Preprints
https://doi.org/10.5194/egusphere-2022-490
https://doi.org/10.5194/egusphere-2022-490
24 Jun 2022
 | 24 Jun 2022

Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change

Allison Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan Ziegler

Abstract. The fate of soil organic carbon (SOC) in boreal forests is dependent on the integrative ecosystem response to climate change. For example, boreal forest productivity is often nitrogen (N) limited, and climate warming can enhance N cycling and primary productivity. However, the net effect of this feedback on the SOC reservoir and its longevity with climate change remains unclear. Here, we (1) applied lignin biomarkers to assess the diagenetic alteration of SOC in boreal forest organic soils across a climate gradient; and (2) investigated the coupling of soil C and N cycling and the influence of enhanced N availability on soil C stocks along this boreal forest climate transect. The lignin diagenetic state remained constant with climate warming, indicating a balance between the input and removal of lignin in these mesic boreal forests. When combined with previous knowledge of these forest ecosystems, including the diagenetic state of soil organic nitrogen and direct measures of carbon fluxes and stocks, the results indicate a coupled increase in carbon and nitrogen cycling with climate warming that supports forest productivity and maintains SOC stocks. Our observations are consistent with several lines of evidence in other biomes not limited by water availability, although the mechanisms for the maintenance of SOC stocks during climate warming appear to be ecosystem dependent.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

01 Feb 2023
Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023,https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil...
Share