
Firstly, we would like to sincerely thank the editor and both peer reviewers for their helpful comments. 
We recognize that peer review is a time-consuming and often thankless job, but your input is essential 
and has helped improve our updated version of the manuscript. We have provided some comments to 
both reviewers below, responded point by point to each of the reviewer comments individually, and have 
submitted an updated version of the manuscript along with tracked changes.

To both reviewers:

During the process of responding to the reviewer comments we identified two errors in our code that 
required correction and ultimately required re-running almost all the experiments in the paper:

1) The lookup tables and optics dataset are large, and early in the project these data were stored 
using 16-bit floating point precision to save space and reduce data loading times. This is not an 
issue for the analysis of the Ghan and Zaveri 2007 parameterization because its errors are of the 
order 0.1 for values of the order 1.0 and any floating-point truncation errors are negligible. The 
accuracy of the best neural network models and largest optics lookup table evaluated in the study 
approach the limits of 16-bit precision however. Remedying this required re-running the 
experiments for the full study using data stored at higher, 32-bit, precision. The main impacts of 
re-running the experiments were slightly lower error for the neural network models across the 
board. The training procedure had to be slightly changed to include an extra round of training 
after an additional learning rate reduction. The random network generation was re-run so different
optimal random architectures were found and Figure 3 had to be updated to reflect this.

2) A scaling factor of either 1.4 or 1.1 (depending on aerosol mode) was not correctly applied when 
computing the physical values analyzed in Figures 4 and 5 and Table 1. The factor arises from the
coefficient in front of the integral in Equation 1 in the revised manuscript. It is omitted in the 
existing parameterization code because it is later canceled by another operation, but should have 
been included for reporting the error metrics in our manuscript. This error caused an artifact to 
appear in Figure 5 in the initial draft and caused the MAEs reported for all methods in Table 1 to 
be slightly overstated. Though they were increased by the same factor for all methods, so our 
comparison and discussion of the methods’ relative performance in the text remains mostly 
unchanged.

After fixing these issues, the paper’s conclusions and main results remained unchanged, but the content of
most tables and figures are slightly altered. Because the entire project had to be re-run, we took the 
opportunity to make some changes that help address some of the reviewers’ concerns and some 
unsolicited changes that, we believe, increased the quality of the study:

3) We have generated a much larger testing dataset. It has about 1000x the number of samples used 
in the initial submission and is of comparable size to the combined training and validation 
datasets. Furthermore, the testing set is gridded to provide full coverage of the potential input 
space and does not include any points potentially very close to training samples (the previous 
testing set was randomly generated).

4) We omitted the second round of training for the selected random architectures that included the 
samples from the validation set. We found that this step did not significantly alter their 
performance.



5) The training procedure description in Section 4.4 was re-written in terms of epochs instead of 
total number of batches and modified so that the ANNs could fit the higher-accuracy training data
by including an additional epoch at a lower learning rate at the end of training.

6) The design of Figure 4 was changed. The histogram bins had previously used a linear scaling 
which assigned most of the small error cases to the lowest bin. Now the bins use log-scaling, and 
the bin edges are clearly marked in the figure.

7) Equation 1 was added to Section 3.5 that shows exactly how the bulk aerosol optical properties 
can be calculated using Mie code. We have made the language referencing bulk optical properties
and their descriptions clearer.



Responses to reviewer 1 comments:

This manuscript describes the development of neural networks to replace the aerosol optics in a climate 
model with a more detailed treatment, which is based on running the same types of codes with more detail
to develop a parameterization which better represents more detailed modeling. In general the manuscript 
is well written and clear. There is a nice discussion of how the neural network is developed. However,
my main critique is that the evaluation section (section 5) is pretty minimal. Just some error curves. What
does it look like in the full model? You have demonstrated that the new parameterization represents the 
more detailed code better than the existing parameterization. Does it change the answers in the climate 
model it is designed for in any meaningful way, and does it cost anything more to run it. Also good to note
in the conclusions what lessons you learn from this experience about building neural networks for 
parameterization replacement. This is probably suitable for publication with minor revisions, but with at 
least trying it in a climate model perhaps.

We have expanded Section 5 and added more discussion and evaluation of the ANN against additional 
optical parameters (scattering and single scattering albedo). We also added some discussion of lessons 
learned and of the implications of the random wirings and the potential importance of skip connections in 
applications like this one to Sections 4.5 and 6. This is an ongoing project however, and our ultimate goal 
is to use the random ANNs and the approach to training used here to develop parameterizations capable 
of more complex optics than what is currently available for climate modeling (core-shell models). Our 
plan is to publish a follow-on paper that evaluates climate modeling results using multiple ML-based 
parameterizations. Because the random ANN approach is fairly involved and a significant result on its 
own with implications for future development of ML-based parameterizations, we thought it was best to 
publish this manuscript separately describing the random ANNs in detail and evaluating them directly 
against Mie scattering models.

