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Abstract24

Limitations in the current capability of monitoring PM2.5 adversely impact air quality management and25

health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring networks are26

established to measure the PM2.5 concentrations in highly populated regions and protected areas such27

as national parks, yet large gaps exist in spatial coverage. Satellite-derived aerosol optical properties28

serve to complement the missing spatial information of ground-based monitoring networks. However,29

such attempts are hampered under cloudy/hazy conditions or during nighttime. Here we strive to30

overcome the long-standing restriction that surface PM2.5 cannot be constrained with satellite remote31

sensing under cloudy/hazy conditions or during nighttime. We introduce a deep spatiotemporal neural32
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network (ST-NN) and demonstrate that it can artfully fill these observational gaps. We use sensitivity33

analysis and visualization technology to open the neural network black box data model, and34

quantitatively discuss the potential impact of the input data on the target variables. This technique35

provides ground-level PM2.5 concentrations with high spatial resolution (0.01°) and 24-hour temporal36

coverage. Better constrained spatiotemporal distributions of PM2.5 concentrations will help improve37

health effects studies, atmospheric emission estimates, and predictions of air quality.38

1 Introduction39

Ambient particles raise worldwide concerns due to their impediments on human health(Dockery et al.,40

1993), and important roles in the Earth’s weather and climate system via altering radiation and41

clouds(Stocker, 2014). Particles with diameter less than 2.5 micrometers (PM2.5) are small enough to42

enter deeply into human lungs, posing the greatest short-term and long-term risks to health(Pope Iii43

and Dockery, 2006). Accordingly, sources of PM2.5 and PM2.5 precursors are highly regulated in most44

industrialized countries.45

PM2.5 can linger in the atmosphere for days and exhibit substantial spatiotemporal variations(Jia and46

Jia, 2014; Poet et al., 1972). Diurnal variation of PM2.5 concentrations can range from several μg m-347

to many hundreds μg m-3 within several hours, and appreciable differences in PM2.5 concentrations can48

occur within several kilometers spatially(Guo et al., 2017; Gupta and Christopher, 2009). Such strong49

spatiotemporal heterogeneity is attributed to both local sources (direct emissions and secondary50

production) and regional transport(Zheng et al., 2015).51

An accurate depiction of the dynamic evolution of PM2.5 remains a challenge, but is urgently needed52

for better regulation of air quality and health risk assessment. The spatiotemporal distribution of PM2.553

is commonly obtained from ground sampling instruments or inferred from satellite remote sensing.54

Over the past several years, China has made remarkable progress in monitoring air quality, with the55

number of surface monitoring sites exceeding 1600 across the country in 2020(Liu et al., 2021). These56

sites are mainly concentrated in urban regions, while rural and rural-urban fringes, home to half of57

China’s population, still go unmonitored. Although the density of monitoring sites within urban areas58

is larger than that in rural areas (Table S1), important sources, especially point sources, can be missed59

by these sites. Satellite aerosol optical properties serve to complement the missing spatial information60
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of monitoring networks. These capabilities improve with observations from geostationary satellites.61

For example, Himawari-8 launched by the Japan Meteorological Agency provides aerosol optical62

depth (AOD) at a 5-km spatial resolution every 10 minutes. However, satellite data provide only63

indirect constraints on ground-level PM2.5 concentrations, as they retrieve column densities instead of64

surface-level concentrations and challenges remain in resolving the size spectrum of atmospheric65

aerosol. Furthermore, satellite observations are limited to cloud-free and haze-free scenes.66

Numerous efforts have been made to derive or constrain ground-level PM2.5 concentrations with67

satellite AOD, including aerosol data assimilation with sophisticated chemical transport models(Gao et68

al., 2017; Saide et al., 2012). A forward operator and its adjoint are usually used to link the changes in69

