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Abstract. The prediction of precipitation patterns up to two hours ahead, also known as precipitation nowcasting, with high

spatio-temporal resolutions is of great relevance in weather-dependent decision making and early warning systems. In this

study, we are aiming to provide an efficient and easy-to-understand model using deep neural networks - CLGAN, to improve

the nowcasting skills of heavy precipitation events. The model constitutes a Generative Adversarial Network (GAN) archi-

tecture, whose generator is built upon a u-shaped encoder-decoder network (U-Net) and equips with recurrent LSTM cells to5

capture spatio-temporal features. An efficient optical flow model, DenseRotation, as well as a shallow video prediction model,

ConvLSTM, and an advanced one, PredRNN-v2, is performed as the competitors. A series of evaluation metrics, including

root mean square error, critical success index, fractions skill score and object-based diagnostic evaluation, are used for a com-

prehensive comparison. We show that CLGAN outperforms the competitors in terms of scores for dichotomous events and

object-based diagnostics. A sensitivity analysis on the weight of the GAN-component indicates that the GAN-based architec-10

ture helps to capture heavy precipitation events. The results encourage future work based on the proposed CLGAN architecture

to improve the precipitation nowcasting and early-warning systems.

1 Introduction

Heavy precipitation can lead to numerous hazards, cause damages to infrastructure, and even enhance risk of human life

(Ganguly and Bras, 2003; Vasiloff et al., 2007; Li et al., 2021). Accurate short-term predictions of precipitation events with15

high spatio-temporal resolutions, also known as precipitation nowcasting, are therefore critical in establishing early-warning

systems. These warning systems can in turn promote authorities in weather-dependent decision-making and enhance risk-

governance capabilities (Dixon and Wiener, 1993; Johnson et al., 1998; Bowler et al., 2006).

Current precipitation nowcasting mainly relies on convective-permitting numeric weather prediction (NWP) or on extrapo-

lation techniques of precipitation patterns with the help of composite radar observations. However, NWP models suffer from20

difficulties in capturing these patterns in the nowcasting time range due to the spin-up effect and the challenges of handling

non-Gaussian data in assimilation (Ravuri et al., 2021). Also, a quick model run cycle would be required. For instance, ICON-

D2 only runs every 3 hours (Matsunobu et al., 2022), which makes it impossible to get quick updates in light of rapidly

growing precipitation patterns. Observation-based extrapolation methods, such as optical flow, are commonly superior to NWP
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models in precipitation nowcasting, but also fail to capture the underlying non-linear processes of precipitation formation, e.g.25

secondary triggering and aggregation (Xie et al., 2019).

Deep neural networks have gained increasing attention in the meteorological community over the last few years (Reich-

stein et al., 2019; Schultz et al., 2021). The growing interest can be attributed to the success stories in other domains where

deep learning (DL) proves to leverage high-level information from complex and highly non-linear data in several applications,

such as autonomous driving (Hu et al., 2020), anomaly detection (Liu et al., 2018), and semantic segmentation (Garcia-Garcia30

et al., 2018). Recently, video prediction models developed in the computer vision community have been explored in precipita-

tion nowcasting. Contemporary studies mainly applied model architectures based on u-shaped convolutional networks (U-net;

e.g. Ayzel et al., 2020; Ronneberger et al., 2015), convolutional long short-term memory cells (ConvLSTM; e.g. Shi et al.,

2015), generative (see e.g. Ravuri et al., 2021) as well as attention models (see e.g. Sønderby et al., 2020). U-Nets are thereby

considered to be beneficial since they are capable to extract multi-scale features of the atmospheric processes (Ronneberger35

et al., 2015). To also explicitly capture temporal dependencies in the underlying formation process of precipitation, recur-

rent ConvLSTM models are an appealing choice (Shi et al., 2015). Thus, combining convolutional and recurrent networks

with ConvLSTM-layers is advantageous in generating stable precipitation nowcasting by learning the spatial and temporal

dependency from the historical frames.

Nevertheless, these models have problems with handling the statistical nature of precipitation, especially when a pixel-40

wise loss function is applied for the optimization process during training (Shi et al., 2017; Ayzel et al., 2020). Although log

transformation, importance sampling and weighting towards heavier precipitation targets are appropriate to govern the right-

skewed Gamma distribution of precipitation rates (e.g. Ravuri et al., 2021), the inherent uncertainty in quasi-chaotic processes

at meso-scale typically leads to unrealistically smooth precipitation patterns in the forecasts. While this issue is well known

in many other video prediction tasks (Mathieu et al., 2015; Ebert et al., 2017), it is of particular relevance in precipitation45

nowcasting. The high spatio-temporal variability seen in the observational (real) data cannot be maintained and thus, heavy

precipitation events are barely captured by models applying a pixel-wise loss. Generative models which train a generator and

a discriminator adversarially (GAN models) are considered to be a potential solution for such applications (Goodfellow et al.,

2020). By forcing the generator to fool the discriminator which aims to distinguish between real and generated data, these

models succeed in maintaining the statistical properties of the underlying data (Oprea et al., 2020).50

