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Abstract. The fate of soil organic carbon (SOC) in boreal forests is dependent on the integrative ecosystem 

response to climate change. For example, boreal forest productivity is often nitrogen (N) limited, and climate 

warming can enhance N cycling and primary productivity. However, the net effect of this feedback on the 20 

SOC reservoir and its longevity with climate change remains unclear due to difficulty in detecting small 

differences between large and variable carbon (C) fluxes needed to determine net changes in soil reservoirs. 

The diagenetic state of SOC – resulting from the physicochemical and biological transformation of SOC that 

alters the original biomolecular composition of detrital inputs to soil over time – is useful for tracing the net 

response of SOC at the timescales relevant to climate change not usually discernible from fluxes and stocks 25 

alone. Here, we test two hypotheses using a mesic boreal forest climate transect: (1) SOC diagenetic state is 

maintained across this climosequence, and (2) the maintenance of SOC diagenetic state is a consequence of 

coupled soil C and N cycling, signifying the role of enhanced N cycling supporting SOC inputs that maintain 

SOC stocks within the warmer climate forests. Shifts in nonvascular to vascular plant inputs with climate 

observed in these and other boreal forests highlighted the need to carefully separate biogeochemical 30 

indicators of SOC source from those signifying diagenetic alteration. We thus evaluated and applied lignin 

biomarkers as a tool to assess the diagenetic alteration of SOC in these boreal forest organic soils, and directly 

compared the lignin diagenetic state with that of soil organic nitrogen (SON) assessed through amino acid 
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composition. The lignin diagenetic state remained constant across the climate transect, indicating a balance 

between the input and removal of lignin in these mesic boreal forests. When combined with previous 95 

knowledge of these forest ecosystems, including the diagenetic state of SON and direct measures of C fluxes 

and stocks, the results indicate a coupled increase in C and N cycling with climate warming that supports 

forest productivity and maintains SOC stocks. This balance could markedly shift as other factors begin to 

limit forest productivity (e.g., trace nutrients, water) with further climate change, or affect forest nutrient 

allocation (e.g., forest age or compositional change). Further application of the approach presented here could 100 

be used to detect the limits of this and other ecosystem-climate feedbacks, by providing a tractable and 

parameterizable index of lignin state across large spatial scales, necessary for ecosystem-scale 

parameterizations.  
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1 Introduction 

Terrestrial ecosystems containing globally relevant stores of carbon, such as boreal regions, are rapidly 

responding to climate-induced change (Soja et al., 2007). Boreal forests can act as a net carbon sink 

(Vanhala et al., 2016), with 50-75% of the total carbon stock stored within soils (Scharlemann et al., 2014). 

The response of soil organic carbon (SOC) stocks to climate stressors in these high latitude regions is a key 150 

uncertainty in global Earth system models (Todd-Brown et al., 2013). Productivity is often N limited in 

temperate and boreal forests, and climate warming can enhance N cycling, primary production, soil C 

inputs and stores (Melillo et al., 2011; Philben et al., 2016). However, the net effect of this feedback on 

SOC stocks and its longevity with climate change remains unclear (Melillo et al., 2017; D’Orangeville et 

al., 2018) yet important to contrain for reducing uncertainty in predictive modeling efforts.   155 

Ecosystem fluxes shape the inputs and losses of SOC stocks on seasonal to annual time scales providing 

relevant insights about climate feedback controls on SOC. However, detecting small differences between 

these large and variable fluxes is challenging and makes it difficult to determine net changes in soil 

reservoirs. Diagenetic signatures of soil organic matter (SOM) are useful for tracing the net response of 

SOM pools not usually discernible from balancing of soil inputs and losses at the decadal to century 160 

timescales relevant to climate change (Billings et al., 2012; Kane et al., 2005). Diagenesis of SOM is the 

physicochemical and biological transformation (e.g. leaching and decomposition, respectively) of the non-

living organic matter in soil that alters the original biomolecular composition of detrital inputs to soil over 

time.  Referred to collectively as the diagenetic state of SOM, the accrual of diagenetic alterations over 

decades to centuries is observable in the resultant composition of organic matter (Hedges and Prahl, 1993; 165 

Hedges and Oades, 1997), and can signify net changes in SOM stocks. For example, increases in the ratio 

of alkyl to o-alkyl carbon signifies losses of vascular plant-derived carbohydrate and selective retention of 

less bio-reactive waxes with diagenesis, and thus soil loss exceeding plant inputs (Preston et al., 2009; 

Baldock et al., 1997).  Increases in this ratio have been found to be consistent with a decrease in SOC 

stocks observed with climate warming in dry continental boreal forests (Norris et al., 2011). However, the 170 

ratio of alkyl to o-alkyl C can be complicated by shifting boreal forest vegetation inputs that develop with a 

warming climate (Quideau et al., 2001; Kohl et al., 2018). Even if primary vegetation sources do not shift, 

changes in understory composition can alter the soil’s apparent diagenetic state as assessed through broad 

biogeochemical signatures. For example, understory moss inputs can vary as a function of climate change 

altering the proportion of alkyl to o-alkyl C delivered to soils, preventing the use of this ratio to understand 175 

the diagenetic state of SOC across a mesic boreal forest climate transect (Kohl et al. 2018). Thus bulk SOC 
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diagenetic state does little to further our understanding of the limits of warming enhanced N cycling 200 

supporting mesic boreal forest SOC stocks.  

