
CLGAN: A GAN-based video prediction model for precipitation
nowcasting
Yan Ji1,2, Bing Gong2, Michael Langguth2, Amirpasha Mozaffari2, and Xiefei Zhi1

1Nanjing University of Information Science and Technology, 210044 Nanjing, China
2Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

Correspondence: b.gong@fz-juelich.de

Abstract. The prediction of precipitation patterns up to two hours ahead, also known as precipitation nowcasting,
:
at high spatio-

temporal resolutions is of great relevance in weather-dependent decision making and early warning systems. In this study, we

are aiming to provide an efficient and easy-to-understand
::::
deep

::::::
neural

:::::::
network

:
- CLGAN, to improve the nowcasting skills

of heavy precipitation events. The model constitutes a Generative Adversarial Network (GAN) architecture, whose generator

is built upon a u-shaped encoder-decoder network (U-Net)
:::
and

::::::
equips with recurrent LSTM cells to capture spatio-temporal5

features.
::::
The

::::::
optical

::::
flow

:::::
model

:::::::::::::
DenseRotation

:::
and

:::
the

::::::::::
competitive

:::::
video

:::::::::
prediction

::::::
models

:::::::::::
ConvLSTM

:::
and

::::::::::::
PredRNN-V2

::
are

:::::
used

::
as

:::
the

::::::::::
competitors.

:
A series of evaluation metrics, including the root mean square error, the critical success index, the

fractions skill score
::
and

:
object-based diagnostic evaluation, are utilized for a comprehensive comparison against competing

baseline models. We show that CLGAN outperforms the competitors in terms of scores for dichotomous events and object-

based diagnostics. A sensitivity analysis on the weight of the GAN-component indicates that the GAN-based architecture10

helps to capture heavy precipitation events. The results encourage future work based on the proposed CLGAN architecture to

improve the precipitation nowcasting and early-warning systems.

1 Introduction

Heavy precipitation can lead to numerous hazards, cause damages to infrastructure, and even increase risk of human life

(Ganguly and Bras, 2003; Vasiloff et al., 2007; Li et al., 2021). Accurate short-term predictions of precipitation events
::
at15

high spatio-temporal resolutions, also known as precipitation nowcasting, are therefore critical in establishing early-warning

systems. These warning systems can in turn promote authorities in weather-dependent decision-making and enhance risk-

governance capabilities (Dixon and Wiener, 1993; Johnson et al., 1998; Bowler et al., 2006).

Current precipitation nowcasting
:::::::
systems mainly

::::
rely on convective-permitting numeric weather prediction (NWP) or on

extrapolation techniques of precipitation patterns with the help of composite radar observations. However, NWP models suffer20

from difficulties in capturing these patterns in the nowcasting time range due to the spin-up effect and the challenges of handling

non-Gaussian data in assimilation (Ravuri et al., 2021). Also, a quick model run cycle would be required. For instance, ICON-

D2 only
::::::::
initializes every 3 hours (Matsunobu et al., 2022), which makes it impossible to get quick updates in light of rapidly

growing precipitation patterns. Observation-based extrapolation methods, such as optical flow, are commonly superior to NWP
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models
:::
for precipitation nowcasting, but also fail to capture the underlying non-linear processes of precipitation formation, e.g.25

secondary triggering and aggregation (Xie et al., 2019).

Deep neural networks have gained increasing attention in the meteorological community over the last few years (Reich-

stein et al., 2019; Schultz et al., 2021). The growing interest can be attributed to the success stories in other domains where

deep learning (DL) proves to leverage high-level information from complex and highly non-linear data in several applications,

such as autonomous driving (Hu et al., 2020), anomaly detection (Liu et al., 2018), and semantic segmentation (Garcia-Garcia30

et al., 2018). Recently, video prediction models, developed in the computer vision community, have been explored
::
for

:
pre-

cipitation nowcasting. Contemporary studies mainly applied model architectures based on u-shaped convolutional networks

(U-net; e.g. Ayzel et al., 2020; Ronneberger et al., 2015), convolutional long short-term memory cells (ConvLSTM; e.g. Shi

et al., 2015), generative (see e.g. Ravuri et al., 2021) as well as attention models (see e.g. Sønderby et al., 2020). U-Nets are

thereby considered to be beneficial since they are capable to extract multi-scale features of the atmospheric processes (Ron-35

neberger et al., 2015). To also explicitly capture temporal dependencies in the underlying formation process of precipitation,

recurrent ConvLSTM models are an appealing choice (Shi et al., 2015). Thus, combining convolutional and recurrent networks

with ConvLSTM-layers is advantageous in generating stable precipitation nowcasting by
:::::::
encoding

:
the spatial and temporal

dependency from the historical frames.

Nevertheless, these models have problems with handling the statistical nature of precipitation, especially when a pixel-40

wise loss function is applied for the optimization process during training (Shi et al., 2017; Ayzel et al., 2020). Although log

transformation, importance sampling and weighting towards heavier precipitation targets are appropriate to govern the right-

skewed Gamma distribution of precipitation rates (e.g. Ravuri et al., 2021), the inherent uncertainty in quasi-chaotic processes

at meso-scale typically leads to unrealistically smooth precipitation patterns in the forecasts. While this issue is well known

in many other video prediction tasks (Mathieu et al., 2015; Ebert et al., 2017), it is of particular relevance in precipitation45

nowcasting. The high spatio-temporal variability seen in the observational (real) data cannot be maintained and thus, heavy

precipitation events are barely captured by models applying a pixel-wise loss. Generative models, which train a generator and

a discriminator adversarially (GAN models) are considered to be a potential solution for such applications (Goodfellow et al.,

2020). By forcing the generator to fool the discriminator, which aims to distinguish between real and generated data, these

models succeed in maintaining the statistical properties of the underlying data (Oprea et al., 2020).50

