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Abstract. Process-based projections of the sea-level contribution from land ice components are often obtained from 

simulations using a complex chain of numerical models. Because of their importance in supporting the decision-making 10 

process for coastal risk assessment and adaptation, improving the interpretability of these projections is of great interest. To 

this end, we adopt the local attribution approach developed in the machine learning community known as ‘SHAP’ (SHapley 

Additive exPlanation). We apply our methodology to a subset of the multi-model ensemble study of the future contribution 

of the Greenland ice sheet to sea-level, taking into account different modelling choices related to (1) numerical 

implementation, (2) initial conditions, (3) modelling of ice-sheet processes, and (4) environmental forcing. This allows us to 15 

quantify the influence of particular modelling decisions, which is directly expressed in terms of sea level change 

contribution. This type of diagnosis can be performed on any member of the ensemble, and we show in the Greenland case 

how the aggregation of the local attribution analyses can help guide future model development as well as scientific 

interpretation, particularly with regard to spatial model resolution and to retreat parametrisation. 

1 Introduction 20 

Process-based projections of ice sheets’ contributions to sea-level changes generally rely on numerical models that simulate 

the gravity-driven flow of ice under a given environmental (atmospheric and oceanic) forcing derived from Atmosphere–

Ocean General Circulation Model (AOGCM) output. To cover the large spectrum of uncertainties that impact the outcomes 

of these numerical models, a popular approach is to perform common sets of numerical experiments by considering a range 

of forcing conditions (e.g. Barthel et al., 2020), various initial conditions and/or model design (i.e. different choices in the 25 

modelling assumptions including different ice sheet model (ISM) formulations, different input parameters’ values, etc.) 

within a multi-model ensemble (MME) approach. This results in an ensemble of realizations, named ensemble members. 

Recent MME studies have analysed, within the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the future 

evolution of the ice sheets of Greenland (Goelzer et al., 2018; 2020), and Antarctica (Seroussi et al., 2020). 
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Providing such projections using numerical models is challenging because the considered physical processes are highly 30 

complex, and may involve nonlinear feedbacks operating on a wide variety of time scales. Due to the importance of these 

projections to support coastal adaptation (Kopp et al., 2019), improving their interpretability is of high interest.  

When dealing with interpretability, the key is generally not only to deliver modelling results, but also to explain why the 

numerical model delivered some particular results given the set of chosen modelling assumptions (Molnar, 2022). 

Commonly-used approaches to improve interpretability usually focus on measuring the importance of modelling 35 

assumptions for prediction (e.g., Lundberg et al., 2020). Two main approaches exist, either global or local. In the global 

approach, the objective is to explore the sensitivity over the whole range of variation of the considered modelling 

assumption, i.e. to assess the variable importance across the whole MME dataset. This can be done by quantifying the MME 

spread and by identifying its origin (see among others, Murphy et al., 2004; Hawkins and Sutton, 2009; Northrop and 

Chandler, 2014). For this objective, popular statistical approaches generally rely on variance decomposition (ANOVA); see 40 

e.g., Yip et al., 2011 for an introduction. To complement these global methods, we adopt in this study a second approach 

named “local” because it aims at measuring the importance of the input variables locally at the level of individual 

observations (and not globally across all observations unlike the first approach). This means that the local approach focuses 

on how particular modelling assumptions (i.e. value of a given model parameter, a given ISM formulation, etc.) influences 

the considered prediction. This is the local attribution approach adopted by the machine learning community (e.g., Murdoch 45 

et al., 2019), and named “situational” in the statistical literature (Achen, 1982). It aims to better understand why a given 

instance of the modelling assumptions leads to a certain prediction. As described by Štrumbelj and Kononenko (2014), if the 

measure of local importance is positive, then the considered modelling assumption has a positive contribution (increases the 

prediction for this particular instance), if it is negative, it has a negative contribution (decreases the prediction), and if it is 0, 

it has no contribution.  50 

A possible local attribution approach can follow a ‘one-factor-at-a-time’ procedure, which consists of analysing the effect of 

varying one model input factor at a time while keeping all other fixed (see an example performed by Edwards et al., 2021). 