Source specific molecular biomarkers are useful for determination of carbon fate in soils (e.g. Kögel-

Knabner, 2002; Rumpel et al., 2002; ; Otto and Simpson, 2005; Otto and Simpson, 2006a Otto and 

Simpson, 2006b) and may help to overcome these challenges encountered when investigating the fate of 

carbon in boreal forest soils. Molecular transformations of lignin have provided insights about warming 205 

impacts on SOC storage and chemistry over timescales of months to years (e.g., Feng et al., 2008), as well 

as over climate shifts of years to decades represented by climate transects (e.g., Amelung et al., 1999; 

Guggenberger et al., 2001; Pengerud et al., 2017). Lignin is used as an indicator of SOC source and 

processing in a variety of ecosystems (e.g., see review by Thevenot et al., 2010 for utility in soils, and 

Table S1 for 12 commonly used indices) because it is an important component of vascular plant material 210 

(up to 30 wt%), and vascular plants are the sole source of lignin to soils (Kögel-Knabner, 2002). Thus, it is 

often used as a model compound in climate models (Thevenot et al., 2010; Sainte-Marie et al., 2021). 

Signatures of lignin phenols include common indicators of microbial degradation and physiochemical 

processing, such as the ratios of phenolic acids to aldehydes (e.g., vanillyl acids/ aldehydes; Vad/al), which 

increase as lignin side-chain oxidation increases (Hedges et al., 1988; See Table S1 for more detail). While 215 

certain indicators of lignin composition are confounded by variable vegetation inputs including mosses 

(Williams et al., 1998), multiple lignin phenol ratios can better account for variability due to source 

heterogeneity (Moingt et al., 2016). The comparison of lignin diagenesis across systems with changing 

source inputs requires assessment of input and soil lignin chemistry via multiple lignin phenol ratios 

(Simpson et al., 2008; Benner et al., 1990a, b). Thus, if the source inputs are properly constrained, the 220 

diagenetic state of lignin is a useful indicator for estimating ecosystem-level SOC responses to climate 

change over various timescales (Moingt et al., 2016).   

Similarly, the composition of total hydrolysable amino acids has been used to trace the diagenetic alteration 

of organic N in sediments and soils (Dauwe et al., 1999; Menzel et al., 2015; Philben et al., 2016). Amino 

acids comprise about half of total soil organic nitrogen (SON), and their composition in detritus is 225 

transformed by biological and physicochemical processes leading to characteristic losses of some amino 

acids (e.g., glutamic acid, lysine) and enrichment or retention of others (e.g., glycine and hydroxyproline). 

Total hydrolysable amino acids have been used to indicate that SON cycling in mesic boreal forest soils can 

increase with warming (Philben et al., 2016). Given previous observations of increased temperature 

sensitivity of soil respiration with climate warming (Podrebarac et al., 2016), the inventories of SOC in 230 

these forests might be expected to decrease with warming. However, direct measurements suggest that SOC 
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stocks are maintained, despite increasing ecosystem-scale C inputs and losses in the warmer climate forests 

across the transect (Ziegler et al., 2017).  This apparent discrepancy highlights the need for a direct 

assessment of shifts in SOC diagenesis with climate change in these boreal forests which, unlike 

observations of SON diagenesis (Philben et al., 2018b), is complicated by shifting plant inputs (Philben et 

al., 2018 a, b; Kohl et al., 2018). Soil lignin phenol composition, combined with amino acid composition, is 395 

likely to provide a means to assess the extent to which soil C and N cycling is coupled or decoupled in 

these boreal forests, which is critical for addressing the hypothesis that stimulation of N cycling can offset 

C losses with climate warming by alleviating N limitation (Medlyn et al., 2000; Strömgren and Linder, 

2002), increasing soil inputs and subsequently maintaining SOC stocks. 

In this study, we test two hypotheses relevant to understanding of the role of enhanced N cycling in 400 

supporting the maintenance of SOC stocks in warmer mesic boreal forests across a climate transect (i.e., a 

climosequence). First, we hypothesize that the SOC diagenetic state is maintained across this transect 

consistent with enhanced soil inputs keeping pace with increased losses in the warmer climate forests.  

Second, we postulate that the maintenance of SOC diagenetic state is a consequence of coupled soil C and 

N cycling, signifying the role of enhanced N cycling supporting productivity and SOC inputs that maintain 405 

SOC stocks within warmer climate forests.  To test these hypotheses, we employ lignin biomarkers 

providing novel insights on SOC that are compared with previous measures of SON processing (Philben et 

al., 2016), SOC inventories and fluxes (Ziegler et al., 2017), and bulk and molecular-level SOM 

characteristics across this mesic boreal forest climate transect (Ziegler et al., 2017; Kohl et al., 2018).  

Maintenance of SOC diagenetic state was tested through the evaluation and use of lignin phenol signatures 410 

depicting diagenetic processing free from the influence of shifting sources of soil inputs (e.g., moss) that 

vary across the transect. The measures of lignin phenol-based SOC diagenetic state were then compared 

directly with the SON diagenetic state with soil depth and across climate regions to assess whether soil C 

and N processing was coupled across the forest transect.  If increased N cycling does in fact support the 

maintenance of SOC stocks within these forests, we would expect the ratio of the diagenetic indices of SOC 415 

to SON to remain consistent across the forest climosequence. 

2 Materials and Methods  

2.1 Field Sampling and Sample Preparation  

Organic layers from humo-ferric podzols underlying similar stands of mature balsam fir (Abies balsamea) 

dominated forests located across a climosequence (Newfoundland and Labrador Boreal Ecosystem 420 

Latitudinal Transect, NL-BELT) were collected in 2011 (Table 1; Ziegler et al., 2017). Sampling focused 
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on three regions of the climosequence: the Eagle River, Salmon River and Grand Codroy regions which 

will be referred to herein as the Cold, Cool and Warm regions (Table 1). The three regions of similarly 455 

established forests and soils span approximately 5˚ in latitude, encompassing a 5.2˚C shift in mean annual 

air temperature (MAT), ~ 430 mm yr-1 in mean annual precipitation (MAP) and ~ 180 mm yr-1 in potential 

evapotranspiration (PET) (Ziegler et al., 2017).  

