and 353 

other PM2.5-related data. Grey, blue, and red lines represent PM2.5 values of PMRS, RF-PMRS, and 354 

stations (STA), respectively. The red boxes and black circles select a specific period for analysis. 355 

 356 

 357 

Fig. 5. Annual average PM2.5 values from stations (left), RF-PMRS (middle), and PMRS model 358 

(right) at the BJ and BC sites. 359 
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Aiming at visually comparing the optimization effect, Fig. 6 plots the PM2.5 bias 360 

distribution patterns for two methods. From the boxplot, the average PM2.5 bias of RF-361 

PMRS is close to zero (less than 5 μg/m³), which is greatly lower than that of PMRS. 362 

Besides, PMRS PM2.5 has a larger deviation range, which manifests in two aspects. One 363 

is the maximum bias, specifically, it has exceeded 100 μg/m³ at the BC site. The other 364 

is the overall distribution of the data bias, the BJ site ones are mostly distributed below 365 

zero, indicating an obvious overestimation. As for RF-PMRS, the above circumstances 366 

are not obviously reflected in it. In addition, as can be seen from the indicators, RMSE 367 

and MAE of RF-PMRS PM2.5 decrease by about half in comparison with PMRS. And 368 

the experiment has confirmed that the RF-PMRS PM2.5 values have a strong linear 369 

relationship with the ground truth at both sites, with R around 0.8 (0.82 at BJ and 0.78 370 

at BC). Such a large optimization effect is attributed to the VEf expression replacement 371 

to the fitted RF model. 372 

 373 

 374 

Fig. 6. Boxplots of RF-PMRS (a) and PMRS (b) PM2.5 bias at the BJ and BC sites. The upper (lower) 375 
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black line of each box represents the largest (smallest) value, the blue upper (lower) border 376 

represents the upper (lower) quartile, and the red line denotes the median. Besides, the yellow, 377 

orange, and gray symbols are the MB, RMSE, and MAE of the corresponding PM2.5 concentration. 378 

 379 

4.3. Generalization performance of RF-PMRS 380 

Then, we estimate PM2.5 based on PMRS and RF-PMRS within North China in 2017 381 

(Fig. 1 exhibits the distribution pattern of the validation stations). Table 4 shows the 382 

accuracy statistics. It can be seen that RF-PMRS greatly reduces the bias (about 383 

44.87%), with MB of about 2.31 μg/m³. Similar to the results at the sites, the RF-PMRS 384 

method can derive PM2.5 concentration with practically no overestimation 385 

(underestimation). Although there is not much difference in R values of the two models 386 

(R of RF-PMRS is only improved by 0.01), RMSE and MAE of which decrease by 387 

about 39.96 μg/m³ and 18.86 μg/m³, respectively. As a result, the optimized method 388 

deserves to be considered excellent. 389 

 390 

Table 4. Validation results of PMRS and RF-PMRS PM2.5 in North China. 391 

Method R 
MB 

(μg/m³) 

RMB 

(%) 

RMSE 

(μg/m³) 

MAE 

(μg/m³) 

PMRS 0.69 -29.34 48.71% 79.98 44.72 

RF-PMRS 0.70 2.31 3.84% 40.02 25.86 

 392 

Meanwhile, PM2.5 scatterplots are presented below. As depicted in Fig. 7, there are 393 

sufficient estimated samples (28305) in the NC region, which guarantees the credibility 394 

of our validation results. In general, the RF-PMRS PM2.5 values are distributed around 395 

the 1:1 reference line evenly, with a slightly higher R of 0.70 compared to that of the 396 

original method. And the slope of the linear fitting relationship reaches 0.82, which 397 

indicates that the proposed method greatly reduces the overestimation of PMRS with a 398 

linear slope of 1.46. Although the overall performance of the RF-PMRS estimations 399 

maintains an excellent level, defects do remain. To be specific, in areas with high PM2.5 400 

concentration (especially greater than 150 μg/m³), RF-PMRS results exist a slight 401 

underestimation. It may be caused by the relatively small number of high-value PM2.5 402 

points (only 1319 out of 28305), which is difficult to adequately reflect the fitting effect 403 
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of the method.  404 

 405 

 406 

Fig. 7. Validation scatterplots of PM2.5 results from PMRS (left) and RF-PMRS (right). Red dashed 407 

lines are 1:1 reference lines, and blue solid lines stand for the linear fits. The right legends show the 408 

point densities (frequency) represented by different colors. 409 

 410 

As for RF-PMRS, the deviation is reduced to a large extent, so the probability density 411 

function maps based on the bias of PMRS and RF-PMRS are further drawn. Fig. 8 412 

visualizes the probability densities within different bias ranges. In terms of distribution 413 

characteristics, the overall bias of RF-PMRS from the zero value (black solid line) is 414 

small. About the curve shape, it is high and narrow, manifesting that the bias has a lower 415 

standard deviation (STD) and is more prone to appear around the mean. However, 416 