Though simple and efficient, this approach presents several shortcomings (dependence to the chosen base case, to the 

magnitude of variations, failure when the model is non-linear, etc. see an in-depth analysis by Štrumbelj and Kononenko 

(2014)). A more generic approach has emerged in the domain of explainable machine learning (Murdoch et al., 2019), 55 

named SHapley Additive exPlanation SHAP (Lundberg and Lee, 2017). SHAP has successfully been used in many domains 

of application, such as finance (Bussmann et al., 2021), medicine (Jothi and Husain, 2021), land-use change modelling 

(Wieland et al., 2021), mapping of tropospheric ozone (Betancourt et al., 2022), digital soil mapping (Padarian et al., 2021), 

etc. 

SHAP builds on the Shapley values that were originally developed in the cooperative game theory for “fairly” distributing 60 

the total gains to the players, assuming that they all collaborate (Shapley, 1953). Making the analogy between a particular 

prediction and the total gains, SHAP allows breaking down any prediction as an exact sum of the modelling assumptions’ 
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contribution with easily interpretable properties (see a formal definition in Sect. 3); each contribution then reflects the 

influence of the considered modelling assumptions for the particular prediction.  

In this study, our objective is to compute measures of local importance for each considered modelling assumption using 65 

SHAP applied to MME of sea-level projections. Applying SHAP in this context faces however several difficulties. First, it is 

not the prediction provided by the modelling chain (used to generate the MME) that is decomposed by SHAP, but it is a 

machine-learning-based proxy (named ML model) that relates the modelling assumptions (termed as ‘inputs’ in the 

following) to the equivalent sea-level changes (denoted sl). Validating the use of this proxy is one key prerequisite of the 

approach. Second, building the ML model relies on the analysis of the available MME results, which are limited (typically 70 

up to 50-100 ensemble members), due to the large computational time cost of the modelling chain. This results in MMEs that 

are incomplete and unbalanced: i.e. several combinations of modelling assumptions are missing in the MME while some are 

more frequent than others. Statistically, this incompleteness and unbalanced design might result in statistical dependence 

among the input variables (related to the modelling assumptions). Overlooking this dependence structure might mislead the 

interpretation of the inputs’ individual influence; see an extensive discussion by Do and Razavi (2020). To overcome the 75 

afore-described difficulties, we propose a SHAP-based procedure combined with cross-validation procedure (Hastie et al., 

2009) and appropriate techniques for modelling the dependence (Aas et al., 2021; Redelmeier et al., 2020). Through 

aggregation of the SHAP-based local explanations, we further show how they can be helpful for both improving the 

scientific interpretation and guiding future model developments. The proposed procedure is applied to sea-level projections 

for the Greenland ice sheet (Goelzer et al., 2020) by considering the time evolution of sea-level contributions.  80 

The paper is organized as follows. We first describe the sea-level projections used as application case and the corresponding 

design of numerical experiments (Sect. 2). In Sect. 3, we provide further details in the statistical methods that are used to 

estimate the local explanations. In Sect. 4, we apply the methods and provide some approaches to combine the local 

explanations to get global understanding of the MME results across time. 

2 Multi-model ensemble case study 85 

To test our approach, we define a case study based on the MME study carried out by Goelzer et al. (2020) in the framework 

of the ISMIP6 initiative. In the following, we only provide a brief summary of the GrIS MME dataset and the interested 

reader is invited to refer to Goelzer et al. (2020) and references therein for further details.  

To compute the annual time evolution of sea-level contributions from the Greenland ice sheet (GrIS) up to 2100, the 

modelling chain combines different models: (1) a number of AOGCMs that produce climate projections according to given 90 

greenhouse gas forcing scenarios; (2) a Regional Climate Model (RCM) that locally downscales the AOGCM forcing to the 

GrIS surface; (3) a range of ISM models (initialised to reproduce the present-day state of the GrIS as best as possible from a 

given initial year to end of 2014) that produce projections of ice mass changes and sea-level contributions. Given bed 

topography across the ice-ocean margin around Greenland, the ISMs are forced by surface mass balance (denoted SMB) 
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anomalies from the atmospheric RCM-derived forcing and by an empirically derived parameterisation that relates changes in 95 

meltwater runoff from the RCM and ocean temperature changes from the AOGCMs to the retreat of tide-water glaciers 

(Slater et al., 2020). The parameter that controls retreat is denoted  and is used to sample uncertainty in the parameterisation 

(Slater et al., 2019).  

