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be used to detect the limits of this and other ecosystem-climate feedbacks, by providing a tractable and

parameterizable index of lignin state across large spatial scales, necessary for ecosystem-scale
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1 Introduction

Terrestrial ecosystems containing globally relevant stores of carbon, such as boreal regions, are rapidly

responding to climate-induced change (Soja et al., 2007). Boreal forests can act as a net carbon sink - C[)e|eted; typically act as a
(Vanhala et al., 2016), with 50-75% of the total carbon stock stored within soils (Scharlemann et al., 2014).

The response of soil organic carbon (SOC) stocks to climate stressors in these high latitude regions,is a key i (Deleted: T
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temperate and boreal forests, and climate warming can enhance N cycling, primary production, soil C

inputs and stores (Melillo et al., 2011; Philben et al., 2016). However, the net effect of this feedback on

SOC stocks and its longevity with climate change remains unclear (Melillo et al., 2017; D’Orangeville et

al., 2018) yet important to contrain for reducing uncertainty in predictive modeling efforts.

Lcosystem fluxes shape the inputs and losses of SOC stocks on seasonal to annual time scales providing
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stocks are maintained, despite increasing ecosystem-scale C inputs and losses in the warmer climate forests

across the transect (Ziegler et al., 2017). This apparent discrepancy highlights the need for a direct

assessment of shifts in SOC diagenesis with climate change in these boreal forests which, unlike

al., 2018 a, b; Kohl et al., 2018),,Soil lignin phenol composition, combined with amino acid composition, is

likely to provide a means to assess the extent to which soil C and N cycling is coupled or decoupled in

these boreal forests, which is critical for addressing the hypothesis that stimulation of N cycling can offset

C losses with climate warming by alleviating N limitation (Medlyn et al., 2000; Strémgren and Linder.

2002), increasing soil inputs and subsequently maintaining SOC stocks.

In this study, we test two hypotheses relevant to understanding of the role of enhanced N cycling in

supporting the maintenance of SOC stocks in warmer mesic boreal forests across a climate transect (i.e., a

climosequence), First, we hypothesize that the SOC diagenetic state is maintained across this transect .

consistent with enhanced soil inputs keeping pace with increased losses in the warmer climate forests.

Second, we postulate that the maintenance of SOC diagenetic state is a consequence of coupled soil C and

N cycling, signifying the role of enhanced N cycling supporting productivity and SOC inputs that maintain

SOC stocks within warmer climate forests. To test these hypotheses, we gmploy Jignin biomarkers

providing,novel insights on,SOC that are compared with previous measures of SON processing (Philben et

al., 2016), SOC inventories and fluxes (Ziegler et al., 2017), and bulk and molecular-level SOM

characteristics across this,mesic boreal forest climate transect (Ziegler et al., 2017, Kohl et al., 2018).

Maintenance of SOC diagenetic state was tested through the evaluation and use of lignin phenol signatures

depicting diagenetic processing free from the influence of shifting sources of soil inputs (e.g., moss) that

vary across the transect. The measures of lignin phenol-based SOC diagenetic state were then compared

directly with the SON diagenetic state with soil depth and across climate regions to assess whether soil C

and N processing was coupled across the forest transect. If increased N cycling does in fact support the

maintenance of SOC stocks within these forests, we would expect the ratio of the diagenetic indices of SOC

to SON to remain consistent across the forest climosequence.

2 Materials and Methods

2.1 Field Sampling and Sample Preparation

Organic layers from humo-ferric podzols underlying similar stands of mature balsam fir (4bies balsamea)
dominated forests located across a climosequence (Newfoundland and Labrador Boreal Ecosystem

Latitudinal Transect, NL-BELT) were collected in 2011 (Table 1; Ziegler et al., 2017). Sampling focused
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on three regions of the climosequence: the Eagle River, Salmon River and Grand Codroy regions which
will be referred to herein as the Cold, Cool and Warm regions (Table 1). The three regions of similarly
established forests and soils span approximately 5° in latitude, encompassing a 5.2°C shift in mean annual
air temperature (MAT), ~ 430 mm yr'' in mean annual precipitation (MAP) and ~ 180 mm yr™' in potential

evapotranspiration (PET) (Ziegler et al., 2017).