PRMS shows a more discrete distribution pattern, and there are many outliers outside 417 

the range of greater than 600 μg/m³. Simultaneously, as can be concluded from the three 418 

boxes, within the bias range of ±20 μg/m³ and ±40 μg/m³, the data numbers of RF-419 

PMRS results increase by 8.32% and 12.81%, respectively. Outside the range of ±100 420 

μg/m³, the number decreases by 9.10%. Therefore, as far as the accuracy is concerned, 421 

RF-PMRS results have lower bias and better stability. 422 

 423 

In addition to the above general performance comparison in Section 4.3, Fig. 9 424 

presents the annual average RMSE spatial distribution of PMRS and RF-PMRS PM2.5 425 

at NC stations. The two methods show a large deviation in the middle and southeast, 426 

and the RMSE map of PMRS has more red points. However, RF-PMRS can weaken 427 



19 
 

this phenomenon very well since its RMSE representative colors are generally light. In 428 

particular, the proportion of dark red sites (RMSE greater than 60 μg/m³) decreases 429 

from 65.44% (PMRS) to 4.15% (RF-PMRS). In the areas where the ground stations are 430 

clustered, the deviation also reduces significantly. 431 

 432 

 433 
Fig. 8. Probability density functions of PMRS (yellow) and RF-PMRS (green) PM2.5 bias. The red, 434 

blue and grey dotted lines indicate the bias boundaries of ±20 μg/m³, ±40 μg/m³, and ±100 μg/m³, 435 

respectively. μ and σ represent the mean value and standard deviation of each data. 436 

 437 

 438 

Fig. 9. RMSE of the year-average PM2.5 concentration values between different models and ground 439 

stations (left: PMRS PM2.5, right: RF-PMRS PM2.5). Note that the top red of the RMSE legend 440 

indicates RMSE values equal to or greater than 60 μg/m³. 441 

 442 
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In a word, the above analysis demonstrates that compared with the simple quadratic 443 

polynomial relationship (equation (10)), the established RF model in RF-PMRS can 444 

more accurately capture the relationship between VEf and multiple variables, thereby 445 

improving the PM2.5 estimation accuracy. 446 

 447 

5. Discussion 448 

5.1. Accuracy comparison of PMRS using MODIS/Phy-DL FMF 449 

To confirm the superiority of the Phy-DL FMF data adopted in our method 450 

framework, taking the BJ and BC sites as examples (in 2017), the experiment compares 451 

the PM2.5 accuracy and the number of effective days calculated by PMRS based on 452 

different FMF. Table 5 presents the overall day-level results. Here, ‘DOY’ means the 453 

day of the year and ‘valid’ means that all variables related to the PM2.5 calculation are 454 

valid. As can be seen, after the FMF replacement, the valid DOY turns out to become 455 

more (an increase of 113 days), which illustrates that the number of effective PM2.5 456 

concentrations has gone up by about 5 times. Moreover, the accuracy has been 457 

significantly enhanced, with R increased by about 0.30, RMSE and MAE decreased by 458 

26.14% and 16.47% accordingly. On the whole, Phy-DL FMF contributes to the 459 

improvement of PMRS results, signifying the first step optimization of the proposed 460 

RF-PMRS method is effective. 461 

 462 

Table 5. Validation results of the PMRS method using different FMF data. The valid DOY refers to 463 

the number of days that the AOD, FMF, and other data are not missing when calculating PM2.5. Note 464 

that since the valid days of the two schemes are different, the MB and RMB are not compared. 465 

 Valid DOY  R 
RMSE 

(μg/m³) 

MAE 

(μg/m³) 

PMRS with MODIS FMF 30 0.38 63.01 35.64 

PMRS with Phy-DL FMF 143 0.68 46.54 29.77 

 466 

5.2. Performance compared with other ML models 467 

Different machine learning models are suitable for diverse research data, and 468 

decision tree (DT) models can better fit experiments with fewer variables, such as this 469 

study. For comparison, except for RF, the Extremely Randomized Tree (ERT) (Geurts 470 
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et al., 2006) and Gradient Boosting Decision Tree (GBDT) (Friedman, 2001) models 471 

have also been established. The results of training VEf based on the above three DT 472 

models are presented in Table 6 and Table 7. By contrast, RF performs best in CV and 473 

IV experiments, as indicated by the multiple accuracy indicators. Although ERT and 474 

GBDT models are comparable to RF in some indicators, there exists a certain degree 475 

of overfitting in the above two models, which is manifested in that their IV results are 476 

clearly worse than their respective CV ones. Thus, the RF model is applied to our study. 477 