As the primary objective of this work is to evaluate the relevance of the ‘SHAP’ approach, we focus on a subset of the 

original GrIS MME study based on one AOGCM, namely MIROC5 forced under the most impactful climate scenario 100 

RCP8.5, because a sufficient number of MME results are available to validate our approach. For this case, a total of 55 

numerical experiments were extracted to analyse the time evolution of sea level changes with respect to 2015 (Fig. 1); each 

of these results is associated with different modelling choices represented by different ISMs that are described in Appendix 

A: Table A1. In addition, for the selected AOGCM, we are able to analyse the sensitivity to the parameter  based on the 

availability of the numerical experiments denoted exp05, exp09 and exp10 in Table 1 of Goelzer et al. 2020.  105 

 

Figure 1: (a) Time evolution of the sea level contribution (with respect to 2015) from the Greenland ice-sheet (in cm sea-level 

equivalent, SLE). The results are the MIROC5,RCP8.5-forced MME of Goelzer et al . (2020). The red straight line is the temporal 

ensemble mean. 

The analysis is focused on nine main modelling assumptions related to different aspects of the modelling chain (Table 1), 110 

namely numerical implementation, initial conditions, modelling of ice-sheet processes, and environmental forcing. Only the 

modelling assumptions that are commonly shared by all models described by Goelzer et al. (2020): Appendix A were 

considered, i.e. without empty entry in Table A1 and with a sufficient number of variation across the models. Note that some 

preliminary groupings of categories were carried out to ensure a minimum of variation across the experiments with at least 
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two experiments associated to a given category (specified in the last column of Table 1) which is needed to properly conduct 115 

the performance analysis of the ML model (see further details in Sect. 3.2). 

Table 1. Modelling assumptions considered in the MIROC5,RCP8.5-forced GrIS MME 

Type Modelling 

assumption 

Symbol Value range / Categories Grouping of categories 

Initial conditions type of initialisation 

method 

init Data assimilation of velocity (DAv); 

Nudging to ice mask (NDm); Nudging to 

surface elevation (NDs), and a category 

denoted DAs,i that group data assimilation 

of surface elevation, data assimilation of 

ice thickness, spin-up, and transient 

glacial cycles 

 

Initial conditions initial surface mass 

balance (SMB) 

SMB Different RCMs among 

RACMO, either RACMO2.1 or 2.3 (RA); 

MAR; HIRHAM5 (HIR); and implied 

SMB (ISMB).  

Experiments that use climatology 

and historical spin-up from BOX 

but historical experiment from 

either MAR (or RACMO) 

anomalies were assigned to MAR 

(respectively RA) category 

Initial conditions Initial year that is 

used to compute the 

present-day until the 

end of 2014  

Year0 From 1979 to 2008  

Numerical 

implementation 

Numerical method Num Finite difference (FD) or Finite element 

(FE). 

Only one modelling team has 

used a numerical scheme of finite 

volume type: this choice was 

grouped with FE 

Numerical 

implementation 

Minimum value of 

the grid size 

res_min From 0.25 to 16 km  

Numerical 

implementation 

Maximum value of 

the grid size 

res_max From 0.90 to 30 km  

Ice sheet 

processes 

Type of ice flow iceFlow Shallow-ice approximation (SIA), 

shallow-shelf approximation (SSA), higher 

order (HO), SIA and SSA combined (HYB) 

 

Ice sheet 

processes 

Bed topography Bed Two datasets are considered: BedMachine 

v3 by Morlighem et al. (2017) (M); and 

the one by Bamber et al. (2013) (B) 
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Environmental 

forcing 

value of the retreat 

parameter 

 From -0.9705 to +0.0079 km.(m3.s-1)-0.4 °C  

 

 

Figure 2: Count number of the MIROC5,RCP8.5-forced GrIS MME members with respect to the different modelling assumptions 120 
described in Table 1. 

In the following, we name “inputs” the choices made for each of these modelling assumptions. One input setting defines an 

experiment of the MME. Formally, the inputs are either treated as continuous variables (for , minimum and maximum 

resolution and initial year), or as categorical variables (for the five other ones). Figure 2 shows that the design of experiments 

is unbalanced: some categories (like RA for instance, Fig. 2b) or some values (like minimum resolution at 5km, Fig. 2e) are 125 

more frequent than others. The design is also incomplete with large gaps in the histograms. This is for instance the case for  

between -0.9705 and -0.3700 km.(m3.s-1)-0.4 °C (Fig. 2i), because this parameter was sampled for only 3 different values by 

most models (the median, the 25% and the 75% percentile), and the additional 2 values were only sampled by one ISM. 
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3 Methods 