Although great progress has been achieved in a series of recent studies (e.g. Ravuri et al., 2021; Gong et al., 2022), there

is
:::::::::
controversy

:::::::::
regarding

::::
how

:::::::
different

:::::::::::
components

::
of

:::::::::::
sophisticated

::::::
model

::::::::::
architectures

:::::::::
contribute

::
to
:::

the
:::::::::::

predictions. Moti-

vated by this, we build a simple, but efficient and easy-to-understand video prediction model, CLGAN (Convolutional Long

short-term memory Generative Adversarial Network; see Fig. 1), for the nowcasting task. CLGAN is proposed to leverage the

advantages of different DL model architectures. The generator combines the U-Net with a ConvLSTM cell to abstract spatial55

features on multiple scales, while the temporal dependency of precipitation patterns is also preserved. The generator network is

then trained adversarially to attain precipitation forecasts resembling observed data. For our nowcasting application, we deploy

a gridded dataset with a temporal resolution of 10 minutes aggregated from automatic weather station (AWS) gauges over

Guizhou, China. The predictive performance of the proposed model architecture is then accessed in a comprehensive evalu-
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ation based on metrics designed for precipitation nowcasting. The evaluation also involves a comparison against a simplistic60

persistence forecast, the conventional optical flow model DenseRotation (Ayzel et al., 2019) as well as two baseline video

prediction models, a standard ConvLSTM (Shi et al., 2015) network and
::
an up-to-date competing model PredRNN-v2 (Wang

et al., 2021).

With this, the main contributions of our study are:

– An efficient and easy-to-understand architecture CLGAN leveraging the merits of U-Net, ConvLSTM and GAN models65

is proposed to generate perceptually realistic precipitation forecasts.

– A new 10-minute-level precipitation dataset based on AWS gauges (Guizhou AWS_ML precipitation dataset) is built for

machine learning experiments.

– Nowcasting of heavy precipitation events is improved with comprehensive verification.

– A sensitivity analysis is performed to
:::::
access

:::
the

:::::::::
importance

:::
of

:::::::::
adversarial

:::::::
training

:::
for generating forecasts with closer70

statistical properties of the observed precipitation.

2 Related work and baseline models

Conventional Methods. The simplest approach to generate precipitation ’forecasts’ is to deploy the Eulerian persistence. For

this, the most recent available observation, usually a radar composite, is used and then replicated several times for the future

steps. This approach is quite accurate for very short lead times, but obviously fails to provide meaningful forecasts in a quickly75

evolving system for time scales beyond several minutes such as the atmosphere. Thus, the related forecast quality can be

considered as the minimum level for a prediction model to be useful.

Conventional precipitation nowcasting systems typically use a Lagrangian framework to predict the development of precip-

itation patterns. Although this framework often assumes persistence of the precipitation features’ intensity and displacement,

it is still capable to outperform mesoscale NWP models in precipitation nowcasting (Sun et al., 2014). The Lagrangian method80

applies a two-step approach where the precipitation features are first tracked and then extrapolated to future time steps (Austin

and Bellon, 1974). Typically, the tracking step is accomplished with the help of optical flow methods that infer the motion of

patterns from consecutive images. For precipitation nowcasting, radar composite images are subject to a tracking algorithm

such as cross-correlation tracking (Rinehart and Garvey, 1978; Grecu and Krajewski, 2000; Zahraei et al., 2012) or centroid

tracking techniques (Zahraei et al., 2013). The tracked objects are then applied to different extrapolation schemes, e.g. image85

warping (Wolberg, 1990), constant-vector advection (Bowler et al., 2004) or semi-Lagrangian
:::::::
schemes (Germann and Za-

wadzki, 2002). With this two-step approach, several operational precipitation nowcasting systems have been established over

the globe in the last three decades, such as the Thunderstorm Identification Tracking Nowcasting (TITAN; Dixon and Wiener,

1993), the Storm Cell Identification and Tracking (SCIT; Johnson et al., 1998), and the Short-Term Ensemble Prediction Sys-

tem (STEPS; Bowler et al., 2006) (see Wilson et al., 2010, for a review on operational systems).90
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Recently, Ayzel et al. (2019) implemented a set of advanced optical flow models into an open-source Python library called

rainymotion. Two different groups of methods are part of this library from which we select in the DenseRotation model that

performs best in their study. The tracking algorithm of this model is based on the Dense Inverse Search algorithm proposed

in Kroeger et al. (2016) providing an estimate of the motion of each pixel based on two consecutive radar images. The ex-

trapolation is then performed with a semi-Lagrangian advection scheme (Germann and Zawadzki, 2002) capable to represent95

rotational motions.

In our study, the Eulerian persistence model and the DenseRotation model are used to show how well the traditional methods

can perform for the precipitation nowcasting task and how much benefit can be further obtained by using DL-based video

prediction methods.

Video Prediction Method. As already mentioned, the application of deep learning techniques in the meteorological community100

has gained momentum over the recent years. In particular, several studies have started to explore these techniques to tackle

the precipitation nowcasting problem. By formulating precipitation nowcasting as a sequence prediction task, Shi et al. (2015)

proposed a network of ConvLSTM cells which apply a convolution in the recurrent layers of the vanilla LSTM to capture

spatio-temporal features in the underlying data. Their 2-layer ConvLSTM network was able to outperform outperform the

Variational method for Echoes of Radar by Woo and Wong (ROVER; 2017), an operational precipitation nowcasting system105

based on optical flow methods with a semi-Lagrangian advection scheme. Shi et al. (2017) further extended the recurrent cells

of GRUs with non-local neural connections and proposed the Trajectory GRU (TrajGRU) model which enables learning of

location-variant structures of precipitation.

Besides, Wang et al. (2017) advanced the application of ConvLSTM networks and proposed the predictive recurrent neural

network (PredRNN). They deployed a stack of recurrent layers that feature a ’zigzag memory flow’ and involve an explicit110

spatio-temporal memory state. In this way, they enable an explicit communication of abstracted spatio-temporal features be-

tween different levels of the recurrent network which yields improved precipitation predictions. While this approach already

provided promising results, the PredRNN model was updated to PredRNN-V2 (Wang et al., 2021). The updates comprise the

implementation of a ’decoupling loss’, named ST-LSTM, to enhance featuring of the spatio-temporal variations and a new, im-

proved long-term modeling strategy. The model attains remarkable improvements when applied to multiple datasets including115

radar observations.