Although great progress has been achieved in a series of recent work (e.g. Ravuri et al., 2021; Gong et al., 2022), there is

controversy regarding how to understand the contribution of each component within the sophisticated models. Motivated by

this, we build a simple but efficient and easy-to-understand video prediction model, CLGAN (Convolutional Long short-term

memory Generative Adversarial Network; see Fig. 1), for the nowcasting task. CLGAN is proposed to leverage the advantages

of different DL model architectures. The generator combines the U-Net with a ConvLSTM cell to abstract spatial features on55

multiple scales, while the temporal dependency of precipitation patterns is also preserved. The generator network is then trained

adversarially to attain precipitation forecasts resembling observed data. For our nowcasting application, we deploy a gridded

dataset with a temporal resolution of 10 minutes aggregated from automatic weather station (AWS) gauges over Guizhou,

China. The predictive performance of the proposed model architecture is then accessed in a comprehensive evaluation based
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on metrics designed for precipitation nowcasting. The evaluation also involves a comparison against a simplistic persistence60

forecast, the conventional optical flow model DenseRotation (Ayzel et al., 2019) as well as two baseline video prediction

models, a standard ConvLSTM (Shi et al., 2015) network and a up-to-date competing model PredRNN-v2 (Wang et al., 2021).

With this, the main contributions of our study are:

– An efficient and easy-to-understand architecture CLGAN leveraging the merits of U-Net, ConvLSTM and GAN models

is proposed to generate perceptually realistic precipitation forecasts.65

– A new 10-minute-level precipitation dataset based on AWS gauges (Guizhou AWS_ML precipitation dataset) is built for

machine learning experiments.

– Nowcasting of heavy precipitation events is improved with a comprehensive verification.

– A sensitivity analysis is performed on the contribution of the GAN-component in generating forecasts with closer statis-

tical properties of the observed precipitation.70

2 Related Work and baseline models

Conventional Methods. The simplest approach to generate a precipitation ’forecast’ is to deploy the Eulerian persistence.

For this, the most recent available observation, usually a radar composite, is used and then replicated several times for the

future steps. This approach is quite accurate for very short lead times, but obviously fails to provide meaningful forecasts in a

quickly evolving system such as the atmosphere for time scales beyond several minutes. Thus, the related forecast quality can75

be considered as the minimum level for a prediction model to be useful.

Conventional precipitation nowcasting systems typically use a Lagrangian framework to predict the development of precip-

itation patterns. Although this framework often assumes persistence of the precipitation features’ intensity and displacement,

it is still capable to outperform mesoscale NWP models in precipitation nowcasting (Sun et al., 2014). The Lagrangian method

applies a two-step approach where the precipitation features are first tracked and then extrapolated to future time steps (Austin80

and Bellon, 1974). Typically, the tracking step is accomplished with the help of optical flow methods that infer the motion of

patterns from consecutive images. For precipitation nowcasting, radar composite images are subject to a tracking algorithm

such as cross-correlation tracking (Rinehart and Garvey, 1978; Grecu and Krajewski, 2000; Zahraei et al., 2012) or centroid

tracking techniques (Zahraei et al., 2013). The tracked objects are then applied to different extrapolation schemes, e.g. image

warping (Wolberg, 1990), constant-vector advection (Bowler et al., 2004) or semi-Lagrangian scheme (Germann and Zawadzki,85

2002). With this two-step approach, several operational precipitation nowcasting systems have been established over the globe

in the last three decades, such as the Thunderstorm Identification Tracking, Nowcasting (TITAN; Dixon and Wiener, 1993), the

Storm Cell Identification and Tracking (SCIT; Johnson et al., 1998), and the Short-Term Ensemble Prediction System (STEPS;

Bowler et al., 2006) (see Wilson et al., 2010, for a review on operational systems).

Recently, Ayzel et al. (2019) implemented a set of advanced optical flow models into an open-source Python library called90

rainymotion. Two different groups of methods are part of this library from which we show more interest in the DenseRotation
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model that performs best in their study. The tracking algorithm of this model is based on the Dense Inverse Search algorithm

proposed in Kroeger et al. (2016) which provides an estimate of the motion of each pixel based on two consecutive radar

images. The extrapolation is then performed with a semi-Lagrangian advection scheme (Germann and Zawadzki, 2002), which

is capable to represent rotational motions.95

In our paper, the Eulerian persistence model and the DenseRotation model are used to show how well the traditional methods

can perform for the precipitation nowcasting task and how much benefit can be further obtained by using DL-based video

prediction methods.

Video Prediction Method. As already mentioned, the application of deep learning techniques in the meteorological community

has gained momentum over the recent years. In particular, several studies have started to explore these techniques to tackle100

the precipitation nowcasting problem. By formulating precipitation nowcasting as a sequence prediction task, Shi et al. (2015)

proposed a network of ConvLSTM cells which apply a convolution in the recurrent layers of the vanilla LSTM to capture

spatio-temporal features in the underlying data. Their 2-layer ConvLSTM network was able to outperform Real-time Optical

flow by Variational methods for Echoes of Radar (ROVER; Woo and Wong, 2017), an operational precipitation nowcasting

system based on optical flow methods with a semi-Lagrangian advection scheme. Shi et al. (2017) further extended the recurrent105

cells of GRUs with non-local neural connections and proposed the Trajectory GRU (TrajGRU) model which enables learning

of location-variant structures of precipitation.