3.1 Overall procedure 130 

Let us consider sl(t) the sea level change (with respect to a reference date) at a given time t that is numerically simulated 

from the chain of models, denoted f, described in Sect. 2. We assume that the different models (part of the MME) share the 

same characteristics corresponding to p different modelling assumptions (e.g. choice in initial SMB / ice flow formulation, 

value of the grid size, etc.). In our case p=9 (see Sect. 2). To each of these modelling assumptions is assigned a random 

variable x. The vector of p input variables (p modelling assumptions) is denoted by 𝐱 = {𝑥1, 𝑥2, … , 𝑥p}. We consider n 135 

different experiments; each of them associated to a particular 𝐱(i). The MME results at a given time t are {𝑠𝑙(i)(t), 𝐱(i)}i=1,…,n 

with 𝑠𝑙(i)(t) = f(𝐱(i)). This means that our knowledge on the mathematical relationship f is only partial and based on the n 

MME results. To overcome this difficulty, we replace f by a machine-learning-based proxy (named ML model) built using 

the MME results; the advantage being to make some predictions for input configurations that are not present in the original 

MME dataset at a low computation time cost. The ML model is denoted f̃𝛉  where  correspond to the ML model’s 140 

parameters (named hyperparameters, see Appendix B). 

Given a specific setting x* (i.e. an instance of modelling choices made by the modellers for each of the considered 

assumptions), we follow the additive feature attribution approach that has been developed for ML models (e.g., Štrumbelj 

and Kononenko, 2014; Lundberg and Lee, 2017). This approach proposes to improve the interpretability of a particular 

prediction f(𝐱∗) for a given time horizon t by decomposing it as a sum of the inputs’ contributions µ𝑖
∗(t) (specific to x*) as 145 

follows: 

𝑠𝑙∗(t) = f(𝐱∗)f̃𝛉(𝐱∗) = µ0(t) + ∑ µj
∗(t)

p
j=1 ,         (1) 

where µ0(t) (named base value) is a constant value (see definition in Sect. 3.3).  

It is important to note that Eq. (1) does not aim to linearize f, but to compute the contribution of each input to the particular 

prediction value f(𝐱∗). This means that the decomposition provides insights into the influence of the particular instance of 150 

the inputs x* relative to f(𝐱∗): (1) the absolute value of µ∗(t) informs on the magnitude of the influence at time t directly 

expressed in physical units (for instance in centimetres for sea level), which eases the interpretation; (2) the sign of µ∗(t) 

indicates the direction of the contribution, i.e. whether the considered modelling assumption pushes the prediction higher or 

lower than the base value µ0(t).  

In order to quantify µ∗(t) in Eq. 1, the different steps of the proposed approach (schematically represented in Fig. 3) are as 155 

follows. 

Step 1 Build and train ML models. At a given time horizon t, a ML model f̃𝛉 is built using some supervised ML techniques 

(see Hastie et al., 2009 for an overview). We rely here on three types of ML models, namely linear regression model, 

denoted LIN (because of the simplicity of its implementation), and two tree-based approaches, random forest regression 

method, denoted RF (Breiman, 2001), and Extreme Gradient Boosting for regression denoted XGB (Chen and Guestrin 160 
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2016)), which have shown high performance in diverse benchmark exercises (e.g. Grinsztajn et al. (2022) and references 

therein). See Appendix B for further details on these techniques and their respective hyperparameters ; 

Step 2 Evaluate the predictive capability and select the best performing ML model. The decomposition described in Eq. 1 is 

only meaningful provided that the assumption of replacing f by f̃𝛉  is valid. In this view, we propose to assess this 

assumption’s validity by measuring the predictive capability of f̃𝛉 using a leave-one-out cross validation procedure (Hastie et 165 

al., 2009). This validation is performed by considering the different parametrisations of the ML methods, i.e. the validation is 

performed by considering different values of the hyperparameters  for each of the considered ML models. Two indicators 

are computed, namely a local one related to the considered ith MME result, which measures the relative absolute error 

(denoted 𝑅𝐴𝐸(i)), and a global one (denoted 𝑀𝑅𝐴𝐸) defined as the average value of the 𝑅𝐴𝐸(i)  values computed across all 

n MME results. Then, for the ith MME result, the ML model that performs the best with respect to the minimum value of 170 

𝑀𝑅𝐴𝐸 + 𝑅𝐴𝐸(i) (i.e. both globally and locally for the considered ith MME result) is retained for the next step. The results of 

Step 2 is also useful to characterize the ML prediction error. Further details are provided in Sect. 3.2; 

Step 3 Local importance analysis. This step aims to perform the additive decomposition (Eq. 1) using the selected ML 

model. Among the different available methods (Molnar et al., 2019), we rely on the SHAP approach proposed by Lundberg 

and Lee (2017) because of its strong theoretical basis (see further details in Sect. 3.3 as well as Aas et al., 2021:Appendix A 175 

for a description from a modeller’s perspective) as well as its multiple use in various application areas (see introduction). 