Therefore, the transect of study sites represents a temperature and precipitation gradient congruent with 

projected climate warming and increased precipitation expected in the region within the next century 460 

(Stocker et al., 2013). The use of this climate transect is intended to promote understanding of the 

combined impact of all ecosystem responses (microbial, plant and hydrologic change) to the warmer and 

wetter climate predicted for the region and over several decades to a century, rather than immediate 

responses to warming alone where the soil system is brought far from its equilibrium state. In doing so, we 

derive insights into the likely responses of these forest soils to climate change over decadal and century 465 

time scales within this region (Ziegler et al. 2017). The balsam fir forest sites are primarily underlain by 

forest floor moss cover in addition to few understory plants, the most common being Cornus canadensis 

and Trientalis borealis. Some fern cover occurs very sporadically in the Cold and Cool regions but is more 

common in the Warm region. The total moss cover represents the main understory difference across the 

study regions where lowest moss cover occurs in the Warm region (Table 1).  Pleurozium sp. and 470 

Hylcomium sp. dominate the moss cover in the Cold and Cool region sites, with some additional coverage 

by Ptilium sp. and Dicranum sp. in the Cold region. The moss cover in the Warm region sites are 

dominated by Dicranun sp. and Rhytidiadelphus sp. 

Each of the three regions along the climosequence contained three forest sites, while at each site soil 

samples were collected from triplicate plots (total of n= 27 plots across the climosequence; Ziegler et al., 475 

2017; Table 1). Samples were collected by cutting out a 20 x 20 cm area of the organic layer with clean 

serrated knife and clippers, and carefully removing from the surface of the mineral soil surface using a 

clean trowel.  Organic layers were manually separated into three horizons, L, F and H (equivalent to Oi, Oe 

and Oa, respectively, within the U.S. Soil Classification), and dried at 50˚C before being ground and stored 

for further analysis. Plant end-member samples (forest floor mosses, fresh needle foliage, needle litterfall, 480 

roots, wood) subjected to biomarker analysis were collected across one site per region, and were separated 

visually into taxonomic groups (e.g., moss genus). Balsam fir needles were also collected in litterfall traps 

in the Spring 2011 (litterfall), as well as roots and wood separated from one half of the organic horizons 

collected and included as additional endmember plant sources. All end-member samples were dried at 50˚C 

before being ground and stored for further analysis.485 
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2.2 Lignin Analysis 

Twelve lignin phenol signatures (see Table S1 for definitions and common usages) were examined across 

the diagenetic continuum, represented by horizon depth within the total organic layer, and in response to 

climate warming, represented by one site in each climate region. Samples from each of the three organic 

horizons (L, F and H) were collected from each of the triplicate organic horizon samples collected from 515 

three plots within one site in each of the three regions (total n=27 samples) and were analyzed for lignin 

phenols released via the cupric oxide oxidation (CuO) method (Hedges and Ertel, 1982), with modifications 

outlined in Kaiser and Benner (2011) and Louchouarn et al. (2010). Soil samples and the plant endmembers 

(n=27 moss samples, n=9 needle litter samples) were dried, homogenized, and weighed (~5 mg OC) into 

monel steel pressure vessels (Prime Focus, Inc.), along with reagents cupric oxide and ferrous ammonium 520 

sulfate and a steel ball bearing. Samples were oxidized in 2M NaOH at 155˚C for 3 hrs on a rotating rack to 

ensure constant sampling mixing. Samples were cooled immediately and spiked with internal standard of 

trans-cinnamic acid and ethyl vanillin. Sample clean-up was performed by solid phase extraction (SPE) for 

plant endmember materials or by liquid-liquid extraction with ethyl acetate for oxidized soil samples 

(Louchouarn et al., 2010; Kaiser and Benner, 2011). SPE eluates or solvent extracts were dried and re-525 

suspended in pyridine for quantification. Samples were analyzed for the twelve common phenols (Fig. S1) 

via GC-MS-MS (Yan and Kaiser, 2018), utilizing a six-point calibration curve. The percentage of carbon as 

lignin phenols was determined via methodology outlined in Benner et al. (1990a), correcting for CuO 

oxidation efficiency. 

2.3 NMR  530 

NMR spectra were obtained from Kohl et al. (2018). Briefly, cross-polarization magic-angle spinning solid 

state 13C NMR (CP-MAS 13C-NMR) was performed on the site-level scale from pooled plot-level spatial 

replicates (Kohl et al., 2018). NMR end-member spectra were weighted based on composite litterfall 

spectra, moss spectra from Kohl et al. (2018) and Douglas fir wood spectra from the literature (Preston et 

al., 1998). Previously identified peaks were re-integrated here as determined by the sum of integrated peaks 535 

in defined spectral regions. Regions were defined in this study as in Baldock et al. (2004): Alkyl 0-45 ppm, 

Methoxy/N-Alkyl 45-60 ppm, O-alkyl 60-96 ppm, Di-O-Alkyl 95-100 ppm, Aromatic 110-145 ppm, 

Phenolic 145-165 ppm, Amide/Carboxyl 165-215 ppm. Carboxyl was assigned as the peak at 173 ppm, and 

Methoxy was assigned to the peak at 56 ppm. 

2.4 Lignin Phenol Diagenetic Index (LPDI) development, application, and validation 540 

To assess the lignin diagenetic state, we created a lignin diagenetic index, modeled after the amino acid 

index presented and utilized successfully in similar contexts in Dauwe et al. 1999; Menzel et al. 2015 and 

Philben et al. 2016. We utilized principal component analysis (PCA) as a data reduction tool on measured 
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lignin phenols datasets, to better track changes in the multiple indices and ratios measured. The 

development of the lignin diagenetic index for these forests was iterative, with the initial development of a 

purely informative PCA model used for a posteriori identification of potential confounding variables 

caused by source variability (i.e., shifts in moss relative to vascular plant inputs) when determining 560 

diagenetic state of lignin (herein referred to as the Source PCA), and a second PCA to then assess variables 

best representing the diagenetic state of lignin in these soils (i.e., diagenetic PCA). Before using the PCAs, 

we first explored how the individual phenol ratios varied with depth and/or site – the source, and/or 

processing of lignin in our datasets. After assessing which variables varied with depth or site, we then 

performed multiple PCAs targeted at further elucidating source (site) and degradation (depth); details of the 565 

steps taken in this approach are below and can also be found in Supplemental Figure S2. Lignin phenol 

signatures considered in this exercise included the most common phenolic indices used in the literature: ∑6, 