Besides, Wang et al. (2017) advanced the application of ConvLSTM networks and proposed the predictive recurrent neural

network (PredRNN). They deployed a stack of recurrent layers that feature a zigzag memory flow and involve an explicit spatio-

temporal memory state. In this way, they enable an explicit communication of abstracted spatio-temporal features between110

different levels of the recurrent network which yields improved precipitation predictions. While this approach already provided

promising results, the PredRNN model was further developed to PredRNN-V2 (Wang et al., 2021). The advances comprise

the implementation of a decoupling loss ST-LSTM to enhance featuring of the spatio-temporal variations and a new, improved

long-term modeling strategy. The model attains remarkable improvements when applied to multiple datasets including the

radar echoes.115

Meanwhile, other network architectures were also explored in scope of precipitation nowcasting. One of them is the fully

convolutional U-Net architecture, which is a U-shaped hierarchical encoder-decoder network with skip connections. The ar-

chitecture enables abstraction of features on different spatial scales. Notably, the RainNet-architecture proposed by Ayzel et al.

(2020) proved to significantly outperform optical flow based nowcasting methods for weak precipitation events. However, their

network tends to provide smooth precipitation fields and therefore fails to provide added value for more intense precipitation120

events with a rain rate above 10mm/h. Recently, a deep generative model for the probabilistic precipitation nowcasting was

proposed and showed state-of-the-art performance for the task (Ravuri et al., 2021).

All these studies demonstrate that deep neural networks have the potential to provide added value for precipitation nowcast-

ing. In our study, we mainly focus on further improving the predictions of strong precipitation events and therefore choose a

simple ConvLSTM (Shi et al., 2015) and the advanced PredRNN-v2 (Wang et al., 2021) model for competing with our newly125

proposed model architecture.
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3 Method and Data

3.1 Our model CLGAN

In the following, we present in more detail our proposed CLGAN architecture. Since CLGAN aims to benefit from ConvLSTM-

models, the U-Net architecture and the GAN models, we first introduce its components separately to provide a deeper under-130

standing and reasoning for the chosen model architecture.

3.1.1 ConvLSTM

The basic formulas of the ConvLSTM cell which describe the gated update procedure for the hidden and the cell state are

provided in Shi et al. (2015) and are therefore not repeated here. The objective function of a ConvLSTM model typically

constitutes the classical L2 reconstruction loss. This loss measures the distance between the predicted and the target (ground135

truth) data on grid point (or pixel-wise) level and can be written as

L2(G) =
∥∥∥ #»

Y t0+1:t −
#̂»

Xt0+1:t

∥∥∥
2

(1)

where
#»

Y and
#̂»

X are two-dimensional tensors for the ground truth and the predicted data, respectively. t0 represents the end of

the input sequence, so that the model is optimized on the loss over the prediction sequence which ends at time step t. These

tensors comprise w×h grid points in zonal and meridional direction of the domain of interest. Note that the loss only operates140

on the predicted data sequence which starts with the first time step after the end of the input data sequence t0 +1. The complete

data sequence, i.e. input and prediction, involves t time steps.

3.1.2 U-Net

The U-Net model was originally applied for biomedical image segmentation (Ronneberger et al., 2015) and is therefore de-

signed as a powerful feature extractor on various spatial scales. As illustrated in Fig. 1a, it can be decomposed into a compress-145

ing and an expansive path that are bridged by skip connections. The contracting path can be seen as an encoder which converts

the high-resolved data into coarse-grained features using convolutional and pooling layers. The expansive path, acting as a

decoder, applies deconvolutional layers to convert back to the original spatial resolution, of which the number of data points

are w×h. Usually, several pooling and deconvolution layers are applied to allow feature extraction on different spatial scales.

To avoid the vanishing gradients issue and to allow a direct information flow of specific spatial features, skip connections are150

implemented at every scale-specific feature extraction level (Drozdzal et al., 2016).

In a video prediction application, the data at time step t enters the encoder to produce a forecast at time step t+1 with the

decoder. By doing so, no long-term information is explicitly conveyed as with the ConvLSTM-model. Since heavy precipitation

events are rare, but of high relevance for nowcasting, different techniques are usually applied to encourage deep neural networks

in predicting events on the right tail of the underlying PDF. Log-transformation converts the right-skewed Gamma distribution155

of precipitation data (e.g. RainNet in Ayzel et al., 2020) into a Gaussian-like distribution which puts strong precipitation events
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closer to the center of mass in probability space. Stronger weighting on higher precipitation rates and importance sampling

can further support the optimization efficiency with respect to heavy precipitation events (Ravuri et al., 2021). Nonetheless,

U-Nets and ConvLSTM modes still tend to produce too smooth precipitation patterns, thereby failing to capture the relevant

strong precipitation events.160

3.1.3 Generative adversarial networks

To enforce a closer agreement of the generated data with the ground truth, GAN models were proposed by Goodfellow et al.

(2020). A GAN model consists of a generative network G (generator) and a discriminative network D (discriminator) which

aims to assign a probability of 1 to real data and a probability of 0 to generated data. While the discriminator is optimized to

distinguish between both kinds of inputted data, the generator is encouraged to fool the discriminator. Thus, the GAN applies165

the binary cross-entropy loss as the objective function which enters a minimax-game:

G⋆ =argmin
G

max
D

LGAN (G,D)

with LGAN (G,D) =E #»
X1:t

[
logD(

#»

Xt0+1:t)
]
+E #»

X1:t

[
log(1−D(G(

#»

X1:t0)))
]
. (2)

Here, the generator is conditioned on the input data sequence
#»

X1:t0 . Since generator and discriminator are trained adversarially,

the generator is encouraged to create predictions that share the same statistical properties as the ground truth data. This is170

considered to be useful for generating realistic precipitation forecasts which should exhibit the high spatial variability of the

observed data (Ravuri et al., 2021; Price and Rasp, 2022; Harris et al., 2022).