Further details are provided in Sect. 3.3. A special care is paid to the impact of the inputs’ dependence by application of 

methods described in Sect. 3.4;  

Step 4 Summarise local explanations. The local explanations are combined and aggregated to provide insights into the model 

structure and to inform on the sensitivity of sl(t) to the modelling assumptions at each time horizon t. Inspired by Lundberg 180 

et al. (2020), the sensitivity analysis is conducted at different levels: 

- Level 1 Locally at a given prediction time by analysing the value and sign of µi
∗ for a particular experiment. An 

application is provided in Sect. 4.3.1; 

- Level 2 Model structure at a given prediction time by analysing how the influence measured by µi
∗ (magnitude and 

sign) evolves as a function of the ith input value. An application is provided in Sect. 4.3.2; 185 

- Level 3 Globally over time by analysing how the magnitude of the influence measured by |µi
∗| evolves across time 

by considering all experiments. To be able to compare the influence between the different predictions across time, 

we preferably analyse the absolute value of a normalised version of µ∗, i.e. µ𝑛(t) = µ∗(t)/(𝑠𝑙∗(t) − µ0(t)). An 

application is provided in Sect. 4.3.3. 
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 190 

Figure 3: Schematic overview of the different steps of the procedure. 
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3.2 Predictive capability of the ML models 

The objective of this section is to assess the validity of replacing f by a ML model f̃𝛉 (with  being the ML hyperparameters). 

To do so, we aim to quantify the predictive capability of f̃𝛉, i.e. whether f̃𝛉 is capable of predicting sl with high accuracy 

given yet-unseen instances of the modelling assumptions (inputs). If this predictive capability is high, replacing f by f̃𝛉 can 195 

be considered a valid assumption. The predictive capability of the ML model is commonly assessed using some global 

performance indicators calculated for a given test set T. Ideally, the analysis can be done by defining an independent test set 

T in addition to the MME results. In the absence of such independent dataset, we preferably rely on a leave-one-out cross 

validation procedure (Hastie et al., 2009) that uses part of the available MME results to train the ML model f̃𝛉, and a 

different part to test it. At a given time t, the procedure holds as follows.  200 

- Step 1. Extract the ith MME result; 

- Step 2. Train f̃𝛉. using the other n−1 parts of the data, and the prediction error measured by 𝑒(𝑖)(t) = 𝑠𝑙(𝑖)(t) −

𝑠𝑙̂(𝑖)(t) is calculated when predicting the ith part of the data; 

- Step 3. The procedure is re-conducted for i= 1,2,...,n and performance indicators are calculated by combining the n 

estimates of the prediction error. 205 

We use two performance indicators, namely a local one, that measures the local predictive capability related to the 

considered ith MME result, and a global one, that measures the predictive capability computed across all n MME results. The 

interest is twofold: the local indicator gives confidence in the local importance analysis for the considered ith case, and the 

global one gives confidence in the computation of the Shapley values, which require making predictions for inputs’ 

configurations that are not necessarily present in the original MME dataset (see Sect. 3.3 and 3.4).  210 

On the one hand, the local performance indicator is chosen to be the absolute error 𝐴𝐸(𝑖)(t) = |𝑒(𝑖)(t)|. To be able to 

compare the results across time and across the experiments, its normalised version will also be used, i.e. the relative absolute 

error 𝑅𝐴𝐸(𝑖)(t) = |
𝑒(𝑖)(t)

𝑠𝑙(𝑖)(t)
|. On the other hand, the global performance indicator is chosen to be the mean absolute error 

𝑀𝐴𝐸(𝑡) =
1

𝑛
∑ |𝑒(𝑖)(t) |𝑖=1,…,𝑛  (and by its normalised version, the mean relative absolute error 𝑀𝑅𝐴𝐸(t) =

1

𝑛
∑ 𝑅𝐴𝐸(𝑖)(t)𝑖=1,…,𝑛 ). For a given case i and at a particular time t, the ML model that minimises 𝑀𝑅𝐴𝐸 + 𝑅𝐴𝐸(i) is then 215 

retained for the local explanation analysis described in Sect. 3.3. This means that only the ML model that both performs the 

best globally (across the n MME results) and locally (for the considered ith MME result) is selected for the local explanation 

analysis. 