Page 1, L10: Would be good to have more detail on what ‘outperform’ means specifically in another 
sentence or two.

Added this on line 10: “Finally, the ANN-based parameterization produces significantly more accurate 
bulk aerosol optical properties than the current parameterization when compared to direct Mie 
calculations using mean absolute error”

Page 1, L15: Disingenuous. The direct effects of aerosols are not the largest uncertainty: only indirect 
effects on clouds.

We have updated this to be clearer (line 18): “They have long been known as one of largest sources of 
internal uncertainty in climate modeling, primarily due to cloud interactions, but with a significant 
contribution from direct effects as well (Bellouin et al., 2020).”

Page 2, L29: Example of climate models generating training data (for replacing part of a 
parameterization: Gettelman et al 2021.

Gettelman, A., D. J. Gagne, C.-C. Chen, M. W. Christensen, Z. J. Lebo, H. Morrison, and G. Gantos. 
“Machine Learning the Warm Rain Process.” Journal of Advances in Modeling Earth Systems 13, no. 2 
(2021): e2020MS002268. https://doi.org/10.1029/2020MS002268.



Thanks, noted. (line 32)

Page 3, L63: clarify ‘these optical properties (absorption…etc’

Updated line 67: “(bulk absorption, extinction, and asymmetry parameter)”

Page 3, L77: what is the size range here? Please be explicit.

We have added clarification to line  75: “significant portion of atmospheric aerosols have size parameters
(x = 2πr/λ) within the Mie regime, particularly in the shortwave radiative bands used by EAM’s radiative 
transfer code. There is no strict definition of the bounds of the Mie regime, but typically one would use 
Mie code to estimate optical properties for size parameters within about 2 orders of magnitude of unity 
and geometric or Rayleigh approximations for larger or smaller particles (respectively) depending on the
accuracy required for the application. Here we use a Rayleigh approximation for size parameters less 
than 0.05 and Mie code for everything larger.”

Page 3, L90: The CESM reference should probably be Danabasoglu, et al 2020.

Danabasoglu, G., J.-F. Lamarque, J. Bacmeister, D. A. Bailey, A. K. DuVivier, J. Edwards, L. K. 
Emmons, et al. “The Community Earth System Model Version 2 (CESM2).” Journal of Advances in 
Modeling Earth Systems 12, no. 2 (2020): e2019MS001916. https://doi.org/10.1029/2019MS001916.

Noted, line 97.

Page 5, L148: how much error is there in the approximations? Can you quantify it?

Yes, it is shown in Table 1. We added a note of this on line 153.

Page 9, L251: why would a random network do better? Is there an explanation? Isn’t that a form of 
overfitting?

We added discussion in Section 4.5 and 6. In short, the fact that most random nets outperform their 
conventional counterparts indicates that skip connections are important for this problem. There is fairly 
detailed research on why skip connections are useful for deep learning in the context of convolutional 
neural networks, but they are only rarely used (at least for now) in ANNs with fully connected layers. 
Finally, some of the random nets are bound to be worse than others and the random search helps us find a 
good architecture for the problem and balance the model size vs performance.

Overfit is a significant concern with this level of model optimization, so we have taken great care to 
generate a validation and testing procedure that would make a potential overfit obvious. In our revised 
manuscript we have added evaluation of the best conventional ANNs on the test set as a row to table 1 
and reported the values of the best random ANNs evaluated on the test data using the same method as in 
Figure 2 to section 4.4. Both these checks help make clear that validation set performance is predictive of 
test set performance.

Page 10, L289: Please describe these terms a bit. ReLU, ELU, Leaky ReLU and Parametric ReLU

We have updated this to use more descriptive names and provided relevant citations (line 311).

https://doi.org/10.1029/2019MS001916


Page 10, L291: what is a transfer function? Above you call them activation functions. Please clarify.

We have updated the manuscript to use consistent terminology throughout (we were using these 
interchangeably)

Page 11, Figure 2: is the red dot the ‘optimum’ network?

Yes. We have added a note of this to the caption. 

Page 12, L350: can you make the evaluation a bit more quantitative in spots? It seems a bit ‘weak’ right 
now, especially compared to the rest of the paper.

We have added evaluation of extinction efficiency and single scattering albedo, and some additional 
discussion to Sections 5 and 6.

