Preprints
https://doi.org/10.5194/egusphere-2022-578
https://doi.org/10.5194/egusphere-2022-578
12 Jul 2022
 | 12 Jul 2022

A deep learning approach to increase the value of satellite data for PM2.5 monitoring in China

Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Shulin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, and Meng Gao

Abstract. Limitations in the current capability of monitoring PM2.5 adversely impact air quality management and health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring networks are established to measure the PM2.5 concentrations in highly populated regions and protected areas such as national parks, yet large gaps exist in spatial coverage. Satellite-derived aerosol optical properties serve to complement the missing spatial information of ground-based monitoring networks. However, such attempts are hampered under cloudy/hazy conditions or during nighttime. Here we strive to overcome the long-standing restriction that surface PM2.5 cannot be constrained with satellite remote sensing under cloudy/hazy conditions or during nighttime. We introduce a deep spatiotemporal neural network (ST-NN) and demonstrate that it can artfully fill these observational gaps. We use sensitivity analysis and visualization technology to open the neural network black box data model, and quantitatively discuss the potential impact of the input data on the target variables. This technique provides ground-level PM2.5 concentrations with high spatial resolution (0.01°) and 24-hour temporal coverage. Better constrained spatiotemporal distributions of PM2.5 concentrations will help improve health effects studies, atmospheric emission estimates, and predictions of air quality.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
Ambient particles have an important impact on human health, meteorology and climate change. By...
Share