 478 

Table 6. Cross-validation results in comparison of the decision tree models for training VEf. N 479 

represents the number of data, and VEf has no unit. 480 

CV results 
 

R RMSE RPE MAE N 

RF 0.974  0.076  0.330  0.034  

6463 ERT 0.972  0.079  0.343  0.035  

GBDT 0.973  0.078  0.339  0.036  

 481 

Table 7. Isolated-validation results in comparison of the decision tree models for training VEf. The 482 

indicators are the same as those in Table 6. 483 

IV results 
 

R RMSE RPE MAE N 

RF 0.975  0.067  0.299  0.037  

814 ERT 0.967  0.076  0.340  0.042  

GBDT 0.969  0.074  0.331  0.040  

 484 

5.3. Feature importance of the embedded RF model 485 

Additionally, the feature importance of RF is calculated to evaluate the contribution 486 

of model predictors to VEf simulation. Fig. B2 (in Appendix B) shows the results by 487 

normalization (taking 100 as the total). Without a doubt, FMF accounts for the largest 488 

proportion, about 76.4%, which is consistent with the analysis when selecting the VEf-489 

related variables (see Section 3.2). The contribution of spatiotemporal variables is about 490 

1/3 of FMF, which indirectly affirms the credibility of RF feature learning. Also, it 491 

provides a basis for further uncertainty optimization of VEf and PM2.5 accuracy. 492 

 493 
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6. Conclusion 494 

Among various satellite remote sensing methods for PM2.5 retrieval, the semi-495 

empirical physical approach has strong physical significance and clear calculation steps 496 

and derives the PM2.5 mass concentration independently of in situ observations. 497 

However, the parameters with the meaning of optical properties are difficult to express, 498 

which need to be optimized. Hence, the study proposes a method (RF-PMRS) that 499 

embeds machine learning in a physical model to obtain surface PM2.5: 1) Based on the 500 

PMRS method and select the Phy-DL FMF product with a combined mechanism; 2) 501 

Use the RF model to fit the parameter VEf, rather than a simple quadratic polynomial. 502 

In the point-to-surface validation, RF-PMRS shows great optimized performance. 503 

Experiments at two AERONET sites show that R reaches up to 0.8. And in North China, 504 

RMSE decreases by 39.95 μg/m³ with a 44.87% reduction in relative deviation. In the 505 

future, we will further explore the combination of atmospheric mechanism and machine 506 

learning, then research the PM2.5 retrieval methods with physical meaning and higher 507 

accuracy. 508 

 509 

Appendix A: Supplementary description 510 

A1. 10-fold cross-validation and isolated-validation 511 

The sample-based 10-fold cross-validation method is applied to test the fitting and 512 

predictive ability of our model. The original dataset is randomly divided into ten parts, 513 

nine of which are used as the training set for model fitting, and the remaining one is 514 

used for prediction, then the cross-validation process is repeated ten rounds until each 515 

data has been used as the test set.  516 

At the same time, when verifying the RF-based VEf model, the dataset in the period 517 

that did not participate in the training in Table 1 is used for isolated-validation. 518 

 519 

A2. Statistical indicators 520 
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 526 

where m is the total number of observations, i is the number of measurements, yi is the 527 

i-th observation, fi is the corresponding estimation result. And 𝑦  and  𝑓 ̅ are the 528 

averages of all observations and estimates, respectively. 529 

 530 

A3. Parameter adjustments of the RF model 531 

The four parameters of RF are adjusted, that is the correlation coefficient r changes 532 

with (a) the number of trees, (b) maximum depth, (c) maximum number of features 533 

when splitting, (d) minimum number of split samples. Experiments show that the 534 

maximum depth varies greatly in a small range. To prevent overfitting, the four 535 

parameters of RF are adjusted to 60, 10, 2, and 8. It can ensure high accuracy while 536 

improving training efficiency. 537 

 538 
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Appendix B: Figures 539 

 540 

Fig. B1. The time series of PMRS/RF-PMRS PM2.5 bias at the Beijing and Beijing-CAMS sites 541 

under their respective DOYs in 2017. The orange line represents the bias between the PM2.5 values 542 

of PMRS and stations, while the blue one indicates the PM2.5 difference between RF-PMRS and 543 

stations. 544 

 545 

 546 

Fig. B2. The predictor importance results (normalized) of the RF model for training VEf. 547 

 548 

Code and data availability 549 

All relevant codes as well as the intermediate data of this work are archived at 550 

https://doi.org/10.5281/zenodo.7183822 (Jin, 2022). The MCD19A2 data can be 551 
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downloaded on https://ladsweb.modaps.eosdis.nasa.gov (last access: 30-09-2022) 552 

(Lyapustin and Wang, 2015). Detailed information about the Phy-DL FMF dataset can 553 

be found at https://doi.org/10.5281/zenodo.5105617 (Yan, 2021). Meteorological data 554 

used in this work are obtained at 555 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (last 556 

access: 30-09-2022) (Hersbach et al., 2018). AERONET data was downloaded from 557 

https://aeronet.gsfc.nasa.gov/ (last access: 30-09-2022) (Giles et al., 2019). 558 
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