∑6:∑8, %C as lignin, C/V, S/V, VAd/Al, SAd/Al, FAD/CAD, diOHBA/V, % side chain alteration, 

P/(V+S), PON/P (Supplemental Table 1). All data was input to each PCA as a soil carbon normalized 

molar amount (nmol phenol mgC-1) or ratio (nmol phenol nmol phenol-1), for comparability during 570 

multivariate statistical analyses (Panetta and Gélinas, 2009). Values were processed prior to performing 

each PCA by zero centering and scaling to unit variance for each input variable. The effects of source 

materials on phenolic signatures were first considered for interpretation of lignin diagenesis in these forests, 

as they derive from vegetation with highly variable phenol content (e.g., mosses vs. vascular plants). 

Therefore, we first completed the Source PCA model, using as inputs lignin phenol signatures that varied 575 

significantly with site (p=12). Input variables included the percentage of identifiable source material as 

woody materials, needles, or mosses contributing to the L horizon soil,  ∑6, ∑6:∑8, %C as lignin, C/V, 

S/V, diOHBA/V, % side chain alteration, P/(V+S), and PON/P. Pure source or plant endmember samples 

(i.e., moss and needle tissues), modeled litterfall and wood samples, and the L-layers subjected to CuO 

oxidation were considered as observed entities (n=33; Table S3). These include site composite samples of 580 

the L horizon from each region (n=9), a site composite sample of moss from across both a Warm and Cold 

region site as well as samples of the major genera of moss observed across the transect collected from 

across a site in the Cool region, including both green and lower brown tissues (n=10), two site composite 

samples of green and brown balsam fir needle litter from one site in the Cool and Warm regions (n=8), a 

composite needle foliage sample from a Warm region site (n=1), modeled birch and balsam fir wood from 585 

the literature (n=2), and modeled total litterfall for each region (n=3); details of how these values were 

derived can be found in the Supplement Materials. The Source PCA loadings and scores on PC1 and PC2 

were used to determine the influence of input sources (e.g., % moss as source contributions) on lignin 

phenol indices assessed, to identify which indices were and were not affected by source material inputs 

(Tables S2 and S3).   590 

Based on the information from the Source PCA model, all source signatures that do not appear to be 

affected by the various source input materials present at these sites (e.g., non-vascular moss source inputs, 
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tested as % moss), and that change significantly with depth (a proxy for diagenesis) were further considered 

as input variables for the diagenetic index development via PCA (diagenetic PCA model). These variables 

also best retain original variance while reducing any effect of co-correlation effect on the overall PC 

loadings, and were chosen via a branch and bound algorithm (p=4; Cadima et al., 2017). The diagenetic 

PCA model was built using Vad/al, FAD/CAD, ∑6:∑8, and %C as Lignin-C , and the L, F, and H samples 680 

(total n=27 samples). The lignin phenol diagenetic index (LPDI) was then defined as the first component of 

the diagenetic PCA model, as it best explained variation in lignin diagenetic state across the samples, while 

also encompassing the highest explanatory power of a single component. Therefore, higher LPDI scores are 

interpreted as greater lignin diagenesis, while samples with lower scores are less altered.  

To validate the LPDI, including the relationship between the measured phenols and bulk SOC diagenetic 685 

state, we created an NMR ratio to represent lignin diagenesis. This ratio is based on previous research 

indicating the proportion of alkyl and carboxyl carbon increases with increasing lignin diagenetic alteration 

gymnosperm litter (within the operationally defined Klason lignin fraction), while the proportion of 

aromatics (including phenolic components) and methoxy carbon decreases with increasing lignin alteration 

(Zech et al., 1987). The (alkyl + carboxyl) / (aromatics + methoxy) ratio was then used to relate the 690 

alteration of lignin observed with 13C-NMR (n=9) to the state of lignin diagenesis obtained from the site 

averaged CuO derived phenol-developed LPDI (n=27). The relationship between the LPDI and 13C-NMR 

spectra was further explored to predict lignin diagenesis in samples not subjected to CuO oxidation.  We 

predicted the LPDI for all 9 study sites along the climate transect (n = 18 predictions) based on the 13C-

NMR spectra measured in each site across all three regions (Fig. 2).  695 

2.5 Evaluating relative change in diagenetic state of SOC and SON  

Lignin and amino acids represent major components of soil C and N, respectively, and the LPDI and AADI 

(Philben et al., 2016) indicate variability in lignin and amino acid compositions due to increasing alteration 

with depth. Thus, the ratios of these indices can be used to explore the relative diagenetic state of these 

compound classes, and to some extent SOC relative to SON as a whole. To compare lignin degradation 700 

states with that of amino acids in these soils, we used the amino acid diagenetic index (AADI) data 

retrieved from Philben et al. (2016). The data were retrieved from Table 1 in Philben et al. (2016), where 

the amino acid degradation index (AADI) is simply referred to as the degradation index (DI). Because 

increased diagenesis expressed via the AADI is represented in the literature as a negative loading on its 

PC1 (Dauwe et al., 1999; Philben et al., 2016), in opposition to the LPDI used here, the sign of AADI is 705 

reversed in this representation for ease of comparison in this work.  