3.1.4 Convolutional LSTM GAN (CLGAN)

To combine the merits of a GAN model with the strong spatio-temporal feature extraction capacities of U-Nets and ConvLSTM

models, we set up the generator G as follows (see Fig. 1a): The generator constitues a three-level U-net following Sha et al.175

(2020). Each level of the encoder comprises two convolutional layers followed by max-pooling with a 2x2-kernel to reduce

the spatial dimensionality in the next layer. The number of channels is thereby increased by a factor of two in each level. A

ConvLSTM cell with 64 filters is deployed to implement recurrency at the bridge between the encoder and decoder. The decoder

then reverts the encoded data to the input resolution with the help of deconvolutional layers. Furthermore, skip connections

among the encoder and decoder are added at each level of the U-net. The discriminator D consists of 3D fully convolutional180

layers with batch normalization which allow us to encode both, the temporal and spatial dimension of the data sequence.

Again, max-pooling is used to compress the data which finally gets concatenated to fully connected layers (see Fig. 1b). The

forecast sequence of G,
#̂»

Xt0+1:t, as well as the corresponding ground-truth sequence,
#»

Y t0+1:t, are taken as the inputs for the

discriminator D (see Fig. 1c).

In this study, the generator is trained by combining the adversarial loss LGAN with the reconstruction L2-loss:185

G⋆ = (1−λ)LGAN (G,D)+λL2(G) with λ ∈ [0,1]. (3)

6



This ensures that the prediction remain close to the ground truth. The relative weight of the reconstruction loss λ is set to 0.99

which proves to balance the contributions from both loss components in the following experiments. Training of the model is

performed with the Adam optimizer (Kingma and Ba, 2014) over eight epochs with a batch size of 32.

3.2 Guizhou AWS_ML precipitation dataset190

In addition of the widely used remote sensing data, e.g. radar composite images, measurements from densely-distributed auto-

matic weather stations can serve as an alternative in the data-driven weather forecasting. In this study, minute-level precipitation

measurements by rain gauges of AWS over Guizhou, China (Guizhou AWS_ML precipitation dataset) is collected for the pre-

cipitation nowcasting task. Guizhou is a mountainous and rainy province located in southwest China (see Fig. 2a) where mud-

slides happen frequently during summer-times. For instance, the region was affected by a severe rainstorm in September 2020,195

when some regions experienced more than 1500mm rainfall within 20 days. Accurate precipitation nowcasting, especially for

heavy precipitation, is crucial to reduce damages from these events. Hence, the Guizhou AWS_ML precipitation dataset is

established for better simulation of precipitation with data-driven approaches. The AWS locations comprise 93 national basic

stations and 1740 automatic weather stations (see Fig. 2b). Among other meteorological quantities (2-m temperature, 10-m

wind, surface pressure and relative humidity), the AWS measures precipitation at a high observation frequency (every minute)200

and the data is provided between 1st Jan 2015 and 31st Dec 2019 by Guizhou Meteorological Bureau.

Several preprocessing steps are conducted for preparing the dataset of our experiment. First, the precipitation data is ac-

cumulated over 10 minutes which still constitutes a reasonably high temporal resolution. To obtain a gridded dataset, the

observations are then interpolated bilinearly onto a regular, spherical grid. The target grid comprises w×h= 48× 40 data

points in zonal and meridional direction, respectively, and covers a domain from 103.625◦E to 109.5◦E and 24.625◦N to205

29.5◦N with 0.125◦ resolutions. To obtain the data needed for training our CLGAN and the baseline models (see Sec. 2 and

3.1.4), we generate sliding sequences of 24 consecutive gridded data samples (frames) which comprise a temporal period of

240 minutes. 120 minutes (12 frames) of each sequence serve as inputs to predict the next 120 minutes (12 frames). Since

there are many periods with no or only weak precipitation, we furthermore only select sequences whose averaged precipitation

rate exceeds the empirical 60%-quantile of the complete dataset. This results in 35054 sequences for the subsampled dataset.210

Finally, a log-transformation is applied on each sequence to make the data more Gaussian-like. The log-transformation reads

as follows: x′ = ln(x+ ε)− ln(ε), where ε is a small constant (here 0.01). We use the data from 2015 to 2017 for training, the

data of 2018 for validating and the data of 2019 for testing.

3.3 Verification methods

As pointed out in Schultz et al. (2021) and more specifically for precipitation in Leinonen et al. (2020), precipitation nowcasting215

should be evaluated in terms of application-specific scores. This is due to the unique statistical properties of precipitation rates,

as well as the chaotic atmospheric processes which underpin the formation of precipitation. Additionally, we would like to

emphasize that a single score alone can barely evaluate the model performance applied to high-dimensional data (Wilks,

2011). Therefore, we take several evaluation metrics into account to provide a comprehensive overview.
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The first considered family of evaluation metrics is established for continuous quantities in the meteorological community.220

The root mean square error (RMSE) measures the distance between the predicted and the observed field on a grid-point level.

The correlation coefficient (CC) measures the association or the linear relationship between the two fields. A perfect correlation

would result in CC = 1, while CC = 0 indicates no linear relationship between forecast and observation on grid-point level.

The second set of scores is built on dichotomous events which are obtained by thresholding the gridded precipitation fields.