Finally, it should be noted that no matter how much effort is put in increasing the ML predictive capability, a perfect match 

to the true model is rarely achievable in particular due to difficulties in approximating the mathematical relationship between 220 

the inputs and sl or due to the absence of input variables that are important with respect to the sl prediction error. Thus, a 

residual degree of prediction error may still remain. This has implications for the interpretation of low |µj
∗(t)| values. In 
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theory, |µj
∗(t)| = 0 means that the jth input has no impact on the prediction at time t, i.e. it has negligible influence. In 

practice, the absence of influence can be concluded only up to a given threshold that is related to the residual prediction 

error. This means that low contribution values cannot be distinguished from the predictive error. In the following, we 225 

propose to use different performance indicators given the level of the sensitivity analysis (Step 4 described in Sect. 3.1) to 

assess the significance of the inputs with respect to the prediction error: for Level 1, we use 𝐴𝐸(𝑖)(t); for Level 2, we use 

𝑀𝐴𝐸(𝑡); for Level 3, we analyse a variant of 𝑅𝐴𝐸(t), namely 𝑅𝐴𝐸𝑛(t) = |
𝑒(t) 

𝑠𝑙(t)−µ0(t)
|. 

3.3 Shapley additive explanation 

We follow the approach developed by Lundberg and Lee (2017) who proposed to define µi
∗(t) in Eq. 1 using the Shapley 230 

values (Shapley, 1953). The Shapley value is used in game theory to evaluate the “fair share” of a player in a cooperative 

game, i.e. it is used to fairly distribute the total gains to multiple players working cooperatively. It is a “fair” distribution in 

the sense that it is the only distribution satisfying some desirable properties (Efficiency, Symmetry, Linearity, ‘Dummy 

player’, see proofs by Shapley, 1953, see Aas et al., 2021: Appendix A for a comprehensive interpretation of these properties 

from a ML model perspective). 235 

Formally, consider a cooperative game with k players and let 𝑆 ⊆ 𝐾 = {1, … , 𝑘} be a subset of |𝑆| players. Let us define a 

real-valued function that maps a subset S to its corresponding value val: 2𝑆 → ℝ and measures the total expected sum of 

payoffs that the members of S can obtain by cooperation. The gain that the ith player gets is defined by the Shapley value 

with respect to val: 

µ𝑖(t) =
1

𝑘
∑ (

𝑘 − 1
|𝑆|

)
−1

(val(𝑆 ∪ {𝑖}) − val(𝑆)𝑆⊆𝐾\{𝑖} ),       (2) 240 

Equation 2 can be interpreted as a weighted mean over contribution function differences for all subsets S of players not 

containing player i. This approach can be translated for the ML-based sl prediction by viewing each model input (each type 

of modelling assumptions) as a player, and by defining the value function val as the expected output of the ML model 

conditional on 𝐱𝑆
∗ i.e. when we only know the values of the subset S of inputs (Lundberg and Lee, 2017), namely: 

val(𝑆) = E(f̃(𝐱)|𝐱𝑆 = 𝐱𝑆
∗) =  E(f̃(𝐱𝑆̅, 𝐱𝑆

∗)|𝐱𝑆 = 𝐱𝑆
∗) = ∫ f̃(𝐱𝑆̅, 𝐱𝑆

∗)p(𝐱𝑆̅|𝐱𝑆 = 𝐱𝑆
∗)d𝐱𝑆̅ ,    (3) 245 

where 𝑆̅ is the complement of S such that 𝐱𝑆̅ is the part of 𝐱 not in 𝐱𝑆, and p(𝐱𝑆̅|𝐱𝑆 = 𝐱𝑆
∗) is the conditional probability 

distribution of 𝐱𝑆̅ given 𝐱𝑆 = 𝐱𝑆
∗. 