2.6 Statistical Analysis 

Results from these analyses across the boreal forest sites were used to test two hypotheses; (1) the SOC 
diagenetic state is maintained across this transect, which is consistent with enhanced soil inputs keeping 
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pace with increased losses in the warmer climate forests, and (2) the maintenance of SOC diagenetic state is 
a consequence of coupled soil C and N cycling, signifying the role of enhanced N cycling supporting 
productivity and SOC inputs that cumulatively maintain SOC stocks within warmer climate forests. After 
verifying the LPDI was a robust indicator of diagenetic processing free from the influence of shifting 785 
sources of soil inputs (e.g. moss) that vary across the transect, we tested statistically how the LPDI varied 
with climate region, using analysis of variance (ANOVA) tests. The measures of lignin phenol-based SOC 
diagenetic state were then compared directly with the SON diagenetic state with soil depth and across 
climate regions to assess whether soil C and N processing was coupled across the forest transect.  If 
increased N cycling does in fact support the maintenance of SOC stocks within these forests, we would 790 
expect the ratio of the diagenetic indices of SOC (i.e., LPDI) to SON (i.e., AADI) to remain consistent 
across the forest transect. 

All statistics were performed in R using R Studio, and R packages ‘tidyverse’ and ‘ggfortify’ were used for 

data organization and visualization (Tang et al., 2016; Wickham, 2016; RStudio Team, 2016; R Core Team, 

2018). A threshold of α=0.05 and β= 0.20 were applied to all ANOVA results. Two-way ANOVA was 795 

performed on all soil properties to test for the effects of organic horizon, climate region, and their 

interactions (n= 27, df= 2 for each). Differences between regions at each organic horizon was determined 

via Tukey’s Honest Significance Difference tests, when applicable.  

As CuO oxidation was only conducted at one site per region, a two-way ANOVA was performed to test for 

the effects of organic horizon, site, and their interactions for each lignin parameter (n= 27, df= 2 for each). 800 

Thus, site level values are reported in Figure 1, and error bars on Figure 1 indicate standard deviation for all 

spatial replicates at the site level. To further understand if site-level trends were observable on the regional 

scale, the LPDI was compared to and predicted from NMR spectra obtained at the site level (Fig. 2). 

Statistically significant changes with depth of all tests are interpreted as changes with diagenesis, while 

significant changes by site only are considered to be source derived. We further tested the combined 805 

measured and predicted LPDI values to differences with region and depth (Fig. 3). Figures 3-5 contain the 

combined results from the measured and predicted LPDI values for all sites in all regions. 

3 Results 

3.1 Organic soil lignin composition  

Lignin phenol signatures generally display significant variation with horizon depth, a proxy for variability 810 

due to diagenesis, and climate site, a proxy for variability due to integrated climate effects (Fig. 1).  The 

depth profile from L to H horizon provides an increasing diagenetic state of organic matter, however, 

variation often observed in the deepest horizon likely reflects a combination of variation in how degraded 

the organic matter is, the impact of hydrology (e.g. Hernes et al., 2007) and root inputs or processes (Otto 

and Simpson, 2006). VAd/Al and FAD/CAD increased only with depth, while S/V did not vary with depth 815 
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but increased with climate warming, and SAd/Al displayed no significant trend. Varying significantly with 

depth and site, the percentage of carbon as lignin carbon (%C as lignin-C), ∑6, and ratio of ∑6 to ∑8 

(∑6:∑8) all decreased with depth and were lowest in the Cold region site. The effect of site on the 

percentage of carbon as lignin carbon is attributed to a lower L horizon value for the Cold region site (Fig. 

1e). Percent side chain alteration, diOHBA/V, and C/V all increased with depth and were generally highest 880 

in the Cold region site. Indices with p-hydroxyphenols – P/(V+S) and PON/P – were the only variables that 

exhibited significant variations with depth-site interactions, in addition to variations with depth and/or site 

and attributed to the decreasing values with depth observed in the Cold region site only. 

3.2 Lignin Phenol Diagenetic Index (LPDI) model results 

The Source PCA results indicated that input variables loaded in unique PC1 vs PC2 space with 70.6% of 885 

variance explained by these two components (Fig. S2). Loadings of variables were concurrent with how 

pure plant end-member samples scored, dependent on sample type (i.e., moss, woody material, and needles; 

Table S2). For example, the lignin phenol indices impacted by moss inputs were PON/P, diOHBA/V, and 

C/V, suggesting they would be the most affected by shifting proportion of moss inputs across the study 

sites (Table 1; Kohl et al., 2018). 890 

The diagenetic PCA model showed that with increasing depth, the relative ratio of Ad/Alv and the ratio of 

cinnamyl class phenols (ferulic acid/p-coumaric acid; FAD/CAD) increased (Fig. 1) and loaded positively 

on PC1 (Table S4). The %C as Lignin-C decreased with depth (Fig. 1), and the ratio of carbon-carbon 

and/or ether-bonded phenols to ester- and ether-bonded phenols in vascular plant materials (V+S:V+S+C or 

∑6:∑8; Fig. 1) loaded negatively on PC1 (Table S4). The first principal component explained 64.3% of the 895 

variance. The results are consistent with expected declines in percentages of carbon as lignin with 

increasing diagenesis, and they support increasing lignin diagenesis with depth in the organic soils studied 

(Fig. 1). 

3.3 Comparison of LPDI with 13C NMR, and assessment of LPDI across the climosequence 

The LPDI was compared with the determination of soil lignin carbon diagenesis derived from 13C NMR, to 900 

validate the  LPDI across multiple forest sites in each climate region, from which O-horizon NMR data are 

available. We find good agreement between the CuO-derived phenol-developed LPDI and ratio of (alkyl + 

carboxyl) / (aromatics + methoxy) in our soils for all regions (n = 9, R2 = 0.898; p < 0.001; Fig. 2). Because 

of this strong linear relationship, we determined that in these soils we could further estimate the LPDI for 

all 9 study sites along the climate transect (n = 18 predictions, for a total of n=27 observations) based on the 905 
13C-NMR spectra alone, measured in each site across all three regions (Fig. 2; predicted values are 

represented with dashed lines). The lignin phenol diagenetic state in these soils, assessed by the measured 

and predicted LPDI scores, increases with depth, yet is not significantly different by climate region (Fig. 3). 
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 1025 