A 2×2 contingency table is commonly used to show the frequency of "yes" and "no" forecasts and occurrences and give a joint225

distribution for events with a precipitation rate exceeding a given threshold tpr. According to the elements in the contingency

table, a variety of categorical statistics can be computed to evaluate the dichotomous forecasts in particular aspects. Critical

Success Index (CSI), also known as Threat Score, measures the fraction of hits with respect to the number of occurrences

where the events are either forecasted or observed. The frequently applied Equitable Threat Score (ETS) is a variant of the CSI

and explicitly accounts for random forecasts which perform well just by chance (Wilks, 2011).230

However, due to the highly non-linear and complex processes causing precipitation formation, scores acting on grid-point

level are prone to penalize predictions which recover the high spatial variability, but fail to match exactly the observed pre-

cipitation field. The issue leads to the double penalty problem where the model gets penalized twice, once for missing the

exact placement of a precipitation event and once for shifting it spatially (Ebert, 2008). To relax the requirement for exact

spatial matching, the Fractions Skill Score (FSS) is computed here as a fuzzy verification metric (Roberts, 2008). Similar with235

the CSI and ETS, the FSS operates on dichotomous events, but allows for spatial shifts by considering a local neighborhood

around each grid point. Within this neighborhood, the fractional coverage of the precipitation events is calculated for both, the

predictions and the observations. Let f(ms
i ) and f(osi ) respectively denote the fraction of event grid boxes within the local

neighborhood of size s around the grid point i in the model prediction and observation. The Fractions Brier Score (FBS) is

given by:240

FBS =
1

N

N∑
i=1

(f(ms
i )− f(osi ))

2. (4)

which quantifies the quadratic difference between the prediction and the observation for all N grid points over the domain. The

final FSS is then obtained with:

FSS = 1−FBS/FBSworst. (5)

where FBSworst is the sum of the squared fractions of events in the prediction and in the observation. Higher FSS-values245

indicate better forecast, while it can be shown that a forecast becomes ’useful’ when FSS ≥ 0.5 is attained for a given neigh-

borhood scale s (typically expressed in terms of squares with an edge length of N grid points).

Nonetheless, FSS also does not capture the spatial precipitation patterns since each grid point in the neighborhood is treated

equally and no check for spatial coherence is undertaken. Thus, we additionally perform an object-based diagnostic evaluation,

called MODE (Johnson and Wang, 2012; Johnson et al., 2013; Ji et al., 2020), to focus on pattern attributes such as location,250

area and shape. To obtain the desired attributes, a convolutional filter of size k is first applied over the precipitation field.

Afterwards, objects are defined by applying an threshold on the precipitation rate tPr and on the object area tA. A fuzzy logic
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scheme is then used to merge and pair precipitation objects in the predicted and observed precipitation field. Finally, the object-

based threat score (OTS; Johnson and Wang, 2012) is computed to verify how well the predicted precipitation patterns match

the observed ones. Here, we choose the object area, the centroid location and the object shape (aspect ratio and orientation255

angle) as target attributes for computing the OTS.

All the mentioned verification methods are listed in Table 1 with a brief description. The details can be found in the corre-

sponding references.

Table 1. Summary of the verification methods used in the paper

Verification method Description Formula or Reference Notes

Root Mean Square Er-

ror

the average magnitude of the forecast

errors

√
1
N

∑N
i=1(Yi −Y ′

i )
2 [0, +∞);

Correlation Coefficient the correspondence between the fore-

cast and observed values

∑N
i=1(Yi−Ȳi)(Y

′
i −Ȳ ′

i )√∑N
i=1(Yi−Ȳi)2

√∑N
i=1(Y

′
i −Ȳ ′

i )
2

[-1, 1];

Critical Success Index the correspondence between the fore-

cast "yes" events and observed "yes"

events

hits
hits+misses+false alarms

[0, 1], 0 means no skills;

Equitable Threat Score the correspondence between the fore-

cast "yes" events and observed "yes"

events (accounting for hits due to

chance)

hits−hitsrandom
hits+false alarms

hitsrandom =
(hits+misses)(hits+false alarms)

total

[-1/3, 1], 0 means no skills;

Fractions Skill Score the spatial scales at which the forecast

resembles the observations

(Roberts and Lean, 2008) [0,1], the smallest window size

for which FSS≥0.5 can be con-

sidered as "skillful scale";

Object-based Threat

Score

the similarity between the forecast ob-

jects with the observed ones according

to a series of attributes

(Davis et al., 2006) [0, 1], 0 means complete mis-

match and 1 means perfect

match;

To ease the comparison between the baseline models and the simplistic persistence forecast, we furthermore calculate skill

scores (except for the FSS). In general, a skill score SS can be constructed by considering the target score Sm of the model,260

the score obtained with the reference forecast Sref and the perfect score Sperf :

SS =
Sm −Sref

Sperf −Sref
. (6)

The higher SS is, the better the model performs against the reference score. Perfect models thereby obtain SS = 1, while

inferior models show up with −∞< SS < 0. Note, that Sperf = 0 holds for the RMSE, whereas the other scores under
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consideration attain Sperf = 1. Since the size of our dataset is not unlimited, we also apply a block bootstrapping procedure to265

estimate sampling uncertainty (Efron and Tibshirani, 1994). The block bootstrapping procedure accounts for autocorrelation

between the sliding sequences and thus, divides the dataset into non-overlapping blocks before resampling of the blocks with

replacement is performed. Here, we set the block length to 10 hours (60 frames) and perform 1000 block bootstrapping steps.

4 Results

The performance of precipitation nowcasting using DenseRotation and persistence as well as video prediction models is dis-270

cussed in the following section.

