Preprints
https://doi.org/10.5194/egusphere-2022-559
https://doi.org/10.5194/egusphere-2022-559
08 Jul 2022
 | 08 Jul 2022

Emulating Aerosol Optics with Randomly Generated Neural Networks

Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin

Abstract. Atmospheric aerosols have a substantial impact on climate and remain one of the largest sources of uncertainty in climate forecasts. Accurate representation of their direct radiative effects is a crucial component of modern climate models. Direct computation of the radiative properties of aerosols is far too computationally expensive to perform in a climate model however, so optical properties are typically approximated using a parameterization. This work develops artificial neural networks (ANNs) capable of replacing the current aerosol optics parameterization used in the Energy Exascale Earth System Model (E3SM). A large training dataset is generated by using Mie code to directly compute the optical properties of a range of atmospheric aerosol populations given a large variety of particle sizes, wavelengths, and refractive indices. Optimal neural architectures for shortwave and longwave bands are identified by evaluating ANNs with randomly generated wirings. Randomly generated deep ANNs are able to outperform conventional multi-layer perceptron style architectures with comparable parameter counts. Finally, the ANN-based parameterization is found to dramatically outperform the current parameterization. The success of this approach makes possible the future inclusion of much more sophisticated representations of aerosol optics in climate models that cannot be captured through simple expansion of the existing parameterization scheme.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

05 May 2023
Emulating aerosol optics with randomly generated neural networks
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023,https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally...
Share