AOD to aerosol chemical compositions(Gao et al., 2017; Saide et al., 2012). This approach is70

computationally expensive, and the performance can be degraded by the uncertainties in the operator71

itself(Saide et al., 2020). There have also been attempts to statistically infer ground-level PM2.572

concentration from satellite AOD(Bi et al., 2019; Xiao et al., 2017). Although spatiotemporal gaps73

were filled with predictions from chemical transport models or with AOD observed by multiple74

satellite sensors(Bi et al., 2019; Xiao et al., 2017), predictions were obtained at relatively low temporal75

resolution (daily/monthly)(Bi et al., 2019; Fang et al., 2016; He and Huang, 2018; Li et al., 2017; Ma76

et al., 2016; Park et al., 2020; Shtein et al., 2019; Wei et al., 2019; Wei et al., 2020; Xiao et al., 2017;77

You et al., 2016; Yu et al., 2017) and errors would inherit still from the uncertainties in chemical78

transport modeling or cloudy/hazy conditions(Xiao et al., 2017; Bi et al., 2019). Several studies79

offered hourly predictions of daytime PM2.5 with inputs from geostationary satellites(Chen et al., 2019;80

Liu et al., 2019; Zhang et al., 2019). Improved predictions(Fu et al., 2018; Wang et al., 2016) were81

achieved using day-night band sensor (DNB), yet hourly variations remained unclear. A few studies82

addressed this issue by including temporal predictors, which could indicate the diurnal pattern of83

PM2.5(Jiang et al., 2021; Tang et al., 2019). However, horizontal resolution of most of the input84

variables were seriously lower than the prediction, and these algorithms exhibited biases stemming85

from the limited data coverage of AOD retrievals under cloud cover, ice-covered surfaces, or during86

nighttime. Heavy haze can also be misclassified as clouds in AOD retrievals(Zhang et al., 2020). For87

example, our statistical analyses suggest that the annual spatial coverage of satellite AOD is only 33%88

in North China, and even less in other concerned regions in China (Table S2).89

Better methods are thus needed to overcome these limitations, particularly for regions with thick90
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clouds and severe haze pollution. In this study, we construct a deep spatiotemporal neural network91

(ST-NN) model to derive ground-level PM2.5 concentrations with inputs of satellite monitored AOD,92

meteorological elements, and geographical information. With this technique, surface PM2.593

concentrations in China can be accurately derived at high spatial and temporal resolution (0.01° and94

hourly), even during nighttime and under cloudy or hazy conditions.95

2 Materials and Methods96

We built a deep learning ST-NN model to improve estimates of ground-level PM2.5 concentrations,97

particularly for regions without sampling sites, and for conditions (cloudy, hazy, nighttime, etc.) where98

satellite retrievals are not available.99

2.1 Model Configuration Datasets100

We used hourly ground-level observations of PM2.5 from the Chinese National Environmental101

Monitoring Center (CNMEC) network, the daily MODerate Resolution Imaging Spectroradiometer102

(MODIS) 3km aerosol products(Levy et al., 2013), and the hourly 0.05°×0.05° Himawari-8 AOD103

products(Yoshida et al., 2018). The original MODIS products were mapped onto regional grids of104

0.05°×0.05° resolution to keep them consistent with the geographic coordinate system of Himawari-8105

data. Considering the diurnal variation of the solar zenith angles, only daytime satellite data (defined106

as 00:00-09:00 UTC) were used in this study. The reason for using two different types of satellite107

aerosol optical thickness is that the Himawari-8 satellite aerosol is effective in capturing the daily108

variation of aerosols, while the MODIS aerosol product has aerosol optical thickness in different bands109

to capture information on the properties of aerosols and more accurate numerical results. Other inputs110

to the neural network include land cover types (MODIS land cover product at 0.05°×0.05° resolution),111

road network (originally meter level, www.openstreetmap.org; Last access: July 10, 2020), point of112

interest data (POI), elevation data (1km×1km, the Resource and Environment Science Data Center,113

RESDC, http://www.resdc.cn; Last access: January 1, 2021), population/gross domestic product data114

from RESDC, and weather fields (0.05° × 0.05°, hourly) simulated by the Weather Research and115

Forecasting model version 4.0 with three nested domains116

(https://www.mmm.ucar.edu/weather-research-and-forecasting-model; Last access: May 15, 2020).117
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Geographical inputs (road network, POI, elevation, etc.) were regridded to 0.01° grids. The initial118

conditions and boundary conditions of the meteorological fields were derived from the National119