  
Figure 1. CuO measured lignin phenol content in soils and input materials at one site per climate region. 
Moss samples in the Warm and Cold regions are composite samples based on dominant species cover, 
while in the Cool region individual moss species are plotted as the average and standard deviation with 
equal weights to show variability in moss signatures in phenolic signatures present in these forests. Green, 1030 
brown, and fresh balsam fir needles from the Warm and Cool regions were also measured. The ratio of 
vanillic acid to vanillin (VAd/Al) (A) and the ratio of ferulic acid to p-coumaric acid (FAD/CAD) (B) 
increase with depth, while the syringyl to vanillyl ratio (S/V) (C) is different by site. The sum of syringyl 
and vanillyl phenols (∑6) (D), %C as lignin-C (E), the ratio of ∑6 to the sum of all cinnamyl, syringyl and 
vanillyl phenols (∑6:∑8) (F), % Side Chain Alteration (G), the ratio of cinnamyl to vanillyl (C/V) (H), the 1035 
ratio of dihydroxybenzoic acid to vanillyl (diOHBA/V) (I) all vary with depth and site. The ratio of p-
hydroxyacetophenone to p-hydroxyl (PON/P) (J) varied with depth, site, and exhibited a depth x site 
interaction, while the ratio of p-hydroxyl to sum of vanillyl and syringyl phenols (P/(V+S)) (K) varied with 
site and exhibited a depth x site interaction. The ratio of syringyl acids to aldehydes (Sad/al) (L) shows no 
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trend with depth or site. Soil horizons are indicated as the L, F and H of the organic layer. Alpha level was 
set to 0.05, anything over this threshold was not reported on the figure. For clarity the labels and units (if 1045 
applicable) for data presented are included in the figure plot subtitles rather than with each axis. Labels 
without units represent unitless ratios or percentages. 

3.4 Using combined biomarkers to assess relative degree of soil C to N cycling 

The LPDI / (-AADI) is similar and near a value of one in all regions (Fig. 4). This ratio also does not 

change significantly with depth (Fig. 4), indicating that despite increased diagenetic state of lignin with 1050 

depth (Fig. 3) the relative degree of processing of lignin and protein (i.e., amino acids) remains similar with 

depth and climate warming in these forest soils. The coupling between the LPDI and the AADI with depth 

and across climate region contrasts with the decoupling observed between the LPDI and the alkyl to O-

alkyl C ratio (A/O-A), a common NMR indicator of SOC diagenetic state (Baldock et al. 1997) (Fig. 5). 

The greatest discrepancy between the LPDI and A/O-A is observed in Cold and Cool regions soils where 1055 

moss cover (Table 1) and moss inputs (assessed via moss detritus measured in L horizon soils) are greatest. 

 
Figure 2. Lignin Phenol Diagenesis Index (LPDI) versus the CP-MAS 13C-NMR Alkyl+Carboxyl/ 
Aromatics+Methoxy ratio for all regions and all organic layers (including predicted values of LPDI from 
13C-NMR ratio, which are given in open symbols and dashed lines, and fall along the prediction line). 1060 
Including confidence of fit (grey shading) and confidence of prediction (dotted lines) at 95%. Standard 
error of predicted values falls within the confidence of fit (grey shading), while standard deviation of 
measured values are calculated from observed plot level variation within each site and are depicted with 
error bars.  
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Figure 3. The Lignin Phenol Diagenetic Index (LPDI) increases with organic layer depth with individual 
horizons designated (L, F, and H). The actual p-value for horizon (H), region (R) or horizon x region 1105 
(HXR) significance is reported with significant values (α=0.05) in bold. LPDI is a unitless value.  

 
Figure 4. Ratio of the lignin phenol diagenetic index (LPDI) to the inverse sign of the total hydrolysable 
amino acid diagenetic index (-AADI) with depth in all regions averaged. Ratios do not change significantly 
among regions at α=0.05, indicating that the relative rates of lignin and amino acid diagenesis are similar 1110 
across all regions and with depth. Post-hoc tests revealed no significant difference between organic layer 
depth given as individual horizons (L, F and H) and/or site at the regional level. This ratio is unitless. 
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Figure 5. Lignin diagenetic state as observed through the lignin phenol diagenetic index (LPDI) is 
decoupled from SOC diagenetic state as assessed through the ratio of Alkyl-C to O-Alkyl-C (Alkyl-C/O-1140 
Alkyl-C) across climate region. Symbols signify the different horizons within the organic layer (L, F and 
H). This discrepancy appears to be related to the percentage of identifiable moss detritus in the L horizons 
(depicted with color scaling). Values are given as the site average in each region with error bars 
representing the standard deviation (n=3). The ratios presented in this figure are unitless.  

4 Discussion  1145 

The maintenance of SOC stocks despite increased soil C losses and inputs with climate warming in these 

mesic boreal forests suggests inputs are keeping pace with losses (Ziegler et al., 2017). This may be a result 

of increased soil inputs supported by enhanced N cycling and productivity (Melillo et al., 2011; Philben et 

al., 2016). However, the annual variability and difficulty in capturing all ecosystem fluxes prevent us from 

being able to assess the net response of SOC stocks using ecosystem fluxes, and thus link their maintenance 1150 

to N cycling and availability in these forests. Therefore, the diagenetic state of SOM assessed via lignin 

phenol and amino acid composition was employed here to overcome these challenges, and assess the net 

effect of these processes on both SOC and SON reservoirs. For example, the diagenetic state of SOC 

increases with increasing net loss from soil stocks (Kane et al., 2005; Quideau et al., 2001), while an 

absence of change in diagenetic state signifies no net loss and thus soil C inputs keeping pace with losses.   1155 

By coupling previous information about these forests with additional measures of SOM diagenetic state 

across the climate transect, we support two hypotheses providing evidence for the role of enhanced N 

cycling in maintaining SOC stocks in the warmer climate boreal forests along this transect. First, we found 
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that the diagenetic state of SOC is maintained across climate regions consistent with soil inputs keeping 

pace with increased losses in the warmer climate forests. Second, we observed a constant ratio of the 1225 

diagenetic state of lignin to that of amino acids in the organic horizon soils across these forest climate 

regions indicating that the maintenance of the SOC diagenetic state occurs alongside that of the SON. 