In this setting, the Shapley values can then be interpreted as the contribution of the considered input to the difference 

between the prediction f̃(𝐱∗) and the base value µ0. The latter can be defined as the value that would be predicted if we did 

not know any inputs (Lundberg and Lee, 2017), and is chosen as the expected prediction for sl without conditioning on any 250 

inputs, i.e. the unconditional expectation µ0 =E(f(x)). In this way, µi
∗ in Eq. 1 corresponds to the change in the expected 

model prediction when conditioning on that input and explains how to depart from E(f(x)). The interest is that the sum of the 

Shapley values for the different inputs is equal to the difference between the prediction and the global average prediction 

ginny
Note
italics
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superscript
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∑ µi
∗𝑝

𝑖=1 = f(𝐱∗) − µ0 , which means that the part of the prediction value, which is not explained by the global mean 

prediction, is totally explained by the inputs (Aas et al., 2021: Appendix A). This has several implications in the MME 255 

context: (1) any input will be assigned a Shapley value (defined by Eq. 2); (2) if µi
∗ = 0, it indicates the absence of influence 

for the ith input (related to the ‘dummy player’ property of the method); (3) the sum of the inputs’ contributions is guaranteed 

to be exactly f(𝐱∗) − µ0 (related to the ‘efficiency’ property of the method). This also means that the selection of the input 

variables in the analysis is an important step because the quantified contributions are dependent on the choice of which input 

variables are included in the analysis (see discussion in Sect. 5). 260 

In practice, the computation of the Shapley value may be demanding because Eq. (2) implies covering all subsets S (which 

grows exponentially with the number of factors denoted k, i.e. 2k), and Eq. (3) requires solving integrals, which are of 

dimension 1 to k−1. For both reasons, the calculation is performed using a surrogate model (i.e. the ML model) in place of 

the true function f, because the design of computers is rarely complete (i.e. it rarely contains the results for the different 

configurations of the inputs that are needed for the calculation). To further alleviate the computational burden in this study, 265 

we rely on the kernel SHAP method of Lundberg and Lee (2017), which allows a computationally tractable approximation, 

and a simple method for estimating the value function in Eqs. 2-3. For this purpose, we use the R package ‘shapr’ (Sellereite 

and Jullum, 2020) with accounts for inputs’ dependence (see Sect. 3.4). 

3.4 Accounting for inputs’ dependencies 

In the case considered in this study, there exists some dependence among the inputs. A commonly-encountered example is 270 

when the values for the minimum and maximum grid sizes are correlated. Additional examples are provided in Sect. 4.1. In 

this case, the interpretation of the SHAP decomposition provided by the kernel SHAP method might give wrong answers 

(Aas et al. 2021) because it relies on the independence assumption for calculating the conditional probability p(𝐱S̅|𝐱S = 𝐱S
∗ ) 

in Eq. (3). In our case, the dependence cannot be neglected (see Sect. 4.1 for the application to GrIS MME) and we rely on 

the improved kernel SHAP method proposed by Redelmeier et al. (2020) using conditional inference trees, denoted CTREE 275 

(Hothorn et al., 2006) to account for the dependence structure of input variables that are of mixed types (i.e. continuous, 

discrete, ordinal, and categorical) in the calculation of Eq. 3. 

Conditional inference trees belong to the class of decision trees that use a two-stage recursive partitioning algorithm, namely 

(1) partition of the observations by univariate splits in a recursive way; (2) fit a constant model in each cell of the resulting 

partition (for regression problem). Different splitting procedures exists and we use here the one proposed by Hothorn et al. 280 

(2006), that uses a significance test to select input variables rather than selecting the variable that maximizes the information 

measure (such as the Gini coefficient, Breiman, 1984). In this approach, the stopping criterion is based on p-values of the 

significance test; for instance the p-value must be smaller than a given value (typically of 5%) in order to split the considered 

node. The advantage of CTREE is to avoid a selection bias towards covariates with many possible splits or missing values 

(see Hothorn et al., 2006 for further details). 285 
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To identify the dependence structure, we proceed as follows. We first consider the 1st input variable to be the response, and 

fit a CTREE model by viewing the remaining input variables as the predictor variables. If the resulting tree model includes 

one of the predictor variable, this means that there is some dependence with the considered response (i.e. the 1st variable in 

this example). Otherwise, the resulting tree model is empty. This approach is re-conducted by considering each of the input 

variables as the response in turn. As a result, the procedure identifies the non-empty tree model(s) that represent the 290 

dependence structure between some input variables. 