Centers for Environment Prediction’s (NCEP) 6-hour final operational global (FNL) data with a120

spatial resolution of 0.25° × 0.25°. Validation of the WRF predicted meteorological variables is121

displayed in Figure. S1. Descriptions and features of these considered datasets are listed in Table122

S3-S6.123

2.2 Data Preprocessing and ST-NNModel Configuration124

Figure. S2 displays the architecture of the deep learning ST-NN model. It operates on three major data125

types, namely AOD, geographical factors, and spatiotemporal distributions of meteorological126

conditions. AOD data were classified based on the dimension of time as near current moment (AOD at127

the past four hours, �−3 ~ �0 for daytime, and daytime AOD for nighttime prediction), past days128

(daytime AOD in the past two days), and past week to formulate influencing factors across time.129

MODIS AOD values retrieved at three bands were used for the past week's results. For aerosol data130

under cloud cover, a null fill value was used. Meteorological data were arranged as time series of the131

bottom model level and the vertical features at the current moment �0 to include the influences of132

temporal and spatial evolution. All input features were subsequently used to examine the potential133

relationship with PM2.5. Pearson’s correlation test was applied for variables that contain dimension of134

time (e.g., temperature, RH, u-wind, v-wind, AOD, etc.). For time-independent variables (e.g. POI,135

road network, and land cover type), PM2.5 data from CNEMC were classified based on the severity of136

pollution, and then a Chi-squared test was used. Only those parameters that pass the significance test137

(α < 0.01) were selected (Table S7).138

For the exploration of the potential relationships between variables and PM2.5, time variable elements139

with significant influence (α < 0.01) were selected (Table S7). Since spatially related geographic140

information variables (POI, road network, GDP, etc.) were not time-dependent (within the scope of the141

study), the correlation between land variables and the average annual PM2.5 concentration was142

explored. K-means was used to explore the discreteness of these variables, and then the contingency143

table was used for significance test. Although neural networks can spontaneously extract valid144

variables and remove the influence of irrelevant variables, a priori data selection is necessary to145
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effectively reduce model complexity and improve model operational efficiencies.146

Inception-ResNet block(Szegedy et al., 2017) and pooling layers were adopted to transform the data147

and mine the major features of data (more details in Figure. S2). The outputs out of this step were148

fused and connected, and PM2.5 concentrations were then obtained through optimizing the Log-Cosh149

loss function below.150

���� = 1
� �=1

� log (cosh (��
������� − ��

����))� (1)151

where ��
������� means the model predicted value and the ��

���� represents the observations.152

For small differences the log-cosh loss performances similar as (��
�������−��

����)2

2
, and for huge153

differences (at the beginning of model training), it’s closer abs(��
������� − ��

����)-log(2).154

We initialized all the layers with the built-in Keras glorot uniform initializer as 0, and the biases were155

initialized with 0. Due to the symmetry of the data, tanh was used as the activation function. We156

trained the networks for 64 epochs with a batch size of 4, and SGD (Stochastic Gradient Descent)157

optimizer with an exponential decay of the learning rate α as:158

� =
0.001 ����ℎ <= 32
0.001×exp 0.1× 32-epoch ����ℎ > 32 (2)159

2.3 Training and Testing160

Based on number of samples, dimension of time and dimension of space, the entire datasets (entire161

year of 2017) were randomly sorted into 10 sections, with 9 sections for training and the rest for162

testing(Schultz et al., 2021). The testing data doesn’t participate in the model training process. We also163

applied a 10-fold cross-validation to demonstrate the capability of the built model. We used sample-,164

spatial- and temporal-based cross-validation to evaluate the generalization level of the model. For165

sample-based cross-validation, we randomly grouped all the data; for spatial-based cross-validation,166

we randomly grouped the data by site location; and for temporal-based cross-validation, we randomly167

grouped the data by time. The grouped data are then used for model training and validation of the168

results. The proposed model was implemented in Python 3.7 with a neural network library named169

Keras and TensorFlow as the backend.170

https://doi.org/10.5194/egusphere-2022-578
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