Therefore, the maintenance of SOC stocks across climate regions appears to be largely supported by the 

enhanced N cycling and availability that occurs within the warmer climate forests.    

4.1 Evaluation of lignin phenol signatures of SOC diagenetic state in mesic boreal forests 1230 

Shifts in nonvascular to vascular plant inputs with climate observed in these and other boreal forests 

(Abolin, 1974; Kohl et al., 2018; Tamm, 1953; Tarkhova and Ipatov, 1975) meant that we had to carefully 

separate biogeochemical indicators of SOC source from those signifying diagenetic alteration. Though 

these shifts in nonvascular moss inputs have little impact on total hydrolyzable amino acids (THAA) and 

their use in tracking SON diagenetic state (Philben et al., 2018b), they do impact some common SOC 1235 

chemical indicators. For example, the increase in the alkyl to o-alkyl ratio observed is consistent with the 

decreasing moss contribution to soils within warmer climate forests and is therefore not indicative of an 

increase in SOC diagenetic state, and thus net loss of SOC, in the warmer, wetter forests (Kohl et al., 2018). 

This trend may be due to a slow turnover of structural carbohydrates within moss cells walls (Hobbie et al., 

2000; Philben et al., 2018b; Turetsky et al., 2008), thereby affecting the utility of this ratio to trace SOC 1240 

diagenetic shifts in these systems. However, the lignin phenol diagenetic index (LPDI) developed and 

applied here was designed to enable the assessment of SOC diagenetic state and the relative differences in 

soil carbon balance among these forests despite the shifts in nonvascular to vascular plant inputs along this 

forest climate transect. 

The amount of lignin in these soils (as %C as lignin-C) decreases with organic horizon depth at all sites, a 1245 

relationship which has also been observed in other soil systems (e.g., Guggenberger et al., 1995; Otto and 

Simpson, 2006b). The same tree species (balsam fir) is dominant across the forests of this transect, but we 

observed that commonly used lignin parameters, such as source-sensitive ratios (C/V and S/V), are affected 

by variable vascular to nonvascular understory inputs to these forest soils. These ratios are commonly used 

in soils to assess diagenetic state (e.g., Otto and Simpson, 2006), yet they are not valid to assess diagenesis 1250 

of organic C in these soils due to the over-printing of source-related shifts in these forests. The LPDI PCA 

representation simplifies and integrates the description of observed variability of lignin phenol diagenetic 

state from multiple indices, allowing for ease of comparability within a given dataset and adaptation for 

development and implementation in other environments. Testing the impact of mosses on the LPDI index 

revealed no significant difference in the LPDI by region, moss input, or soil depth (see Table S6). We 1255 

observed minimal moss impacts on the LPDI, which could be useful for interpretation of phenolic 

composition in areas with variable moss inputs to SOM, a common scenario with varying climate across 
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boreal forest ecosystems (Abolin 1974; Tamm 1953; Tarkhova and Ipatov, 1975). The combination of the 

lignin phenol biomarker and NMR approaches (Simpson et al., 2008; Benner et al., 1990a, b) with the 

measured and predicted LPDI scores indicates this  approach provides a robust signature of SOC diagenetic 

state.  

4.2 Consistent lignin diagenetic state indicates a balance between inputs and losses within warmer 1340 

climate forests 

The lack of change in lignin diagenetic state across these boreal forest sites, despite the +5.2˚C MAT range 

across the transect, contrasts with the increase in the diagenetic state of lignin observed over 14 months of 

experimental warming in a temperate forest (Feng et al., 2008). This is likely due to the nonequilibrium 

conditions associated with short term warming including a lack of additional ecosystem responses to 1345 

warming such as enhanced soil inputs (Melillo et al., 2011) that are not captured over the shorter time 

scales associated with most in-situ warming experiments. Impacts of a warmer climate on ecosystem 

properties, such as altered litter inputs (Pisani et al., 2016) and shifts in climate conditions such as MAP 

(Duboc et al., 2014; Pisani et al., 2014), can serve as drivers of lignin decomposition and its diagenetic 

state. This likely explains the lack of clear trends in lignin diagenetic state observed with increasing MAT 1350 

on a continental scale (Amelung et al., 1999; Pisani et al., 2014); including a decrease in the degradative 

state of lignin across sites spanning ~2 ˚C MAT (Otto and Simpson, 2006b). Losses can be diminished with 

decreasing water availability associated with increasing MAT, and thus exhibit a decreased diagenetic state 

of SOC. In the mesic boreal forest climosequence we studied, MAP increases alongside MAT and PET 

with decreasing latitude representing a scenario where water limitations on enhanced productivity with 1355 

warming are not likely (d’Orangeville et al., 2016; Ziegler et al., 2017). Thus, the maintenance of soil 

lignin diagenetic state across the climate gradient indicates increased inputs are keeping pace with losses 

over decadal time scales. This is consistent with experimental evidence of a similar balance between input 

and processing of lignin in temperate forest soils where the maintenance of organic carbon content and 

lignin composition was observed despite increased litter inputs experimentally added over several decades 1360 

(Lajtha et al., 2014; Pisani et al., 2016). 