Meanwhile, other network architectures were explored in scope of precipitation nowcasting. One of them is the fully convo-

lutional U-Net architecture, which is a U-shaped hierarchical encoder-decoder network with skip connections. The architecture

enables abstraction of features on different spatial scales. Notably, the RainNet-architecture proposed by Ayzel et al. (2020)

proved to significantly outperform optical flow based nowcasting methods for weak precipitation events. However, their net-120

work tends to provide too smooth precipitation fields and therefore fails to provide added value for more intense precipitation

events with a rain rate above 10mm/h. Recently, a deep generative model for the probabilistic precipitation nowcasting was

proposed and showed state-of-the-art performance for the task (Ravuri et al., 2021).

All these studies demonstrate that deep neural networks have the potential to provide added value for precipitation nowcast-

ing. In our study, we focus on further improving the predictions of strong precipitation events and therefore choose a simple125
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ConvLSTM (Shi et al., 2015) and the advanced PredRNN-v2 (Wang et al., 2021) model for competing with our newly proposed

model architecture.

3 Method and Data

3.1 Our model CLGAN

In the following, we present our proposed CLGAN architecture in more detail. Since CLGAN aims to benefit from ConvLSTM-130

models, the U-Net architecture and GAN models, we first introduce its components separately to provide a deeper understand-

ing and reasoning for the chosen components.

3.1.1 ConvLSTM

The ConvLSTM network was proposed as an extension of LSTM layers which embedded the convolution operation to explicitly

encode complex spatio-temporal features in a data sequence. The basic formulas of the ConvLSTM cell which describe the135

gated update procedure for the hidden and the cell state are provided in Shi et al. (2015) and are therefore not repeated here.

The objective function of a ConvLSTM model typically constitutes the classical L2 reconstruction loss. This loss measures the

distance between the predicted and the target (ground truth) data on grid point (or pixel-wise) level and can be written as

L2(G) =
∥∥∥ #»

Y t0+1:t −
#̂»

Xt0+1:t

∥∥∥
2

(1)

where
#»

Y and
#̂»

X are two-dimensional tensors for the ground truth and the predicted data, respectively. t0 represents the end of140

the input sequence and t is the forecast time step, so that the model is optimized on the loss over the prediction sequence from

t0 +1 to t. These tensors comprise w×h grid points in zonal and meridional direction of the domain of interest.

3.1.2 U-Net

The U-Net model was originally applied for biomedical image segmentation (Ronneberger et al., 2015) and is therefore de-

signed as a powerful feature extractor on various spatial scales. As illustrated in Fig. 1a, it can be decomposed into a com-145

pressing and an expansive path that are bridged by skip connections. The contracting path can be seen as an encoder which

converts the high-resolved data into coarse-grained features using convolutional and pooling layers. The expansive path, acting

as a decoder, applies deconvolutional layers to convert back to the original spatial resolution, of which the number of data

points are w×h. Usually, several pooling and deconvolutional layers are applied to allow feature extraction on different spatial

scales. To avoid the so-called vanishing gradients issue and to allow a direct information flow of specific spatial features, skip150

connections are implemented at every scale-specific feature extraction level (Drozdzal et al., 2016).

In a video prediction application, the data at time step t enters the encoder to produce a forecast at time step t+1 with the

decoder. By doing so, no long-term information is explicitly conveyed as with the ConvLSTM-model. Since heavy precipitation

events are rare, but of high relevance for nowcasting, different techniques are usually applied to encourage deep neural networks
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in predicting events on the right tail of the underlying PDF. Log-transformation converts the right-skewed Gamma distribution155

of precipitation data (e.g. RainNet in Ayzel et al., 2020) into a Gaussian-like distribution which puts strong precipitation events

closer to the center of mass in probability space. Stronger weighting on higher precipitation rates and importance sampling

can further support the optimization efficiency with respect to heavy precipitation events (Ravuri et al., 2021). Nonetheless,

U-Nets and ConvLSTM modes still tend to produce too smooth precipitation patterns, thereby failing to capture the relevant

strong precipitation events.160

3.1.3 Generative adversarial networks

To enforce a closer agreement of the generated data with the ground truth, GAN models were proposed by Goodfellow et al.

(2020). A GAN model consists of a generative network G (generator) and a discriminative network D (discriminator) which

aims to assign a probability of 1 to real and a probability of 0 to generated data. While the discriminator is optimized to

distinguish between both kinds of inputted data, the generator is encouraged to fool the discriminator. Thus, the GAN applies165

the binary cross-entropy loss as the objective function which enters a minimax-game:

G⋆ =argmin
G

max
D

LGAN (G,D)

with LGAN (G,D) =E #»
X1:t

[
logD(

#»

Xt0+1:t)
]
+E #»

X1:t

[
log(1−D(G(

#»

X1:t0)))
]
. (2)

Here, the generator is conditioned on the input data sequence
#»

X1:t0 . Since generator and discriminator are trained adversarially,

the generator is encouraged to create predictions that share the same statistical properties as the ground truth data. This is170

considered to be useful for generating realistic precipitation forecasts which should exhibit the high spatial variability of the

observed data (Ravuri et al., 2021; Price and Rasp, 2022; Harris et al., 2022).

3.1.4 Convolutional LSTM GAN (CLGAN)

To combine the merits of a GAN model with the strong spatio-temporal feature extraction capacities of U-Nets and ConvLSTM

models, we set up the generator G as follows (see Fig. 1a): The generator constitutes a three-level U-Net following Sha et al.175

(2020). Each level of the encoder comprises two convolutional layers followed by max-pooling with a 2x2-kernel to reduce

the spatial dimensionality in the next layer. The number of channels is thereby increased by a factor of two in each level. A

ConvLSTM cell with 64 filters is deployed to implement recurrency at the bridge between the encoder and decoder. The decoder

then reverts the encoded data to the input resolution with the help of deconvolutional layers. Furthermore, skip connections

among the encoder and decoder are added at each level of the U-Net. The discriminator D consists of 3D fully convolutional180

layers with batch normalization which allow us to encode both, the temporal and spatial dimension of the data sequence.