7

2.4 Sensitivity Analysis171

Sensitivity analysis was conducted to explore the influences of input variables on the distribution of172

ground-level PM2.5 concentrations. We also use sensitivity analysis to open black box data mining173

models(Cortez and Embrechts, 2013). For M input variables { �� : a ∈ (1,...,M)}, each input174

variable �� was divided into L levels, and ��� denotes the j
th level of ��. For continuous variables, the175

L level is evenly divided into 10 parts according to the value range of input variables, and for176

classified variables, it is equal to the number of channels. N samples from the testing dataset were then177

selected randomly to replace �� values with ��� , and the mean responses of PM2.5 ( ���� ) were178

documented. With the spatial feature considered, the sensitivity of PM2.5 to a continuous variable179

factor (AOD, meteorological variables, etc.) was examined by varying the factor �� through its range180

with � levels but keeping the spatial pattern fixed. The ��� was given as:181

��� = �� − ����(��) + �� (3)182

For classified factors, such as land use type and traffic networks, sensitivity analysis was conducted in183

the manner of unified feature type:184

0
[ , , , ] [ , , , ]
j

channels

a a
j

X N m n j X N m n j


  (4)185

where � and � denote the location in spaial coordinate, while � represents the location in186

category dimension.187

Four metrics were calculated to evaluate the relative importance of input variables, namely range (��),188

gradient (��), variance (��) and Average Absolute Deviation (AAD) (��)(Cortez and Embrechts, 2013).189

For model inputs ��, evaluation metrics were calculated with equations below:190

�� = ��� ( �� ��: � ∈ {1, . . . , �}) − ��� ( �� ��: � ∈ {1, . . . , �}) (5)191

�� = �=2
� |�� �� − �� ��−1|/(� − 1)� (6)192

�� = �=1
� (�� �� − �� �)2/(� − 1)� (7)193

�� = �=1
� |�� �� − ���|/(� − 1)� (8)194

where �� � and �� � denote the mean and median of the responses. The relative importance (��) can be195
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described as:196

1
r /

M

a a i
i

 


 
(9)197

where a means the sensitivity measure for ��(e.g. range). In this study, the relative importance (��)198

was defined as a vector ��� = (�1, �2, …, ��).199

The influence of errors in input data on predictions of PM2.5 concentrations was explored with the200

equation below:201

�����_�����[�, �, �, �] = �����_����[�, �, �, �] ∗ (1 + ��������_�����) (10)202

where �, �, �, � represent the dimensions of input data ( � : the batch size, � : latitude, � :longitude,203

�:channels), and relative error means the uniform distribution of upper and lower bounds of error.204

3 Results205

3.1 ST-NN model reconstructs observed spatiotemporal (both daytime and nighttime) features of206

PM2.5207

Our ST-NN model operated on three major data types, namely AOD, geographical factors, and208

spatiotemporal distributions of meteorological conditions (details are documented in the Methods209

section). It was built to improve the predictions of ground-level PM2.5, particularly for regions without210

sampling sites, and for conditions (cloudy, hazy, nighttime, etc.) that satellite retrievals are not211

available. In this study, we focused on most populated and concerned regions, North China. We also212

demonstrated that the proposed method can be easily applied to other parts of China including East213

China, South China, Sichuan Basin, and the heavily polluted Shaanxi province (regions marked in214

Figure. S3 and Table S8). The performance of the ST-NN model was cross-validated with respect to215

sampling selection, temporal variability and spatial distribution. As displayed in Figure. 1, our ST-NN216

model accurately captured the observed spatiotemporal variability of daytime PM2.5, with regression217

slopes close to 1 and intercepts close to 0. Spatial variations of AOD at the past four hours,t-3~t0 , were218

used as near moment predictors for daytime PM2.5. Daytime AOD values in the past two days and in219

the past week were also used to formulate influencing factors across time. Multiple validation metrics,220

including R2, root mean square error (RMSE, µg m-3), and mean absolute error (MAE, µg m-3), were221
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calculated and listed in Figure. 1, Table 1 and Table 2. R2 values with respect to sampling selection,222

temporal variability and spatial distribution in North China were generally above 0.85 (Figure. 1),223