Therefore, the transect of study sites represents a temperature and precipitation gradient congruent with
projected climate warming and increased precipitation expected in the region within the next century

(Stocker et al., 2013), The use of this climate transect is intended to promote understanding of the

combined impact of all ecosystem responses (microbial, plant and hydrologic change) to the warmer and

wetter climate predicted for the region and over several decades to a century, rather than immediate

responses to warming alone where the soil system is brought far from its equilibrium state. Jn doing so, we

derive insights into the likely responses of these forest soils to climate change over decadal and century

time scales within this region (Ziegler et al. 2017). The,balsam fir forest sites are primarily underlain by

forest floor moss cover in addition to few understory plants, the most common being Cornus canadensis
and Trientalis borealis. Some fern cover occurs very sporadically in the Cold and Cool regions but is more

common in the Warm region. The total moss cover represents the main jnderstory difference across the

study regions where lowest moss cover occurs in the Warm region (Table 1). Pleurozium sp. and
Hylcomium sp. dominate the moss cover in the Cold and Cool region sites, with some additional coverage
by Ptilium sp. and Dicranum sp. in the Cold region. The moss cover in the Warm region sites are

dominated by Dicranun sp. and Rhytidiadelphus sp.

Each of the three regions along the climosequence contained three forest sites, while at each site soil
samples were collected from triplicate plots (total of n= 27 plots across the climosequence; Ziegler et al.,

2017; Table 1). Samples were collected by cutting out a 20 x 20 cm area of the organic layer with clean

serrated knife and clippers, and carefully removing from the surface of the mineral soil surface using a
clean trowel. Organic layers were manually separated into three horizons, L, F and H (equivalent to Oi, Oe
and Oa, respectively, within the U.S. Soil Classification), and dried at 50°C before being ground and stored
for further analysis. Plant end-member samples (forest floor mosses, fresh needle foliage, needle litterfall,
roots, wood) subjected to biomarker analysis were collected across one site per region, and were,separated

visually into taxonomic,groups (e.g., moss genus). Balsam fir needles were also collected in litterfall traps

in the Spring 2011 (litterfall), as well as roots and wood separated from one half of the organic horizons

collected and included as,additional endmember plant sources. All end-member samples were dried at 50°C

before being ground and stored for further analysis.
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2.2 Lignin Analysis

Twelve lignin phenol signatures (see Table S1 for definitions and common usages) were examined across
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distance from edge: 1.27 cm, Numbering: Continuous,
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the diagenetic continuum, represented by horizon depth within the total prganic layer, and in response to

climate warming, represented by one site in each climate region. Samples from each of the three organic

horizons (L, F and H) were collected from each of the triplicate organic horizon samples collected from

three plots within one site in each of the three regions (total n=27 samples) and were analyzed for lignin
phenols released via the cupric oxide oxidation (CuO) method (Hedges and Ertel, 1982), with modifications
outlined in Kaiser and Benner (2011) and Louchouarn et al. (2010). Soil samples and the plant endmembers
(n=27 moss samples, n=9 needle litter samples) were dried, homogenized, and weighed (~5 mg OC) into
monel steel pressure vessels (Prime Focus, Inc.), along with reagents cupric oxide and ferrous ammonium
sulfate and a steel ball bearing. Samples were oxidized in 2M NaOH at 155°C for 3 hrs on a rotating rack to
ensure constant sampling mixing. Samples were cooled immediately and spiked with internal standard of
trans-cinnamic acid and ethyl vanillin. Sample clean-up was performed by solid phase extraction (SPE) for
plant endmember materials or by liquid-liquid extraction with ethyl acetate for oxidized soil samples
(Louchouarn et al., 2010; Kaiser and Benner, 2011). SPE eluates or solvent extracts were dried and re-
suspended in pyridine for quantification. Samples were analyzed for the twelve common phenols (Fig. S1)
via GC-MS-MS (Yan and Kaiser, 2018), utilizing a six-point calibration curve. The percentage of carbon as
lignin phenols was determined via methodology outlined in Benner et al. (1990a), correcting for CuO

oxidation efficiency.