Again, max-pooling is used to compress the data which finally gets concatenated to fully connected layers (see Fig. 1b). The

forecast sequence of G,
#̂»

Xt0+1:t, as well as the corresponding ground-truth sequence,
#»

Y t0+1:t, are taken as the inputs for the

discriminator D (see Fig. 1c).
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In this study, the generator is trained by combining the adversarial loss LGAN with the reconstruction L2-loss:185

G⋆ = (1−λ)LGAN (G,D)+λL2(G) with λ ∈ [0,1]. (3)

This ensures that the prediction
:::::::
remains close to the ground truth. The relative weight of the reconstruction loss λ is set to 0.99

which proves to balance the contributions from both loss components in the following experiments. Training of the model is

performed with the Adam optimizer (Kingma and Ba, 2014) over eight epochs with a batch size of 32.

3.2 Guizhou AWS_ML precipitation dataset190

In addition
::
to

:
the widely used remote sensing data, e.g. radar composite images, measurements from densely-distributed au-

tomatic weather stations can serve as an alternative in the data-driven weather forecasting task. In this study, minute-level

precipitation measurements by rain gauges of AWS over Guizhou, China (Guizhou AWS_ML precipitation dataset) is col-

lected for the precipitation nowcasting task. Guizhou is a mountainous and rainy province located in southwest China (see

Fig. 2a) where mudslides happen frequently during summer-times. For instance, the region was affected by a severe rainstorm195

in September 2020, when some regions experienced more than 1500mm rainfall within 20 days. Accurate precipitation now-

casting, especially for heavy precipitation, is crucial to reduce damages from these events. Hence, the Guizhou AWS_ML

precipitation dataset is established for better simulation of precipitation with data-driven approaches. The AWS locations com-

prise 93 national basic stations and 1740 automatic weather stations (see Fig. 2b). Among other meteorological quantities

(2-m temperature, 10-m wind, surface pressure, and relative humidity), the AWSs measure precipitation at a high observation200

frequency (every minute) and the data is provided between 1st Jan 2015 and 31st Dec 2019 by Guizhou Meteorological Bureau.

Several preprocessing steps are conducted for preparing the dataset of our experiment. First, the precipitation data is ac-

cumulated over 10 minutes which still constitutes a reasonably high temporal resolution. To obtain a gridded dataset, the

observations are then interpolated bilinearly onto a regular, spherical grid. The target grid comprises w×h= 48× 40 data

points in zonal and meridional direction, respectively, and covers a domain from 103.625◦E to 109.5◦E and 24.625◦N to205

29.5◦N with 0.125◦
::::::::
resolution. To obtain the data needed for training our CLGAN and the baseline models (see Sec. 2 and

3.1.4), we generate sliding sequences of 24 consecutive gridded data samples (frames) which comprise a temporal period of

240 minutes. 120 minutes (12 frames) of each sequence serve as
::::
input

:
to predict the next 120 minutes (12 frames). Since

there are many periods with no or only weak precipitation, we furthermore only select sequences whose averaged precipitation

rate exceeds the empirical 60%-quantile of the complete dataset. This results in 35054 sequences for the subsampled dataset.210

Finally, a log-transformation is applied
::
to each sequence to make the data more Gaussian-like. The log-transformation reads

as follows: x′ = ln(x+ ε)− ln(ε), where ε is a small constant (here 0.01). We use the data from 2015 to 2017 for training, the

data of 2018 for validating, and the data of 2019 for testing.

3.3 Verification methods

As pointed out in Schultz et al. (2021) and more specifically for precipitation in Leinonen et al. (2020), precipitation nowcasting215

should be evaluated in terms of application-specific scores. This is due to the unique statistical properties of precipitation rates,
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as well as the chaotic atmospheric processes which underpin the formation of precipitation. Additionally, we would like to

emphasize that a single score alone can barely evaluate the model performance applied to high-dimensional data (Wilks,

2011). Therefore, we take several evaluation metrics into account to provide a comprehensive overview.

The first considered family of evaluation metrics is established for continuous quantities in the meteorological community.220

The root mean square error (RMSE) measures the distance between the predicted and the observed field on a grid-point level.

The correlation coefficient (CC) measures the association or the linear relationship between the two fields. A perfect correlation

would result in CC = 1, while CC = 0 indicates no linear relationship between forecast and observation on grid-point level.

The second set of scores is built on dichotomous events which are obtained by thresholding the gridded precipitation fields.

A 2×2 contingency table is commonly used to show the frequency of "yes" and "no" forecasts and occurrences and give a joint225

distribution for events with a precipitation rate exceeding a given threshold tpr. According to the elements in the contingency

table, a variety of categorical statistics can be computed to evaluate the dichotomous forecasts in particular aspects. Critical

Success Index (CSI), also known as Threat Score, measures the fraction of hits with respect to the number of occurrences

where the events are either forecasted or observed. The frequently applied Equitable Threat Score (ETS) is a variant of the CSI

and explicitly accounts for random forecasts which perform well just by chance (Wilks, 2011).230

However, due to the highly non-linear and complex processes causing precipitation formation, scores acting on grid-point

level are prone to penalize predictions which recover the high spatial variability, but fail to match exactly the observed pre-

cipitation field. The issue leads to the double penalty problem where the model gets penalized twice, once for missing the

exact placement of a precipitation event and once for shifting it spatially (Ebert, 2008). To relax the requirement for exact

spatial matching, the Fractions Skill Score (FSS) is computed here as a fuzzy verification metric (Roberts, 2008). Similar
::
to235

the CSI and ETS, the FSS operates on dichotomous events, but allows for spatial shifts by considering a local neighborhood

around each grid point. Within this neighborhood, the fractional coverage of the precipitation events is calculated for both, the

predictions and the observations. Let f(ms
i ) and f(osi ) denote the fraction of event grid boxes within the local neighborhood

of size s around the grid point i in the model prediction and observation. The Fractions Brier Score (FBS) is given by:

FBS =
1

N

N∑
i=1

(f(ms
i )− f(osi ))

2. (4)240

which quantifies the quadratic difference between the prediction and the observation for all N grid points over the domain. The

final FSS is then obtained with:

FSS = 1−FBS/FBSworst. (5)

where FBSworst is the sum of the squared fractions of events in the prediction and in the observation. Higher FSS-values

indicate better forecast, while it can be shown that a forecast becomes ’useful’ when FSS ≥ 0.5 is attained for a given neigh-245

borhood scale s (typically expressed in terms of squares with an edge length of N grid points).