indicating the applicability of the model under various complex conditions. Its applications to other224

years and over other regions in China achieved similar pleasant performance, and R2 value reached225

even 0.90 when it is applied to Shaanxi Province for year 2019 (Table 1).226

Given the relatively long lifetime of aerosols in the atmosphere(Williams et al., 2002) (several days),227

daytime observed variations of AOD were used in the prediction of nighttime PM2.5 (details228

documented in Methods section). The capability in predicting the diurnal features of PM2.5 was229

demonstrated in Figure. 1 (d-i). Similar values of validation metrics were found for different time230

windows. R2 values were generally above 0.80, and RMSE values were below 26 μg m-3 for North231

China. Similar delightful performances were found for other regions also, and the performance of the232

model in predicting nighttime PM2.5 did not exhibit a significant degradation from daytime (Table 1).233

Despite that satellite AOD retrievals are not available during nighttime, our ST-NN model provides a234

reasonably reliable prediction of PM2.5 during nighttime. This is mainly attributed to the advantage of235

ST-NN in learning the dynamic transport and dissipation of particles under complex influences of236

meteorology, terrain, etc., which was exemplified with a haze episode occurrend in North China in237

2017 (Figure. 2). And from Figure. S4 we can see that the characteristics of the PM2.5 distribution in238

the Beijing, PM2.5 concentrations are influenced by topography and southwest transmission. The data239

are influenced by meteorological and aerosol data at 0.05°. However it can still be differentiated on a240

scale of 0.01°.241

In addition to cross-validation, independent validation of this ST-NN model was conducted with PM2.5242

concentrations observed at sites that were not included in the model training. The variability of PM2.5243

concentrations at these independent stations were also accurately captured by our model, with R2244

values greater than 0.8 (Figure. S5). Independent validation was conducted also with respect to the245

diurnal variation of PM2.5. As indicated in Figure. S6, the diurnal pattern of PM2.5 over multiple246

independent stations across China was reproduced by the ST-NN model.247

3.2 Temporal and spatial block cross-validation248

To better assess the generalization of our model, additional spatial block cross-validation tests were249
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carried out(Schultz et al., 2021). We selected the East China for the mask testing, and used the sites250

within the designated area as the validation dataset (Figure. S7). As mask area increases, model251

performances progressively worsen (Table. S13), but it still captures pollution events (Figure. S8),252

Even in North China, the most polluted region of China, it still gives good results in different weather253

conditions(Figure. S9). On the temporal level, we trained the model with data from 2017 to 2019 only,254

and predicted the dynamic evolution of PM2.5 concentrations in 2020. The overall validation is shown255

in Figure. S10 and Table S14. We find that the model validates worse in scenarios with lower surface256

PM2.5 concentrations, mainly due to the large observational uncertainty at low PM2.5 concentrations257

(Figure. S16).258

We further assessed the ability of the model to capture pollution events through accuracy and precision.259

Accuracy rates were greater than 80% and 75% of sites had precision greater than 60% (Table. S15).260

3.3 ST-NN model improves prediction of PM2.5 below clouds and during severe haze261

A prominent advantage of our ST-NN model is its competence in improving prediction of PM2.5 below262

clouds and during severe haze. Figure. 3 displays satellite images during various episodes in different263

seasons when the North China region was obscured by clouds. In cloudy conditions, satellites fail to264

monitor ground-level aerosol pollution, while our ST-NN can fill these observation gaps and provide a265

complete distribution of PM2.5 under cloudy conditions. Compared against ground-level observations,266

satisfactory performance was found (Figure. 3), with R2 values exceeding 0.82 in most cases. PM2.5hot267

spots in South Hebei and Shanxi as observed by the ground-level network were also reproduced by268

ST-NN. And Figure. S11 shows the overall relative error of cross-validation of the model under269

different cloud coverage.270

We further explored how cloudy conditions would influence the prediction of PM2.5 concentrations.271

Figure. 4 illustrates the predicted PM2.5 with full coverage and with cloudy conditions removed for272

four metropolitan clusters in China. The MODIS Collection 6.1 Cloud mask products were used to273

track the cloudy conditions in this ST-NN model. Over the study period, 60% of the data in North274