Page 13, L360: What does the first column (Table:) of table 1 mean? Should it say something?

These represent using a lookup table with linear interpolation instead of the neural network. We have 
added some clarification to the manuscript.

Page 13, L364: Can you explain the patters in Figure 5? What do they arise from?

These arise from the Chebyshev polynomial fit that the parameterization uses to approximate optical 
properties as a function of mode radius. The method only uses a 5th order Chebyshev fit to represent the 
variability along this dimension, and in the cases that the fit is not very good, the Chebyshev polynomial 
will over- and under-shoot the true curve. Because the scattering efficiency is very sensitive to the mode 
radius this over/undershoot is very obvious in Figure 5.  Discussion was added at line 405

Page 16, L402: Other lessons learned? It would be great to share in the paper. 

More discussion was added to Sections 4.5 and 6. Also note that there are some comments at the end of 
Section 4.3 on transfer functions and regularization techniques that we decided not to use early on in the 
project because they were clearly performing worse.



Responses to reviewer 2 comments:

The manuscript (MS) presents a new method (based on Artificial Neural Networks (ANNs)) for online 
calculation of the optical properties of the internally mixed aerosols. Current parametrizations and look-
up tables are either computationally unaffordable or fail to capture the large variabilities in aerosol 
properties. The training dataset is based on the Mie code that directly computes the optical properties of 
aerosols by considering the variability of the particle sizes, wavelengths, and refractive indices. This 
approach is similar to previous parameterizations but uses a higher resolution for different parameters. 
By evaluating ANNs with randomly generated wirings, the optimal network architectures are identified 
for SW and LW. The results show that randomly generated deep ANNs lead to lower error compared to 
the conventional multi-layer perceptron. Besides, the ANN-based parameterization outperforms the 
current parameterization.

The paper is very well structured and written. I really enjoyed the detailed explanations of the 
assumptions and methods that makes it easy to follow the results. The methods and results are robust with
major benefits for the aerosol modeling community. Thus, I recommend publication after addressing the 
minor points/questions listed below.

With respect to the I/O, it is not clear why nine variables are chosen. Any pre-processing or input 
selection procedure? Especially two parameters “surface mode radius over wavelength” and “surface 
mode radius” are obviously correlated. This should not happen.

These I/O variables are all used by the existing parameterization except the surface mode radius over 
wavelength. It often helps ANNs to hand-construct input features that are non-linear combinations of 
other inputs. In this case we know that size parameter is very relevant to Mie scattering, so this is the one 
hand-made feature we opted to add. In our early experiments for this project, it helped with faster training
and more accurate models. We added a note about this on line 220.

Why do you need one-hot encoding? What additional information does it contain for the modes?

One-hot encoding is a common way to encode categorical data for neural networks. It is usually easier for
them to learn with these one-hot vectors than using a scalar input that can have 4 different values (also 
consider that a scalar input implies that some categories are closer than others, e.g. modes 2 and 3 are 
closer than 1 and 4, and that may not be true). Each mode assumes a different log-standard-deviation so 
that is the main information that is encoded here. There may be other information about the behavior of 
each mode that the ANN learns to infer from the one hot encoding too. We have added more discussion 
of the input parameter choices starting on line 217.

It can be expected that 2-3 hidden layers can capture the nonlinearities of the system very well and more 
hidden layers often lead to over-fitting (shown in Fig 2). But it is not clear if the rather minor MAE 
reduction by random wired networks (outperform is too strong here) is justified by its computational 
costs/complexity.

Please note that the horizontal axis in Figure 2 represents total parameter counts for the model. The 
random networks are compared to serially connected ANNs with similar parameter counts, so while there 
is added complexity in terms of the network graph the number of floating-point operations to evaluate the 
random nets is not higher. While the improvement of random ANNs over conventional ANNs is small 
compared to the difference between the current parameterization and any ANN, the random ANNs 
provide an additional 10-30% reduction in error in the shortwave regime and 65% in the longwave regime



at no additional computational cost during use. Also note that the lines in Figure 2 represent the best 
performing conventional ANNs after 5 trials of re-training from scratch, and the majority of the dots, 
which represent each individual random network, have lower MAE than the conventional ANNs of the 
same size. Not only do the best random nets outperform the conventional ANNs but the majority do. We 
have added more discussion on this topic to Sections 4.5 and 6.

I would like to see ANN vs. Mie similar to figure 5 but for all parameters: extinction coefficient, single 
scattering albedo and asymmetry parameter in SW and WL.

We have added panels to Figure 5 that include bulk SW scattering efficiency and single scattering albedo. 
The parameterization only handles absorption in the longwave.