4.3 Coupled SOC and SON cycling indicate enhanced N availability supports increased productivity 

that maintains SOC within warmer climate forests 

Increases in nitrogen availability and litter inputs (Philben et al., 2016; Kohl et al., 2018) in these forest 

soils appear to sustain the balance between input and processing losses in the warmer climate forests. This 1365 

is supported by the coupled diagenesis of SOC and SON as revealed here through the comparison of lignin 

and amino acid diagenetic indices (i.e., the LPDI/-AADI). The similarity of diagenetic state observed in the 

soils across this transect is supported by multiple independent lines of evidence. Increased N availability, 
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observed as an increase in soil fluxes (Ziegler et al., 2017; Kohl et al., 2018), and maintenance of amino 

acid diagenetic state (Philben et al., 2016) occurs with increased inputs and losses of C from soils and the 1495 

lack of change in SOC stocks from the coldest to warmest forests (Ziegler et al., 2017). The lack of change 

in SOC diagenetic state observed in this study provides previously unseen evidence required for 

understanding the maintenance of soil C stocks observed, supported by increased soil organic nitrogen 

cycling (Philben et al., 2016, 2018a), enhanced forest productivity (Table S5), and thereby increased litter 

inputs to the soil in the warmest relative to coldest climate forests. The SOC and SON diagenetic indicators 1500 

coupled with flux and stock assessments provided the net result of plant-soil interactions, which gradually 

respond to climate change and are not easily observed in experiments (Melillo et al., 2011, 2017) or by 

monitoring of ecosystem fluxes alone.  

The sustained SOC stocks observed across this boreal forest climate transect contrasts with SOC dynamics 

in more water-limited boreal forests in western North America (Norris et al., 2011; Kane et al., 2005), 1505 

where SOC stocks decline within warmer climate forests. This highlights the heterogeneity of boreal forest 

responses to warmer climates. The similarity of diagenetic state among major compound classes with depth 

or climate would not necessarily hold true in soils under non-steady state conditions resulting from 

responses to environmental change. Soil pools acclimating to increased temperature, for example, display 

different periods of soil carbon retention and loss over multiple decades of experimental warming (Melillo 1510 

et al., 2017). On decadal-centennial timescales assessed via climosequences, however, the net result of 

plant-soil interactions on soil fluxes are more likely adjusted to such differences in climate which likely 

represent a new steady state. The conservation of soil carbon stocks via increased forest productivity 

observed in this study region is consistent with the continuity of forest productivity expected in this region, 

as revealed in decadal tree ring records (D’Orangeville et al., 2016; Charney et al., 2016). These are also 1515 

consistent with observations of increasing SOC stocks in mineral soils with increasing MAT and MAP and 

associated net primary production (NPP) across other boreal forests (Callesen et al., 2003). In the forests 

studied here, surface mineral SOC stocks appear similar, and are likely maintained by the 3-fold increase in 

dissolved organic carbon (DOC) inputs with climate warming across this transect (Ziegler et al., 2017; 

Bowering et al. 2022). However, the trajectories of the deeper mineral SOC stocks remain unknown and 1520 

rely on hydrology and parent material sourcing of reactive metals across these forests (Patrick et al. 2022).  

The comparative approach using lignin and amino acid diagenetic states has the potential to be applied over 

time in these forests and elsewhere to assess the limitations of feedbacks, such as warming enhanced N 

availability and CO2 enhanced productivity, in maintaining ecosystem SOC stocks. For example, if N is not 

tightly recycled within the terrestrial ecosystem, as is currently observed in our study forests (Philben et al., 1525 

2018a), but is instead experiencing net lost via nitrification or increased dissolved N transport, the 

diagenetic state of the remaining SON would increase relative to that of SOC if those losses are not 

maintained by additional external inputs (e.g. atmospheric inputs, N-fixation or weathering; Houlton et al., 
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2018).  High SOC mineralization rates and low SON mineralization rates, such as those observed in several 

high-latitude environments (Meyer et al., 2006), would also affect the C balance and be detected as an 

increase in diagenetic state of SOC decoupled from that of SON, where the diagenetic state would remain 

relatively unaltered. This in turn would signify a reduction in SOC stocks, similar to what has been 

observed in response to artificial N fertilization in tundra soils, where losses of SOC were enhanced relative 1645 

to plant productivity and soil inputs (Mack et al., 2004).  Therefore, tracking the relative diagenetic states 

of SOC and SON may be useful in detecting the impact of declining responses of productivity to increased 

CO2 (Norby et al., 2010), or water and phosphorus limits on the warming enhanced N availability and 

productivity on SOC stocks in these ecosystems. 

4.4 Conclusion 1650 

Past modeling studies have called for improvements to the accuracy with which C and N cycles and their 

feedbacks are simulated (Thomas et al., 2013). Thus, better observational constraints on C and N cycling 

and their response to climate change (Meyerholt et al., 2020), such as demonstrated here, are needed. Our 

observation of maintained SOC stocks across this climate transect of boreal forests supports our first 

hypothesis and is consistent with stocks in other biomes (Giardina et al., 2014; Sistla et al., 2013) not 1655 

limited by water availability, although the mechanisms for the maintenance of SOC in response to a 

warmer climate are seemingly ecosystem-dependent. Supporting our second hypothesis, these forests 

exhibit a coupled increase in biogeochemical cycling of N and C signifying a balance between soil input 

and loss processes resulting from increased N availability and resulting productivity within the warmer 

relative to colder climate forests. This balance could markedly shift as other factors begin to limit forest 1660 

productivity (e.g., trace nutrients, water) with further climate change, or affect forest nutrient allocation 

(e.g., forest age or compositional change). Further application of the approach presented here could be used 

to detect the limits of ecosystem-climate feedbacks. Utilization of these coupled diagenetic approaches in 

modeling studies to represent complex C and N dynamics in ecosystem-scale parameterizations could 

additionally assist in reducing the large uncertainty in land-atmospheric carbon exchange thwarting current 1665 

Earth system models for climate prediction.  

Data availability. All data not included in the paper in tables and the Supplement are available on figshare 

at: https://figshare.com/s/bd211ffdb1d2d5f4b7ea 

 

Supplement can be found at this link. 1670 
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