4.1 Quantitative evaluation

4.1.1 Point-wise evaluation metrics

In Fig. 3a∼d, our model is compared to baseline models in terms of skill scores for the grid-point level evaluation metrics (CC,

RMSE, CSI, and ETS). The skill scores are calculated by defining the Eulerian persistence as reference forecast. It is seen275

that the deep learning models (i.e. ConvLSTM, PredRNN-v2 and CLGAN) as well as the optical flow model DenseRotation

outperform the persistence forecast after 20 minutes lead time in terms of the continuous scores (CC and RMSE). Among

the video prediction models, PredRNN-v2 is superior over the others over the first 20 minutes, while ConvLSTM performs

best for the longer lead times. CLGAN is not so competitive for RMSE and CC as PredRNN-v2 and ConvLSTM, while still

outperforms the traditional optical flow model DenseRotation. It’s noted that the Eulerian persistence performs well in the first280

10 minutes. One possible reason why these complex models can barely beat the persistence forecast in the first lead step is

that the precipitation systems are relatively invariant within this very short time period. In our case, the Eulerian persistence

forecast is the latest observations available, hence, which is highly correlated to the ground truth at short lead times. With lead

times increasing, its performance degrade quickly. The comparisons in terms of the dichotomous scores (CSI and ETS) are

given in Fig. 3c∼d. It demonstrates that CLGAN is superior to the other competitors at all the lead times for simulating the285

heavy precipitation events (here the threshold is 8mm/h). The optical flow model DenseRotation performs well in the first 40

lead minutes while its skill scores decrease rapidly. By contrast, the advanced deep learning model PredRNN-v2 shows more

potential for the longer lead times. Especially, although ConvLSTM outperforms on the continuous scores, it can barely capture

the heavy precipitation events and is even inferior to the persistence forecast for the first lead hour. A large degradation in skill

for ConvLSTM at the 20 minute lead time is seen in Fig. 3c∼d. One reason of the difference is that the ConvLSTM model is290

prone to produce blurry predictions in an auto-regressive prediction task, where the errors in the prior forecasts are inherited to

the later ones.

The comparisons of the model performance show that CLGAN is superior in terms of scores for dichotomous forecasts

(CSI and ETS) while is less competitive in terms of RMSE. It indicates that our CLGAN encourages the model to generate

forecasts which share similar distribution with the ground truth data, rather than just reducing the averaged point-wise loss.295
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Hence, more heavy precipitation events are predicted by the CLGAN model which improves the dichotomous forecast scores.

However, more predicted high-value precipitation could cause larger biases, compared to the models only generating low-value

forecasts. The problem is magnified with the use of the point-by-point scores, i.e. RMSE, which suffer from the double penalty

issue.

4.1.2 Spatial verification scores300

To further investigate the model performances, we now turn our attention to the spatial verification scores, the FSS and the

MODE framework. Fig. 4a shows the model performance on FSS at 60 lead minutes by the persistence method (used as

the reference forecast). The FSS is computed based on different neighbourhood sizes and thresholds of hourly precipitation

rates. Specifically, the neighbourhood scale s in kilometers varies along the x-axis. The FSS-values for s attaining values of

approximately 41, 69, 96, 152, and 290 kilometers (square boxes of 3, 5, 7, 11 and 21 grid points), respectively, are plotted and305

marked as box-whisker plots for varying precipitation thresholds. The box shows the range of the first quartile (upper) to the

third quartile (bottom) of the scores, and the whiskers are respectively the 95th percentile (upper) and 5th percentile (bottom).

As the threshold increases, FSS decreases, indicating that the persistence forecasts become increasingly imprecise for stronger

precipitation events with a given spatial scale. For precipitation events exceeding tPr = 8mm/h, the persistence forecasts is

considered useful (FSS ≥ 0.5; see e.g. Roberts, 2008) for a neighborhood scale of s≈ 69km. Thus, the spatial accuracy of310

capturing these events is already fairly degraded and the neighborhood scale of s≈ 69km (5 grid points) is applied to compute

the corresponding FSS. With persistence as the reference forecast, Fig. 4b compares the models’ performance in terms of FSS

for heavy precipitation forecasting. It is seen that all baseline models except ConvLSTM can remarkably improve the spatial

forecasting of such events, especially for the longer lead times. Among them, CLGAN is superior to the others at all the lead

times. DenseRotation performs well in the first lead hour while PredRNN-v2 is promising for the further lead times.315

4.1.3 Object-based diagnostic evaluation

To fully access the performance of the models in predicting precipitation spatial attributes, i.e. area, location and shape, the

MODE verification framework is applied here. In the following, we present conditional quantile plots for the object area, for

the location of the object centroid in east-west and north-south direction, for the aspect ratio and for the orientation angle of

the precipitation objects to show more details of predicted and observed precipitation objects. These plots visualize the joint320

distribution of the predictions and forecasts in a compact manner by applying a factorization into a conditional and marginal

distribution (Murphy and Winkler, 1987; Wilks, 2011). Fig 5 illustrates the joint distribution in terms of the likelihood-base

rate factorization. While the solid lines illustrate the forecasts conditioned on the observations for all models, the marginal

distribution of the observations is plotted as a histogram. Fig 5a shows the number of grid points of the observed and predicted

precipitation objects, which represents the area of precipitation objects. It can be seen that CLGAN and PredRNN-v2 are able to325

capture object area fairly well. Only objects consisting of 90 to 130 grid points (∼ 16,000km2) are slightly underestimated (see

Fig. 5a). However, the other competitor models perform remarkably worse. Fig 5b-c show the distance between the centroid of

the precipitation object and the western boundary and the southern boundary, which is measured by the number of grid points.
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It shows that the location of object centroids is generally well captured by all models. Stronger deviations are visible near the

lateral boundaries, especially in east-west direction. The aspect ratio and the orientation angle are used to assess the predicted330

precipitation shape in Fig. 5d∼e. The aspect ratio here is the ratio of the shorter side and the longer one of the precipitation

objects. The orientation angle is the degree of the angle between the precipitation objects and positive x-axis. CLGAN shows

slight improvements over the other models where the central parts of the orientation angle and aspect ratio are well calibrated.