2.3 NMR

NMR spectra were obtained from Kohl et al. (2018). Briefly, cross-polarization magic-angle spinning solid
state 3C NMR (CP-MAS '*C-NMR) was performed on the site-level scale from pooled plot-level spatial
replicates (Kohl et al., 2018). NMR end-member spectra were weighted based on composite litterfall
spectra, moss spectra from Kohl et al. (2018) and Douglas fir wood spectra from the literature (Preston et
al., 1998). Previously identified peaks were re-integrated here as determined by the sum of integrated peaks
in defined spectral regions. Regions were defined in this study as in Baldock et al. (2004); Alkyl 0-45 ppm,
Methoxy/N-Alkyl 45-60 ppm, O-alkyl 60-96 ppm, Di-O-Alkyl 95-100 ppm, Aromatic 110-145 ppm,
Phenolic 145-165 ppm, Amide/Carboxyl 165-215 ppm. Carboxyl was assigned as the peak at 173 ppm, and
Methoxy was assigned to the peak at 56 ppm.

2.4 Lignin Phenol Diagenetic Index (LPDI) development, application, and validation

) (Formatted: Font: Not Bold

To assess the lignin diagenetic state, we created a lignin diagenetic index, modeled after the amino acid

index presented and utilized successfully in similar contexts in Dauwe et al. 1999; Menzel et al. 2015 and

Philben et al. 2016. We utilized principal component analysis (PCA) as a data reduction tool on measured
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lignin phenols datasets, to,better track changes in the multiple indices and ratios measured. The

development of the lignin diagenetic index for these forests, was iterative, with the initial development of a

purely informative PCA model used for a posteriori identification of potential confounding variables

caused by,source variability (i.e., shifts in moss relative to vascular plant inputs) when determining

diagenetic state of lignin (herein referred to as the Source PCA). and a second PCA to then assess variables

best representing the diagenetic state of lignin in these soils (i.e., diagenetic PCA). Before using the PCAs,
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molar amount (nmol phenol mgC;") or ratio (nmol phenol nmol phenol;'). for comparability during
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multivariate statistical analyses (Panetta and Gélinas, 2009). Values were processed prior to performing

each PCA by zero centering and scaling to unit variance for each input variable. The effects of source

materials on phenolic signatures were first considered for interpretation of lignin diagenesis in these forests,

as they derive from vegetation with highly variable phenol content (e.g., mosses vs. vascular plants).

Therefore, we first completed the Source PCA model, using as inputs lignin phenol signatures that varied

significantly with site (p=12). Input variables included the percentage of identifiable source material as

woody materials, needles, or mosses contributing to the L horizon soil, Y6, >'6:>'8, %C as lignin, C/V.

S/V, diOHBA/V, % side chain alteration, P/(V+S), and PON/P. Pure source or plant endmember samples

(i.e., moss and needle tissues), modeled litterfall and wood samples, and the L-layers subjected to CuO
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but increased with climate warming, and Sawaidisplayed no significant trend. Varying significantly with
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(>°6:>8),all decreased with depth and were, lowest in the Cold region site. The effect of site on the

percentage of carbon as lignin carbon is attributed to a lower L horizon value for the Cold,region site (Fig.
le). Percent side chain alteration, diOHBA/V, and C/V all increased with depth and were generally highest
in the Cold region site. Indices with p-hydroxyphenols — P/(V+S) and PON/P — were the only variables that
exhibited significant variations with depth-site interactions, in addition to variations with depth and/or site

and attributed to the decreasing values with depth observed in the Cold region site only.

3.2 Lignin Phenol Diagenetic Index (LPDI) model results,
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variance explained by these two components (Fig. S2). Loadings of variables were concurrent with how
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cinnamyl class phenols (ferulic acid/p-coumaric acid; FAD/CAD) increased (Fig. 1) and loaded positively

on PC1 (Table S4). The %C as Lignin-C decreased with depth (Fig. 1), and the ratio of carbon-carbon

and/or ether-bonded phenols to ester- and ether-bonded phenols in vascular plant materials (V+S:V+S+C or

>6:>'8: Fig. 1) loaded negatively on PC1 (Table S4). The first principal component explained 64.3% of the

variance. The results are consistent with expected declines in percentages of carbon as lignin with

increasing diagenesis, and they support increasing lignin diagenesis with depth in the organic soils studied

Fig. 1).

