Preprints
https://doi.org/10.5194/egusphere-2022-865
https://doi.org/10.5194/egusphere-2022-865
28 Sep 2022
 | 28 Sep 2022

Rain process models and convergence to point processes

Scott Hottovy and Samuel N. Stechmann

Abstract. A variety of stochastic models have been used to describe time series of precipitation or rainfall. Since many of these stochastic models are simplistic, it is desirable to develop connections between the stochastic models and the underlying physics of rain. Here, convergence results are presented for such a connection between two stochastic models: (i) a stochastic moisture process as a physics-based description of atmospheric moisture evolution, and (ii) a point process for rainfall time series as spike trains. The moisture process has dynamics that switch after the moisture hits a threshold, which represents the onset of rainfall and thereby gives rise to an associated rainfall process. This rainfall process is characterized by its random holding times for dry and wet periods. On average, the holding times for the wet periods are much shorter than the dry, and, in the limit of short wet periods, the rainfall process converges to a point process that is a spike train. Also, in the limit, the underlying moisture process becomes a threshold model with a teleporting boundary condition. To establish these limits and connections, formal asymptotic convergence is shown using the Fokker-Planck equation, which provides some intuitive understanding. Also, rigorous convergence is proved in mean-square with respect to continuous functions, of the moisture process, and convergence in mean-square with respect to generalized functions, of the rain process.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Mar 2023
Rain process models and convergence to point processes
Scott Hottovy and Samuel N. Stechmann
Nonlin. Processes Geophys., 30, 85–100, https://doi.org/10.5194/npg-30-85-2023,https://doi.org/10.5194/npg-30-85-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Rainfall is erratic and difficult to predict. Thus random models are often used to describe...
Share