However, larger deviations from the 1:1 reference line are obtained near the tails of the conditional distributions. It indicates

that further studies on simulation of precipitation shape are required.335

4.2 Case study

To gain further insight into the realism of precipitation nowcasting, a heavy precipitation event occurred on June 12th 2019 is

visualized as an example (see Fig. 6) to compare the model performance with an ’eyeball’ analysis. Fig. 6a shows the observed

precipitation rates in mm/(10 min) for every 20 minute over the forecast period starting at 06:50 BJT. It is seen that a fairly

strong precipitation system moves from west to east while it further intensifies. The predictions of the different models are340

presented as difference plots in Fig. 6b∼f. For the first 60 minutes, persistence and DenseRotation show up with the smallest

discrepancies. However, for longer lead times, clear dipole structures in the difference plots indicate that the movement of the

system is not detected. It demonstrates that the persistent Lagrangian framework is not sufficient for the long lead times and

more advanced models are required to capture the long-term dependence.

While the deep learning models also show up with increasing differences with lead times, they show better capability of345

capturing the movement and the intensification of the precipitation system (see Fig. 6d∼f). PredRNN-v2 trends to over-estimate

the precipitation intensity which causes large coherent areas of positive differences. ConvLSTM and CLGAN perform better

with smaller discrepancies. Consistent with the quantitative evaluation results, ConvLSTM outperforms the CLGAN model

in terms of RMSE in this given case, whereas CLGAN obtains a higher CSI and ETS. It demonstrates that the prediction

by ConvLSTM has a lower bias, while CLGAN can capture more heavy precipitation grid-points. Compared to ConvLSTM,350

the difference plot of CLGAN contains more fine structures which indicates that CLGAN can generate more details of the

precipitation system.

4.3 Ablation study

As shown in Eq. 3, the loss function used in our CLGAN model consists of two terms: the adversarial loss LGAN and the

reconstruction loss L2. To assess the contribution of each loss term on the forecasts performance, sensitivity experiments on355

the weight of the reconstruction loss in CLGAN were carried out. Larger weight of the adversarial loss (smaller weight of

reconstruction loss) is equivalent to a stronger contribution made by the GAN component. Fig. 7 presents the results of the

CLGAN model with different weights assigned to the L2 loss. It is seen that RMSE is increased when reducing the weight

of L2 loss (Fig. 7a). However, the scores for dichotomous events and fuzzy verification framework reveal improvements. The

model using a pure reconstruction loss (λ= 1 in Eq 3) performs significantly worse than the model applying an adversarial loss360

in terms of CSI and FSS (Fig. 7b∼c). Similar results are obtained in terms of the OTS (see Fig. 7d). The results of sensitivity
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experiments indicate that the adversarial training with the GAN-component encourages the model to generate forecasts which

are more similar to the ground truth data. Although a slight increase in RMSE is seen, a relatively stronger contribution of

the GAN-component helps to capture the statistical properties of the observed precipitation (on the tail as well as their spatial

attributes).365

5 Conclusion and Discussion

A novel architecture CLGAN is proposed in this work, which leverages the merits of U-Net, ConvLSTM and GAN components,

to generate high quality precipitation predictions up to 2 hours over Guizhou, China. The Eulerian persistence is used as the

baseline and a conventional optical flow model DenseRotation, as well as two video prediction models (ConvLSTM and

PredRNN-v2) is performed as competitor models. A Guizhou AWS_ML precipitation dataset is newly built for the task, on370

minute-level precipitation measurements from the AWS gauges. The model performance is comprehensively evaluated by a

series of domain-specific evaluation metrics, including the point-by-point and object-based verification methods. The results

demonstrate that DL-based video prediction models are generally superior to the conventional methods, especially for the lead

times over 60 minutes. However, the use of losses acting on grid-point level (e.g. L1 or L2 loss) diminishes the capability

of models in capturing heavy precipitation events. Since heavy precipitation events are strongly under-represented in the data375

during training, the models using grid-point level loss favor to predict weak precipitation rates, which avoids to yielding large

loss contributions. By contrast, the GAN-component of CLGAN encourages the generator to create predictions that share the

statistical properties of observed precipitation, which makes it superior to the baseline and competitor models in dichotomous

and spatial scores for heavy precipitation events.

Compared to the conventional methods, our results indicate that video prediction models with deep neural networks have380

a better capability of learning abstractions from data, which in turn can improve the prediction of complex evolving systems.