3.3 Comparison of LPDI with '*C NMR, and assessment of LPDI across the climosequence

The LPDI was compared with the determination of soil lignin carbon diagenesis derived from '*C NMR, to

validate the ,LPDI across multiple forest sites in each climate region, from which O-horizon NMR data are

available. We find good agreement between the CuO-derived phenol-developed LPDI and ratio of (alkyl +

carboxyl) / (aromatics + methoxy) in our soils for all regions (n =9, R?=0.898; p < 0.001; Fig. 2). Because \

of this strong linear relationship, we determined that in these soils we could further estimate the LPDI for
all 9 study sites along the climate transect (n = 18 predictions, for a total of n=27 observations) based on the
3C-NMR spectra alone, measured in each site across all three regions (Fig. 2; predicted values are

represented with dashed lines). The lignin phenol diagenetic state in these soils, assessed by the measured

and predicted LPDI scores, increases with depth, yet is not significantly different by climate region (Fig. 3).
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| Figure 1. CuO measured lignin phenol content in soils and input materials at one site per climate region.

Moss samples in the Warm and Cold regions are composite samples based on dominant species cover,
while in the Cool region individual moss species are plotted as the average and standard deviation with
equal weights to show variability in moss signatures in phenolic signatures present in these forests. Green,
brown, and fresh balsam fir needles from the Warm and Cool regions were also measured. The ratio of
vanillic acid to vanillin (Vawai) (A) and the ratio of ferulic acid to p-coumaric acid (FAD/CAD) (B)
increase with depth, while the syringyl to vanillyl ratio (S/V) (C) is different by site. The sum of syringyl
and vanillyl phenols (3°6) (D), %C as Jignin-C (E), the ratio of 36 to the sum of all cinnamyl, syringyl and
vanillyl phenols (36:38) (F), % Side Chain Alteration (G), the ratio of cinnamyl to vanillyl (C/V) (H), the
ratio of dihydroxybenzoic acid to vanillyl (diOHBA/V) (I) all vary with depth and site. The ratio of p-
hydroxyacetophenone to p-hydroxyl (PON/P) (J) varied with depth, site, and exhibited a depth x site
interaction, while the ratio of p-hydroxyl to sum of vanillyl and syringyl phenols (P/(V+S)) (K) varied with
site and exhibited a depth x site interaction. The ratio of syringyl acids to aldehydes (Saaal) (L) shows no
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trend with depth or site. Soil horizons are indicated as the L, F and H of the organic layer. Alpha level was
set to 0.05, anything over this threshold was not reported on the figure. For clarity the labels and units (if
applicable) for data presented are included in the figure plot subtitles rather than with each axis. Labels
without units represent unitless ratios or percentages.,

3.4 Using combined biomarkers to assess relative degree of soil C to,N_cycling,

JThe LPDI/ (-AADI) is similar and near a value of one in all regions (Fig. 4). This ratio also does not

change significantly with depth (Fig. 4), indicating that despite increased diagenetic state of lignin with

depth (Fig. 3) the relative degree of processing of lignin and protein (i.e., amino acids) remains similar with
depth and climate warming in these forest soils. The coupling between the LPDI and the AADI with depth

and across climate region contrasts with the decoupling observed between the LPDI and the alkyl to O-

alkyl C ratio (A/O-A), a common NMR indicator of SOC diagenetic state (Baldock et al. 1997) (Fig. 5).
The greatest discrepancy between the LPDI and A/O-A is observed in Cold and Cool regions soils where

moss cover (Table 1) and moss inputs (assessed via moss detritus measured in L horizon soils) are greatest.

LPDI = 4.27(Alkyl+Carboxyl)/(Aromatic+Methoxy) - 6.94 _-"
R?=0.898 PP
p <0.001 -

25 A -

Increasing -

Lignin -7
Degradation _ - - Region
- ® Cold
fa) -7 Cool
50.0 - A Warm

» Increasing Lignin Degradation
1.25 1.50 1.75 2.00 225
*C NMR (Alkyl+Carboxyl)/(Aromatics+Methoxy)

Figure 2. Lignin Phenol Diagenesis Index (LPDI) versus the CP-MAS '*C-NMR Alkyl+Carboxyl/
AromaticstMethoxy ratio for all regions and all organic layers (including predicted values of LPDI from
3C-NMR ratio, which are given in open symbols and dashed lines. and fall along,the prediction line).