Nonetheless, FSS also does not capture the spatial precipitation patterns since each grid point in the neighborhood is treated

equally and no check for spatial coherence is undertaken. Thus, we additionally perform an object-based diagnostic evaluation,

called MODE (Johnson and Wang, 2012; Johnson et al., 2013; Ji et al., 2020), to focus on pattern attributes such as location,
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area and shape. To obtain the desired attributes, a convolutional filter of size k is first applied over the precipitation field.250

Afterwards, objects are defined by applying an threshold on the precipitation rate tPr and on the object area tA. A fuzzy logic

scheme is then used to merge and pair precipitation objects in the predicted and observed precipitation field. Finally, the object-

based threat score (OTS; Johnson and Wang, 2012) is computed to verify how well the predicted precipitation patterns match

the observed ones. Here, we choose the object area, the centroid location and the object shape (aspect ratio and orientation

angle) as target attributes for computing the OTS.255

All the mentioned verification methods are listed in Table 1 with a brief description. The details can be found in the corre-

sponding references.

Table 1. Summary of the verification methods used in the paper

Verification method Description Formula or Reference Notes

Root Mean Square Er-

ror

the average magnitude of the forecast

errors

√
1
N

∑N
i=1(Yi −Y ′

i )
2 [0, +∞);

Correlation Coefficient the correspondence between the fore-

cast and observed values

∑N
i=1(Yi−Ȳi)(Y

′
i −Ȳ ′

i )√∑N
i=1(Yi−Ȳi)2

√∑N
i=1(Y

′
i −Ȳ ′

i )
2

[-1, 1];

Critical Success Index the correspondence between the fore-

cast "yes" events and observed "yes"

events

hits
hits+misses+false alarms

[0, 1], 0 means no skills;

Equitable Threat Score the correspondence between the fore-

cast "yes" events and observed "yes"

events (accounting for hits due to

chance)

hits−hitsrandom
hits+false alarms

hitsrandom =
(hits+misses)(hits+false alarms)

total

[-1/3, 1], 0 means no skills;

Fractions Skill Score the spatial scales at which the forecast

resembles the observations

(Roberts and Lean, 2008) [0,1], the smallest window size

for which FSS≥0.5 can be con-

sidered as "skillful scale";

Object-based Threat

Score

the similarity between the forecast ob-

jects with the observed ones according

to a series of attributes

(Davis et al., 2006) [0, 1], 0 means complete mis-

match and 1 means perfect

match;

To ease the comparison between the baseline models and the simplistic persistence forecast, we furthermore calculate skill

scores (except for the FSS). In general, a skill score SS can be constructed by considering the target score Sm of the model,

the score obtained with the reference forecast Sref and the perfect score Sperf :260

SS =
Sm −Sref

Sperf −Sref
. (6)
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The higher SS is, the better the model performs against the reference score. Perfect models thereby obtain SS = 1, while

inferior models show up with −∞< SS < 0. Note, that Sperf = 0 holds for the RMSE, whereas the other scores under

consideration attain Sperf = 1. Since the size of our dataset is not unlimited, we also apply a block bootstrapping procedure to

estimate sampling uncertainty (Efron and Tibshirani, 1994). The block bootstrapping procedure accounts for autocorrelation265

between the sliding sequences and thus, divides the dataset into non-overlapping blocks before resampling of the blocks with

replacement is performed. Here, we set the block length to 10 hours (60 frames) and perform 1000 block bootstrapping steps.

4 Results

4.1 Quantitative evaluation

4.1.1 Point-wise evaluation metrics270

In Fig. 3a-d, our model is compared to the baseline models in terms of the skill scores for the grid-point level evaluation metrics

(CC, RMSE, CSI, and ETS). The skill scores are calculated by defining the Eulerian persistence as reference forecast. It is seen

that the deep learning models (i.e. ConvLSTM, PredRNN-v2 and CLGAN) as well as the optical flow model DenseRotation

outperform the persistence forecast after 20 minutes lead time in terms of the continuous scores (CC and RMSE). Among

the video prediction models, PredRNN-v2 is superior over the others after the first 20 minutes, while ConvLSTM performs275

best for the longer lead times. CLGAN is not so competitive for RMSE and CC as PredRNN-v2 and ConvLSTM, while still

outperforms the traditional optical flow model DenseRotation. It’s noted that the Eulerian persistence performs well in the first

10 minutes. One possible reason why these complex models can barely beat the persistence forecast in the first lead step is that

the precipitation systems are relatively invariant within this very short time period. In our case, the Eulerian persistence forecast

is the latest observations available, hence, which is highly correlated to the ground truth at short lead times. With increasing280

lead times, its performance degrades quickly.

The
::::::::::
comparisons in terms of the dichotomous scores (CSI and ETS) are given in Fig. 3c∼d.

::::
They demonstrate that CLGAN

is superior to the other competitors at all the lead times for simulating heavy precipitation events (the threshold tPr is set to

8mm/h here). The optical flow model DenseRotation performs well in the first 40 lead minutes while its skill scores decrease

rapidly afterwards. By contrast, the advanced deep learning model PredRNN-v2 shows more potential for longer lead times.285

Although ConvLSTM outperforms on the continuous scores, it can barely capture the heavy precipitation events. A large

performance degradation for the ConvLSTM is diagnosed at a lead time of 20 minutes.
:::
One

::::::
reason

::
of

:::
the

:::::::::
difference

::
is

::::
that

::
the

::::::
model

:::::::::::
performance

::
is
::::::::
evaluated

:::::
with

:::
the

::::
skill

::::::
scores,

::::::
which

::
is
:::::::
affected

:::
by

:::
the

::::::
choice

:::
of

:::
the

::::::::
reference

::::::
model

:::::
(here

::
is

::
the

::::::::
Eulerian

:::::::::::
persistence).

