Preprints
https://doi.org/10.5194/egusphere-2022-859
https://doi.org/10.5194/egusphere-2022-859
14 Nov 2022
 | 14 Nov 2022

CLGAN: A GAN-based video prediction model for precipitation nowcasting

Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi

Abstract. The prediction of precipitation patterns at high spatio-temporal resolution up to two hours ahead, also known as precipitation nowcasting, is of great relevance in weather-dependant decision-making and early warning systems. In this study, we are aiming to provide an efficient and easy-to-understand model - CLGAN, to improve the nowcasting skills of heavy precipitation events with deep neural networks for video prediction. The model constitutes a Generative Adversarial Network (GAN) architecture whose generator is built upon an u-shaped encoder-decoder network (U-Net) equipped with recurrent LSTM cells to capture spatio-temporal features. A comprehensive comparison among CLGAN, and baseline models optical flow model DenseRotation as well as the advanced video prediction model PredRNN-v2 is performed. We show that CLGAN outperforms in terms of scores for dichotomous events and object-based diagnostics. The ablation study indicates that the GAN-based architecture helps to capture heavy precipitation events. The results encourage future work based on the proposed CLGAN architecture to improve the precipitation nowcasting and early-warning systems.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

23 May 2023
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023,https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Formulating the short-term precipitation forecasting as a video prediction task, a novel deep...
Share