Including confidence of fit (grey shading) and confidence of prediction (dotted lines) at 95%. Standard
error of predicted values falls within the confidence of fit (grey shading), while standard deviation of
measured values are calculated from observed plot level variation within each site and are depicted with
error bars. |
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Figure 3. The Lignin Phenol Diagenetic Index (LPDI) increases with organic layer,depth with individual <.

horizons designated (L, F, and H). The actual p-value for horizon (H), region (R) or horizon x region
(HXR) significance is reported with significant values (a=0.05) in bold. LPDL is a unitless value.
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Figure 4. Ratio of the lignin phenol diagenetic index (LPDI) to the inverse sign of the total hydrolysable
amino acid diagenetic index (-AADI) with depth in all regions averaged. Ratios do not change significantly
among regions at 0=0.05, indicating that the relative rates of lignin and amino acid diagenesis are similar
across all regions and with depth. Post-hoc tests revealed no significant difference between organic layer
depth given as individual horizons (L. F and H) and/or site at the regional level. This ratio is unitless.
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Figure 5. Lignin diagenetic state as observed through the lignin phenol diagenetic index (LPDI) is
1140 decoupled from SOC diagenetic state as assessed through the ratio of Alkyl-C to O-Alkyl-C (Alkyl-C/O-
Alkyl-C) across climate region. Symbols signify the different horizons within the organic layer (L, F and
H). This discrepancy appears to be related to the percentage of identifiable moss detritus in the L horizons (Deleted: q
(depicted with color scaling). Values are given as the site average in each region with error bars / (Deleted:
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that the diagenetic state of SOC is maintained across climate regions consistent with soil inputs keeping

pace with increased losses in the warmer climate forests. Second, we observed a constant ratio of the

diagenetic state of lignin to that of amino acids in the organic horizon soils across these forest climate

regions indicating that the maintenance of the SOC diagenetic state occurs alongside that of the SON.

Therefore, the maintenance of SOC stocks across climate regions appears to be largely supported by the

enhanced N cycling and availability that occurs within the warmer climate forests.

4.1 Evaluation of lignin phenol signatures of SOC diagenetic state in mesic boreal forests,

Shifts in nonvascular to vascular plant inputs with climate observed in these and other boreal forests

(Abolin, 1974; Kohl et al., 2018; Tamm, 1953 Tarkhova and Ipatov, 1975) meant that we had to carefully

separate biogeochemical indicators of SOC source from those signifying diagenetic alteration. Though

these shifts in nonvascular moss inputs have little impact on total hydrolyzable amino acids (THAA) and

their use in tracking SON diagenetic state (Philben et al., 2018b), they do impact some common SOC

chemical indicators. For example, the increase in the alkyl to o-alkyl ratio observed is consistent with the

decreasing moss contribution to soils within warmer climate forests and, is therefore not indicative of an

increase in SOC diagenetic state, and thus net loss of SOC, in the warmer, wetter forests (Kohl et al., 2018).

This trend may be due to a slow turnover of structural carbohydrates within moss cells walls (Hobbie et al.

2000; Philben et al., 2018b; Turetsky et al., 2008), thereby affecting the utility of this ratio to trace SOC

diagenetic shifts in these systems. However, the lignin phenol diagenetic index (LPDI) developed and

applied here was designed to enable the assessment of SOC diagenetic state and the relative differences in

soil carbon balance among these forests despite the shifts in nonvascular to vascular plant inputs along this

forest climate transect.

The amount of lignin in these soils (as %C as lignin-C) decreases with organic horizon depth at all sites, a <
relationship which has also been observed in other soil systems (e.g., Guggenberger et al., 1995; Otto and
Simpson, 2006b). The same tree species (balsam fir) is dominant across the forests of this transect, but we
observed that commonly used lignin parameters, such as source-sensitive ratios (C/V and S/V), are affected

by variable vascular to nonyascular understory inputs to these forest soils. These ratios are commonly used
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in soils to assess diagenetic state (e.g., Otto and Simpson, 2006), yet they are not valid to assess diagenesis

of organic G, in these soils due to the over-printing of source-related shifts in these forests. . The LPDI PCA

representation simplifies and integrates the description of observed variability of lignin phenol diagenetic
state from multiple indices, allowing for ease of comparability within a given dataset and adaptation for

development and implementation in other environments. Testing the impact of mosses on the LPDI index

revealed no significant difference in the LPDI by region, moss input, or soil depth (see Table S6). We

observed minimal moss impacts on the LPDI, which could be useful for interpretation of phenolic

composition in areas with variable moss inputs to SOM, a common scenario with varying climate across
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