China were affected by clouds. Heavy haze in China can also be misclassified as cloud by the retrieval275

algorithm(Zhang et al., 2020). As a result, the influences of clouds on the prediction of PM2.5 differ276

greatly across regions and seasons (Figure. 4). In North China and the Sichuan Basin region, mean277
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PM2.5 concentrations with cloudy periods removed exhibit lower values than the full coverage annual278

mean (Figure. 4c, 3o). On the contrary, negative differences were identified for South China (Figure.279

4k), suggesting different driving factors for these regions. In cloudy scenes, PM2.5 concentrations280

exhibited lower values when relative humidity (RH) > 60% in South China (Figure. S12c). This could281

be related to cloud-related wet removal of air pollutants. Conversely, PM2.5 concentrations in North282

China were biased low using only cloud-free scenes in North China, as indicated with lower satellite283

observed AOD in cloud-free scenes (Figure. 5a-d). Such underestimation mainly occured during284

wintertime (Figure. 5).285

The CNEMC surface measurements further indicated that PM2.5 concentrations were biased low in286

cloud-free scenes in North China, but biased high in South China, consistent with our ST-NN287

predictions (Table 3). Over the entire study period, 83% of the data in winter in North China were288

marked as cloudy, higher than those in other seasons (60%) (Table S2). This is mainly related to the289

occurrences of snow/ice or severe haze(Zhang et al., 2020). Figure. 4 (d, h, l, p) further justified that290

groud-level PM2.5 under cloudy conditions could be well predicted by our ST-NN model in four291

metropolitian regions, with high correlation coefficients and low errors. Cross-validation also292

suggested that our ST-NN model can give valid results under clouds (Figure. S11). Different regions293

are affected differently by cloud cover, with warmer and more humid regions such as Eastern and294

Southern China, where errors increase as cloud cover increases, while in dryer regions such as295

Northern China, the effect of cloud cover has little impact on the results, possibly indicating a296

potential relationship between surface PM2.5 concentrations and cloud formation processes.297

3.4 ST-NN model offers better regional representation of PM2.5298

As the CNEMC stations are concentrated in urban areas (Figure. S13), using only CNEMC data to299

estimate regional PM2.5 concentration would result in an overestimation. As indicated in Table 4, mean300

PM2.5 concentrations at CNEMC stations agree better with the mean over densely populated areas, but301

are higher than the mean over sparsely populated areas and therefore also higher than the mean over302

the entire region. This further emphasizes that CNEMC observations might not be able to reflect the303

pollution in the suburbs and accurately show the overall pollution condition in a region.304
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4 Discussion305

A number of studies have explored the prediction of ground-level PM2.5 concentrations with statistical306

methods, as indicated in Table S9. Despite that many of these studies achieved similar performance307

with respect to R2, RMSE, MAE and slope as our study, most of them provided only predictions at a308

low temporal resolution (daily)(Fang et al., 2016; Ma et al., 2016; You et al., 2016; Li et al., 2017;309

Xiao et al., 2017; Yu et al., 2017; He and Huang, 2018; Bi et al., 2019; Shtein et al., 2019; Wei et al.,310

2019; Park et al., 2020; Wei et al., 2020). Several studies offered hourly predictions of daytime PM2.5311

with inputs from geostationary satellites(Chen et al., 2019; Liu et al., 2019; Zhang et al., 2019).312

However, the nighttime hourly variations are lacked, although endeavors were made with Day-Night313

Band (DNB) sensor(Wang et al., 2016; Fu et al., 2018). Additionally, few studies addressed this issue314

by including temporal predictors(Tang et al., 2019; Jiang et al., 2021).315

We fully used the spatiotemporal features of aerosol and simulated the dynamic evolution of aerosols316

under complex influences of meteorology, terrain, etc. in this study. Sampling selection, temporal317

variation, and spatial distribution based cross-validation demonstrated that the method presented here318

is skilled in providing reliable ground-level PM2.5 concentrations with high spatial resolution (0.01°)319

and 24-hour temporal coverage, which is challenging especially for heavily polluted regions.320