:::
For

:::
the

::::
first

:::::
time

:::
step

:::::
(lead

::::
time

:::
of

:::
10

::::::::
minutes),

::::
both

::::::::::
ConvLSTM

::::
and

::::::::
Eulerian

:::::::::
persistence

::::
can

::::::
capture

:::::
strong

:::::::::::
precipitation

::::::
events

:::
and

::::::::::
ConvLSTM

::
is
:::::
even

:::::
better.

:
However, ConvLSTM models are prone to produce blurry290

predictions in an autoregressive prediction task, where the errors in the prior forecasts are inherited to the later ones.
::::::
Hence,

::
the

:::::::::::
ConvLSTM

:::::
model

::::
gets

::::
less

:::::::
efficient

::
in

:::
the

::::
next

::::
few

::::
lead

:::::
steps,

:::::
while

:::
the

:::::::
Eulerian

::::::::::
persistence

::::::::
performs

:::::
fairly

::::
well.

::::
For
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:::::
longer

::::
lead

:::::
times,

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
Eulerian

:::::::::
persistence

::::::::
forecasts

::::::
quickly

::::::::
degrades

:::
and

:::::::::::
ConvLSTM

::::
again

:::::::::::
outperforms

::
the

::::::::::
persistence

:::::
model

::::
with

:::::::
positive

::::
skill

::::::
scores.

:

The comparisons of the model performance show that CLGAN is superior in terms of scores for dichotomous forecasts (CSI295

and ETS), while it is less competitive in terms of RMSE. This is due to the fact that our CLGAN encourages the model to

generate forecasts which have a similar distribution as the ground truth data, rather than just reducing the averaged point-wise

loss. Hence, more heavy precipitation events are predicted by the CLGAN model which improves the dichotomous forecast

scores. However, more predicted high-value precipitation could cause larger biases, compared to the models only generating

low-value forecasts. The problem is magnified with the use of the point-by-point scores, i.e. the RMSE, which
:::::
suffers

:
from the300

double penalty issue.

4.1.2 Spatial verification scores

To further investigate the model performances, we now turn our attention to the spatial verification scores, the FSS and the

MODE framework. Fig. 4a shows the model performance in terms of the FSS for a lead time of 60 minutes by the persistence

model (used as the reference forecast). The FSS is computed based on different neighbourhood sizes and thresholds of hourly305

precipitation rates. Specifically, the neighbourhood scale s in kilometers varies along the x-axis. The FSS-values for s attaining

values of approximately 41, 69, 96, 152, and 290 kilometers (square boxes of 3, 5, 7, 11 and 21 grid points), respectively, are

plotted and marked as box-whisker plots for varying precipitation thresholds. The
:::::
boxes

:
show the range of the first quartile

(upper) to the third quartile (bottom) of the scores, and the whiskers are respectively the 95th percentile (upper) and 5th

percentile (bottom). As the threshold increases, FSS decreases, indicating that the persistence forecasts become increasingly310

imprecise for stronger precipitation events with a given spatial scale. For precipitation events exceeding tPr = 8mm/h, the

persistence forecasts is considered useful (FSS ≥ 0.5; see e.g. Roberts, 2008) for a neighborhood scale of s≈ 69km. Thus,

the spatial accuracy of capturing these events is already fairly degraded and the neighborhood scale of s≈ 69km (5 grid points)

is applied to compute the FSS for other model in the following. Fig. 4b compares the models’ performance in terms of the FSS

for heavy precipitation forecasting against the Eulerain persistence by illustrating the difference ∆FSS = FSSi −FSSref .315

Here, FSSref denotes the reference persistence model, whereas i is used to denote the other competing models. It is seen

that all baseline models except from the ConvLSTM model can remarkably improve the spatial forecasting of such events,

especially for longer lead times. Among them, CLGAN is superior to the others at all the lead times. DenseRotation performs

well in the first lead hour, while PredRNN-v2 is promising for the further lead times.

4.1.3 Object-based diagnostic evaluation320

To fully access the performance of the models in predicting spatial precipitation attributes, i.e. area, location and shape, the

MODE verification framework is applied. In the following, we present conditional quantile plots for the object area, for the

location of the object centroid in east-west and north-south direction, for the aspect ratio and for the orientation angle of

the precipitation objects to show more details of predicted and observed precipitation objects. These plots visualize the joint

distribution of the predictions and forecasts in a compact manner by applying a factorization into a conditional and marginal325

11



distribution (Murphy and Winkler, 1987; Wilks, 2011). Fig 5 illustrates the joint distribution in terms of the likelihood-base

rate factorization. While the solid lines illustrate the forecasts conditioned on the observations for all models, the marginal

distribution of the observations is plotted as a histogram. Fig 5a shows the number of grid points of the observed and predicted

precipitation objects, which represents the area of precipitation objects. It can be seen that CLGAN and PredRNN-v2 are able to

capture object area fairly well. Only objects consisting of 90 to 130 grid points (∼ 16,000km2) are slightly underestimated (see330

Fig. 5a). However, the other
:::::::::
competing models perform remarkably worse. Fig 5b∼c show the distance between the centroid

of the precipitation object and the western boundary and the southern boundary, which is again measured by the number of

grid points. It is seen that the location of object centroids is generally well captured by all models. Stronger deviations are

visible near the lateral boundaries, especially in east-west direction. The aspect ratio and the orientation angle are used to

assess the predicted precipitation shape in Fig. 5d∼e. Here, the aspect ratio is the ratio of
:::
the

::::::
shorter

::
to

:::
the

:::::
longer

:::::
edge of the335

precipitation objects. The orientation angle
::::::::
constitutes

:
the angle between the precipitation objects and positive x-axis. CLGAN

shows slight improvements over the other models where the central parts of the orientation angle and aspect ratio are well

calibrated. However, larger deviations from the 1:1 reference line are obtained near the tails of the conditional distributions.