By learning the statistical dependency within the continuous sequence of precipitation data, video prediction models can well

simulate the precipitation patterns up to 2 hours. Since the NWP models suffer from the spin-up issue in the first 6 hours

and the conventional approaches are too weak to capture the long-term dependency, video prediction models show potential

as a promising and reliable way for precipitation nowcasting. However, a model performance degradation is expected with a385

longer lead time, i.e. 6 hours, due to the error accumulation in the auto-regressive prediction task. The quick evolution of the

convective precipitation systems further adds the challenge. Our results also demonstrate that it is challenging to capture the

shape features of precipitation by DL-based models in terms of the MODE scores. It will be very interesting to integrate the

domain-specific evaluation metrics for spatial forecasts (e.g. FSS and MODE) as the loss function in DL-based models for

precipitation nowcasting. Additionally, we also see that a trade-off between evaluations on grid-point level and object-based390

evaluations exists when the adversarial loss is varied. Grid search for the optimal combination of loss function coefficients is

required to generate realistic forecasts with a low margin of error.

Beyond that, it’s appealing to embedding more corresponding weather variables as the additional predictors, i.e. the dynamic

momentum, water vapor, thermal and other environmental conditions. Literature shows that the corresponding predictors and
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physical constraints can greatly improve the simulation of the targeted variable (Daw et al., 2017; Gong et al., 2022). A395

careful selection of the candidate predictors and an appropriate embedding solution are subject to our future work. In addition,

research show that GAN models can be extended to provide ensemble forecasts, by adding the noise as additional input, which

allow a quantification of the forecast uncertainty (Mordido et al., 2018). A probabilistic nowcasting system is appealing due

to the strong inherent uncertainties in the dynamics of precipitation patterns. By transferring the deterministic forecasting to

the probabilistic forecasting, the model has more chance to capture the heavy or even extreme precipitation events and better400

quantifies the uncertainty of prediction (Ravuri et al., 2021). However, in this study, we focused on proving that a GAN-based

approach is capable to circumvent the issue of forecasting too smooth precipitation patterns and investigate its sensitivity to the

weighting terms in the loss function. The capacity of CLGAN to generate probabilistic forecasts will be investigated in future

studies.

Code and data availability. The Guizhou AWS_ML precipitation dataset and the exact version of the video prediction models used in405

this paper are archived on Zenodo (https://zenodo.org/record/7278016#.Y2ppyL7MIuQ). A frozen code repository can be obtained here:

https://gitlab.jsc.fz-juelich.de/esde/machine-learning/ambs/-/tree/ambs_gmd_nowcasting_v1.0. The dataset and scripts can help users to re-

produce the results on their local machines or high-performance computers. By using these data and models, it is highly recommended to

follow the README.md file of the code repository to run the end-to-end workflow.
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（a）

（b）

（c）

Figure 1. The details of the proposed CLGAN model; (a) Generator: The illustration is presented for a given forecast step i. If i= 1, the inputs

are observed sequences
#»
X1:t0 . Otherwise the inputs are combined sequences of observed ones

#»
Xi:t0 , and predicted ones

#̂»
Xt0+1:t0+i−1. The

output is the model prediction X̂t0+i at the forecast step i. c is the number of channels of inputs, here is 1. ngf is the number of filters

in the first layer of U-Net. (b) Discriminator: n is the length of output sequences. (c) CLGAN: The outputs of Generator are the predicted

sequences
#̂»
Xt0+1:t.

#»
Y t0+1:t is the corresponding ground-truth. L2 and LGAN are the reconstruction loss and adversarial loss respectively.
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Figure 2. (a) Annual average cumulative precipitation in Guizhou from 2015 to 2019; (b) The spatial distribution of AWS over Guizhou.

16



Figure 3. Box-whisker plots for skill scores of (a) CC, (b) RMSE, (c) CSI and (d) ETS averaged over the testing period with the Eulerian

persistence as the reference forecast. The box shows the range of the first quartile (upper) to the third quartile (bottom) of the skill scores,

and the whiskers are respectively the 95th percentile (upper) and 5th percentile (bottom). The threshold tpr of CSI and ETS is 8mm/h.
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Figure 4. (a) FSS of persistence for different scales and intensity thresholds at 60 lead minutes for precipitation nowcasting. (b) Improvements

of different models compared with persistence in terms of FSS with a threshold tpr of 8mm/h and a neighbourhood size of 5. The box shows

the range of the first quartile (upper) to the third quartile (bottom) of the scores, and the whiskers are respectively the 95th percentile (upper)

and 5th percentile (bottom).
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Figure 5. Conditional quantile plots in terms of the likelihood base-rate factorization for [(a) area, (b) E-W centroid and N-S centroid

location, (d) aspect ratio, and (e) orientation angle, at the lead time of 60 minutes. The solid black line is the 1:1 reference line. The marginal

distribution of the observations is presented as a histogram.
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Figure 6. A case study for a rain system moving from west to east while intensifying (a) Observation (Obse). The predictions of all models

are illustrated with difference plots: (b) Persistence (Persi), (c) DenseRotation (Dense), (d) ConvLSTM (ConvL), (e) PredRNN-v2 (PredR)

and (f) CLGAN. The initial time of the prediction period is 06:50 on June 12th 2019 (BJT).
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Figure 7. Mean scores [(a) RMSE, (b) CSI, (c) FSS and (d) OTS] for all lead times over the verification period for different weights of the

L2 loss in CLGAN. The ’weight1’, ’weight999’, ’weight99’ and ’weight9’ on the legend mean the weights of the L2 loss are 1, 0.999, 0.99

and 0.9, respectively. As in Fig. 3, tPr = 8mm/h is chosen for CSI, OTS and FSS together with setting s to 5 grid points for the latter. The

area threshold tA of OTS is set to 9 grid points.
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