Independent validations were also conducted for cloudy conditions and nightime, and no degradation321

of performance was found.322

We examined the importance of satellite observed AOD in the prediction of PM2.5 during both daytime323

and nighttime using four sensitivity measures(Cortez and Embrechts, 2013), namely range Sr, gradient324

Sg, variance Sν, and average absolute deviation from the median SAAD. AOD accounts for more than325

30% of the weight throughout the day, and the relative significance exhibits slightly higher values326

during nighttime (Table 5), emphasizing the importance of AOD observations in nighttime predictions.327

Land cover type and meteorological variables also play important roles in the dynamic evolution of328

PM2.5 in North China and other regions, as illustrated in Figure. S14. The effects of the key variables329

on surface PM2.5 concentrations are given in Figure. S15. However, the model tends to better capture330

moderately polluted conditions, as the relative errors exhibit relatively larger values when observed331

PM2.5 concentrations are above 350 µg m-3 or below 20 µg m-3 (Figure. S16). The relatively poor332

capability of our ST-NN model in capturing these extremely low or high values are mainly attributed333

https://doi.org/10.5194/egusphere-2022-578
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



13

to the rarity of these conditions and the small sampling size (North China: 0.34‰, East China:334

0.059‰, South China: 0.068‰, Sichuan Basin: 0.048‰, Shaanxi Province: 0.25‰). Similar335

uncertainties of the model might be raised by the errors in model input data. Random errors were336

added to the input data to explore how it would influence the errors of predicted PM2.5. Similarly, the337

quality of AOD data was essential within a very broad range of uncertainty (Figure. S17). When errors338

of other inputs grow (>20%), the accuracy of prediction would also be significantly degraded (Figure.339

S17). We examined also how input data quality control process would affect the accuracy, and a340

negligible role was found (Table S10, S11). During the development of ST-NN models for different341

regions in China, the loss function decreased in a similar manner, while the decreasing speed and342

convergence values varied among regions due to differences in the size and feature of data (Figure.343

S18). We noticed also that the performance of the model varied across regions and seasons, which344

might be also related to the distinct spatiotemporal features of PM2.5 (Figure. S19), and the associated345

meteorological/geographical characteristics in different regions. The uneven distribution of CNEMC346

sites might also play a role (Figure. S13).347

A long-standing restriction for the use of satellite AOD has been that surface PM2.5 cannot be348

constrained under cloudy conditions, during nighttime or during severe haze(Gao et al., 2017). This349

limitation has been overcome here with an advanced statistical method. The capability of the built350

ST-NN model in predicting PM2.5 below clouds and during nighttime is mainly due to the351

consideration of spatiotemporal variation of influencing meteorological/ geographical factors and the352

dynamic evolution of aerosols. The processes considered are close to those in numerical chemical353

transport models, but with constraints of satellite AOD. Time-varying and time-invariant factors were354

processed separately in the ST-NN model to fully explore the dynamic feature of aerosol under355

complex influences, and the factors on different time scales were considered. Our ST-NN model relies356

on the regional transport features of air pollution, and it could thus be problematic to track very small357

point sources. This limitation will be further improved in future studies with more in-depth exploration358

of the connection between aerosol and clouds(Saide et al., 2012). The issue of rarely observed extreme359

conditions and small sampling size could be solved also to some extent in the near future when the360

volume of observations grows with time.361
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490
Figures and Tables491

492
Figure. 1. Density scatterplots of cross-validation with respect to sampling selection, temporal493

variability, and spatial distribution. (a) daytime, sampling selection; (b) daytime, temporal variability;494
and (c) daytime, spatial distribution; (d-i): cross-validation across space at different diurnal time slots495
(both daytime and nighttime). The fitting line is in purple, and the 1:1 standard line is the black dotted496

line.497

498
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499

Figure. 2. ST-NN model simulated haze episode on November 16-17, 2017. The spatial distribution of500
simulated near surface PM2.5 concentrations and wind fields.501

502
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503

Figure. 3. Performance of the ST-NN model at several cloudy moments (clouded data randomly504
selected from the results of time-based cross-validation). Left to right columns display true color505
images from Himawari-8 (five moments, a1:2017/2/19 04:00 UTC; b1: 2017/3/17 04:00 UTC; c1:506