This indicates that further work on simulation of precipitation shape is required.

4.2 Case study340

To gain further insight into the realism of our predictions, a heavy precipitation event
:::::::
occurring

:
on June 12th 2019 is visu-

alized as an example (see Fig. 6) to compare the model performance with an ’eyeball’ analysis. Fig. 6a shows the observed

precipitation rates in mm/(10 min) for every 20 minutes over the forecast period starting at 06:50 BJT. It is seen that a fairly

strong precipitation system moves from west to east while it further intensifies. The predictions of the different models are

presented as difference plots in Fig. 6b∼f. For the first 60 minutes, persistence and DenseRotation show up with the smallest345

discrepancies. However, for longer lead times, clear dipole structures in the difference plots indicate that the movement of the

system is not captured. Thus, the Lagrangian persistence framework is inaccurate for longer lead times and more advanced

models are required to capture the long-term dependence.

While the deep learning models also show up with increasing differences with longer lead times, they perform better in

capturing the movement and the intensification of the precipitation system (see Fig. 6d∼f). PredRNN-v2 tends to
::::::::::
overestimate350

the precipitation intensity which causes large coherent areas of positive differences.
:::
The

::::::::
averaged

::::::
RMSE

::::
over

:::
the

:::::
study

::::
area

::
of

:::
the

:::::::::::
PredRNN-v2

:::::::
forecasts

::
at

:::
the

::::
lead

::::
time

::
of

:
2
:::::
hours

::
is

::::::
around

::::
0.37

::::
mm.

::::::::::
ConvLSTM

:::
and

::::::::
CLGAN

:::::::
perform

::::
even

:::::
better

::::
with

::::::
smaller

::::::::::::
discrepancies,

::::
with

:
a
:::::
lower

::::::
RMSE

:::
of

::::
0.33

:::
mm

::::
and

::::
0.34

:::
mm

:::::::::::
respectively. Consistent with the quantitative evaluation

results, ConvLSTM outperforms the CLGAN model in terms of RMSE in this given case, whereas CLGAN obtains a higher

CSI and ETS.
:::
The

:::
CSI

::
of

:::
the

::::::::
CLGAN

:::::::
forecasts

::::
with

::
a
::::::::
threshold

::
of

::::::
8 mm/h

::
at

:::
the

::::::
2-hour

::::
lead

::::
time

::
is

::::::
around

::::
0.11,

::::
0.01

::::::
higher355

:::
than

:::
the

:::::::::::
ConvLSTM

::::::
model. The results demonstrate that the prediction by ConvLSTM has a lower bias, while CLGAN can

capture more heavy precipitation grid-points. Compared to ConvLSTM, the difference plot of CLGAN contains more fine

structures which indicates that CLGAN can generate more details of the precipitation system.
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4.3 Ablation study

As shown in Eq. 3, the loss function used in our CLGAN model consists of two terms: the adversarial loss LGAN and the360

reconstruction loss L2. To assess the contribution of each loss term on the forecasts performance, sensitivity experiments on

the weight of the reconstruction loss in CLGAN were carried out. Larger weight of the adversarial loss (= smaller weight

of reconstruction loss) is equivalent to a stronger contribution made by the GAN component. Fig. 7 presents the results of

the CLGAN model with different weights λ assigned to the L2 loss. It is seen that the RMSE is increased when reducing the

weight of L2 loss (Fig. 7a). However, the scores for dichotomous events and fuzzy verification framework reveal improvements365

with for smaller λ. The model using a pure reconstruction loss (λ= 1 in Eq 3) performs significantly worse than the model

applying an adversarial loss in terms of CSI and FSS (Fig. 7b∼c). Similar results are obtained in terms of the OTS (see Fig. 7d).

The results of sensitivity experiments indicate that the adversarial training with the GAN-component encourages the model to

generate forecasts which are more similar to the ground truth data. Despite a slight increase in RMSE, a relatively stronger

contribution of the GAN-component helps to capture the statistical properties of the observed precipitation (on the tail as well370

as their spatial attributes) which in turn improves the prediction of strong precipitation events.

5 Conclusion and Discussion

A novel architecture CLGAN is proposed in this work which leverages the merits of U-Net, ConvLSTM and GAN compo-

nents, to generate high quality precipitation predictions up to 2 hours over Guizhou, China.
:::
The

:::::::
Eulerian

::::::::::
persistence

:
is
:::::
used

::
as

::
the

::::::::
reference

::::::
model

::
to

:::::::
compare

:::::::
against

:::
the

::::::::::
conventional

::::::
optical

::::
flow

:::::::
method

:::::::::::::
DenseRotation,

::
as

::::
well

::
as

::::
two

:::::::::
competing

:::::
video375

::::::::
prediction

:::::::
models

:::::::::::
(ConvLSTM

:::
and

:::::::::::::
PredRNN-v2). A Guizhou AWS_ML precipitation dataset

:
is
::::::
set-up

:::
for

:::
the

::::::::::
nowcasting

:::
task

:
based on minute-level precipitation measurements of AWS gauges. The model performance is comprehensively evaluated

by a series of domain-specific evaluation metrics, including point-by-point and object-based verification methods. The results

demonstrate that DL-based video prediction models are generally superior to the conventional methods, especially for the lead

times exceeding 60 minutes. However, the use of grid-point level losses (e.g. L1 or L2 loss) diminishes their capability in cap-380

turing heavy precipitation events. Since heavy precipitation events are strongly under-represented in the data during training,

the models optimized solely on grid-point level losses favor to predict weak precipitation rates to avoid large error contribu-

tions from strong precipitation events (double penalty problem). By contrast, the GAN-component of CLGAN encourages the

generator to create predictions that share the statistical properties of observed precipitation, which makes it superior to the

baseline and the competing models in dichotomous and spatial scores for heavy precipitation events.385

