Preprints
https://doi.org/10.5194/egusphere-2022-435
https://doi.org/10.5194/egusphere-2022-435
16 Jun 2022
 | 16 Jun 2022

Improving interpretation of sea-level projections through a machine-learning-based local explanation approach

Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand

Abstract. Process-based projections of the sea-level contribution from land ice components are often obtained from simulations using a complex chain of numerical models. Because of their importance in supporting the decision-making process for coastal risk assessment and adaptation, improving the interpretability of these projections is of great interest. To this end, we adopt the local attribution approach developed in the machine learning community by combining the game-theoretic approach known as ‘SHAP’ (SHapley Additive exPlanation) with machine-learning regression models. We apply our methodology to a subset of the multi-model ensemble study of the future contribution of the Greenland ice sheet to sea-level, taking into account different modelling choices related to (1) the numerical implementation, (2) the initial conditions, and (3) the modelling of ice-sheet processes. This allows us to quantify the influence of particular modelling decisions, which is directly expressed in terms of sea level change contribution. This type of diagnosis can be performed on any member of the ensemble, and we show in the Greenland case how the aggregation of the local attribution analyses can help guide future model development as well as scientific interpretation, particularly with regard to spatial model resolution and to retreat parametrisation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

04 Nov 2022
| Highlight paper
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary Co-editor-in-chief
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

This manuscript addresses an urgent problem: the proper quantification and attribution of...
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from...
Share