2017/5/22 04:00 UTC; d1: 2017/10/8 06:00 UTC; e1: 2017/11/9 07:00 UTC), ST-NN model predicted507
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PM2.5, at corresponding moments (a2-e2), CNEMC observed PM2.5 at corresponding moments (a3-e3),508
and the scattered validation (a4-e4).509

510

511

Figure. 4. ST-NN model predicted annual mean PM2.5 concentrations in 2017 and validation under512
cloudy conditions in 2017. ST-NN model predicted full coverage annual mean (a, e, i, m for North513
China, East China, South China, and Sichuan Basin, respectively); predicted annual mean with514

MODIS marked cloudy conditions removed (b, f, j, n); the differences between predictions with full515
coverage and those with MODIS marked cloudy conditions removed (c, g, k, o); Cross-validation with516

respect to spatial distribution under conditions at stations that were not considered in training.517

518
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519

Figure. 5. Seasonal distribution of the difference in PM2.5 concentrations between full coverage data520
and cloud mask filtered data for four metropolitan regions. (a-d) North China. (e-h) East China. (i-l)521

South China. (m-p) Sichuan Basin.522

523

Table 1. R-square values of cross validation of the model with respect to spatial distribution.524

2017 2018 2019 2020

day night day night day night day night

North China 0.86 0.83 0.82 0.84 0.87 0.85 0.84 0.88

East China 0.81 0.82 0.86 0.85 0.83 0.86 0.86 0.85

South China 0.83 0.84 0.82 0.83 0.83 0.85 0.82 0.80

https://doi.org/10.5194/egusphere-2022-578
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



22

Sichuan Basin 0.84 0.85 0.82 0.80 0.89 0.89 0.87 0.83

Shaanxi Province 0.85 0.84 0.89 0.81 0.90 0.87 0.88 0.88

525

Table 2. RMSE of cross validation with respect to spatial distribution.526

2017 2018 2019 2020

day night day night day night day night

North China 19.77 22.59 19.92 19.86 16.53 18.44 16.46 13.99

East China 16.15 16.51 13.09 14.04 13.19 12.13 9.88 9.47

South China 11.11 12.81 10.38 11.38 9.52 11.41 6.00 8.96

Sichuan Basin 14.80 17.52 13.90 18.51 10.28 11.86 8.03 10.74

Shaanxi Province 20.15 22.79 15.47 18.88 15.14 17.13 12.01 12.33

527

Table 3. CNMEC measured and ST-NN predicted PM2.5 (μg m-3) concentrations in 2017.528

CNEMC
annual mean

CNEMC cloud
filtered mean

ST-NN annual
mean

ST-NN cloud
filtered mean

North China 58.30 43.57 33.84 29.58
East China 48.57 44.33 38.49 40.75
South China 38.27 46.14 29.77 35.94
Sichuan Basin 46.88 36.48 25.80 24.63

Shaanxi Province 51.15 40.47 33.54 30.23

529

Table 4. ST-NN model estimated PM2.5 (μg m-3) concentrations under different population densities.530
North
China

East
China

South
China

Sichuan
Basin

Shaanxi
Province

CNEMC 58.65 48.65 38.71 46.11 54.08
Populated Regions
(>500people/km2) 53.40 43.20 31.31 38.55 46.38
Moderately populated
(<500people/km2) 29.43 36.36 27.72 24.36 32.04
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All areas 34.12 38.53 28.11 25.80 33.52
531

Table 5. The importance of AOD in the prediction of PM2.5, as indicated with sensitivity measures (Rr,532
Rg, Rν, and RAAD).533

00:00-06:00
(UTC)

06:00-12:00
(UTC)

12:00-18:00
(UTC)

18:00-24:00
(UTC)

day Night

0.34 0.31 0.33 0.32 0.34 0.36

0.42 0.39 0.41 0.40 0.42 0.44

0.36 0.27 0.32 0.30 0.35 0.39

0.36 0.31 0.33 0.32 0.35 0.37

534
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