Compared to the conventional methods, our results indicate that video prediction models with deep neural networks have a

better capability of learning abstractions from data, which in turn can improve the prediction of complex evolving systems. By

learning the statistical dependency within the continuous sequence of precipitation data, video prediction models can simulate

the precipitation patterns up to 2 hours ahead fairly well. Since NWP models suffer from the spin-up issue in the first 6

hours and the conventional approaches
::
fail

:::
to

::::::
capture

:::::::::
long-term

:::::::::::
dependency, video prediction models show potential as a390

promising and reliable way for precipitation nowcasting. However, a model performance degradation is expected for longer
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lead time, i.e. after 2 hours, due to the error accumulation in the auto-regressive prediction task. The quick evolution of the

convective precipitation systems is furthermore challenging. Our results also demonstrate that it is arduous to capture the shape

of precipitation patterns by DL-based models
:
as

::::::::::::
demonstrated

::
by

:::
the

::::::
MODE

::::::
scores.

:
Future work may try to integrate domain-

specific evaluation metrics for spatial forecasts (e.g. FSS and MODE) as a loss function in DL-based models for precipitation395

nowcasting. Additionally, we also see that a trade-off exists between evaluations on grid-point and object-based level when the

adversarial loss is varied. Grid search for the optimal combination of loss function coefficients is required to generate realistic

forecasts with a low bias.

Beyond that, it’s appealing to embed more predictors which could be retrieved from NWP models, e.g. the vertical velocity,

water vapor, thermal and other environmental conditions. Literature shows that the corresponding predictors and physical400

constraints can greatly improve the simulation of the targeted variable (Daw et al., 2017; Gong et al., 2022). A careful selection

of the predictors and an appropriate embedding solution are subject to our future work. In addition, GAN models can easily

be adapted to a probabilistic framework. By adding noise as an additional input, ensemble forecasts can be obtained from

which a quantification of the forecast uncertainty can be deduced (Mordido et al., 2018). A probabilistic nowcasting system

is appealing due to the strong inherent uncertainties in the dynamics of precipitation patterns. It’s furthermore noted that405

ensemble predictions corresponding to several future realisations provide the possibility to issue more strong precipitation

events (cf. Ravuri et al. (2021)). While this study focused on assessing the need for an adversarial loss formulation, future work

will be directed towards a probabilistic nowcasting system.

Code and data availability. The Guizhou AWS_ML precipitation dataset and the exact version of the video prediction models used in

this paper are archived on Zenodo (https://zenodo.org/record/7278016#.Y2ppyL7MIuQ). A frozen code repository can be obtained here:410

https://gitlab.jsc.fz-juelich.de/esde/machine-learning/ambs/-/tree/ambs_gmd_nowcasting_v1.0. The dataset and scripts can help users to re-

produce the results on their local machines or high-performance computers. By using these data and models, it is highly recommended to

follow the README.md file of the code repository to run the end-to-end workflow.
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（a）

（b）

（c）

Figure 1. The details of the proposed CLGAN model; (a) Generator: The illustration is presented for a given forecast step i. If i= 1, the inputs

are observed sequences
#»
X1:t0 . Otherwise the inputs are combined sequences of observed ones

#»
Xi:t0 , and predicted ones

#̂»
Xt0+1:t0+i−1. The

output is the model prediction
#̂»
Xt0+i. c is the number of channels of inputs, here is 1. ngf

::::::
denotes the number of filters in the first layer of

U-Net. (b) Discriminator: n is the length of output sequences. (c) CLGAN: The outputs of generator are the predicted sequences
#̂»
Xt0+1:t.

#»
Y t0+1:t::::::::

constitutes the corresponding ground-truth. L2 and LGAN are the reconstruction loss and adversarial loss, respectively.

16



Figure 2. (a) Annual average cumulative precipitation in Guizhou from 2015 to 2019; (b) The spatial distribution of AWS over Guizhou.
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Figure 3. Box-whisker plots for skill scores of (a) CC, (b) RMSE, (c) CSI and (d) ETS averaged over the testing period with the Eulerian

persistence as the reference forecast. The
::::
boxes

:
show the range of the first quartile (upper) to the third quartile (bottom) of the skill scores,

and the whiskers denote the 95th percentile (upper) and 5th percentile (bottom), respectively. The threshold tpr of CSI and ETS is 8 mm/h.
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Figure 4. (a) FSS of persistence for different scales and intensity thresholds at 60 lead minutes for precipitation nowcasting. (b) Improvements

of different models compared with persistence in terms of FSS with a threshold tpr of 8 mm/h and a neighbourhood size of 5. The boxes show

the range of the first quartile (upper) to the third quartile (bottom) of the skill scores, and the whiskers denote the 95th percentile (upper) and

5th percentile (bottom), respectively.
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Figure 5. Conditional quantile plots in terms of the likelihood base-rate factorization for [(a) area, (b) E-W centroid and N-S centroid

location, (d) aspect ratio, and (e) orientation angle, at the lead time of 60 minutes. The solid black line is the 1:1 reference line. The marginal

distribution of the observations is presented as a histogram.
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Figure 6. A case study for a rain system moving from west to east while intensifying (a) Observation (Obse). The predictions of all models

are illustrated with difference plots: (b) Persistence (Persi), (c) DenseRotation (Dense), (d) ConvLSTM (ConvL), (e) PredRNN-v2 (PredR)

and (f) CLGAN. The initial time of the prediction period is 06:50 on June 12th 2019 (BJT).
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Figure 7. Mean scores [(a) RMSE, (b) CSI, (c) FSS and (d) OTS] for all lead times over the verification period for different weights of the

L2 loss in CLGAN. The terms ’weight1’, ’weight999’, ’weight99’ and ’weight9’ denote the weights of the L2 loss component λ with the

corresponding values of 1, 0.999, 0.99 and 0.9, respectively. As in Fig. 3, tPr = 8mm/h is chosen for CSI, OTS and FSS together with setting

s to 5 grid points for the latter. The area threshold tA of OTS is set to 9 grid points.
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