4 Application 

In this section, we apply the procedure described in Sect. 2 (schematically depicted in Fig. 3) to the MIROC5,RCP8.5-forced 

GrIS MME. We first analyse the dependence between the different modelling assumptions (Sect. 4.1). Then, we train and 

build ML models and select the best performing ones by following Steps 1-2 of the procedure (Sect. 4.2). On this basis, we 295 

apply the local attribution approach to measure the local importance and summarise the results to provide different levels 

(detailed in Sect. 3.1) of information on sensitivity (Steps 3-4, Sect. 4.3). 
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Figure 4: Tree models representing the dependence between the different modelling assumptions (indicated at the bottom of each 

tree). The bottom nodes (leaf nodes) provide the proportion of experiments given the modelling choices defined along the branches 300 
of the tree model. Each colour corresponds to a different category of the considered modelling assumption. For instance, the 

centre, left tree provides the relation between the choice in the numerical method with the type of initialisation and the minimum 

grid size. The blue (respectively red) colour is related to the finite element FE (respectively finite difference FD) category. 

4.1 Inputs’ dependencies 

We first analyse the statistical dependence among the modelling assumptions (inputs) by applying the CTREE approach 305 

described in Sect 3.4 (using a split criterion threshold of 95% and Bonferroni-adjusted p-values). Figure 4 shows the 

resulting tree models for the different modelling assumptions. We show here that all inputs are statistically dependent at the 

exception of  for which the tree model is empty, which indicates the absence of (significant) dependence between this 

parameter and the other modelling assumptions. The different tree models should be read by following the example of the 

centre, leftmost tree in Fig. 4. This tree provides the relation between the choice in the numerical method with the type of 310 

initialisation and the minimum grid size. The bottom nodes (leaf nodes) provide the proportion of experiments given the 
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combination of modelling choices defined along the branches of the tree model. The blue (respectively red) colour is related 

to the finite element FE (respectively finite difference FD) category. This tree model indicates for example that all models 

with initialisation of type DAv have a numerical method of type FE (rightmost branch) and all models with initialisation 

different of DAv and a minimum resolution of 0.9, 5 or 8km have a numerical method of type FD (leftmost branch). 315 

4.2 Predictive capability of the ML models 

Using the results of the MIROC5,RCP8.5-forced GrIS MME, we train a series of ML models to predict sl across time. The 

following ML model with corresponding hyperparameters (see Appendix B for details) are considered:  

- Nine RF regression models with hyperparameters ns=5 or 10, mtry= 1, 3, 6 or 9 and ntree=2,000; 

- Thirty XGB models with hyperparameters maximum depth = 2, 3, 6, or 9, learning rate = 0.025, 0.1 or 0.25 and 320 

maximum number of boosting iterations = 250 or 450;  

- One LIN model. 

To assess the predictive capability of the considered ML models at each time instant, we apply a leave-one-out cross 

validation approach by following the procedure of Sect. 3.2. Figure 5a depicts the time evolution of the performance 

indicator MRAE for all considered ML models. Depending on the type of ML model (and corresponding parametrisation), 325 

the global performance can reach satisfactory levels below 10% in particular for some XGB models.  

As explained in Sect. 3.2, satisfying the global performance criterion does not necessarily ensure that the ML model gives an 

accurate approximation of all sl predictions. For some cases, the discrepancies can be too large to properly analyse the local 

explanations. This is illustrated with Fig. 5b that shows the comparison between the true sl value and the corresponding ML-

based prediction for 2100. For instance, we note that the predictions for the largest sl value largely departs from the 1:1 line 330 

except for the LIN model (outlined in black in Fig. 5b). This is also the case for the lowest sl values for which a given 

parametrisation of the XGB model performs the best (outlined in red in Fig. 5b). Thus, to further increase our confidence in 

replacing the ‘true’ numerical model by the ML model, we apply the filtering approach (described in Sect. 3.2) based on the 

joint minimisation of the global and of the local performance indicators. The retained predictions are outlined in blue in Fig. 

5b.  335 

In total, LIN, XGB and RF models are retained respectively 3.4%, 24.6% and 72% of the total number of experiments (in 

average over time). After applying this procedure, the MRAE criterion (shown in blue in Fig. 5a) reaches values below 10% 

in average over time (with a maximum value not larger than 15% for year 2040). Note that the MRAE curve after this 

selection is not necessarily the lowest one, because the selection procedure not only implies minimising 𝑀𝑅𝐴𝐸 but also the 

local performance 𝑅𝐴𝐸(i) (see Sect. 3.2). 340 
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Figure 5: (a) Time evolution of the performance criterion MRAE (expressed in %) computed using a leave-one-out cross validation 

procedure that assesses the predictive capability of all considered ML models with different parametrisations (RF models in green, 

XGB in red and LIN in black). The blue-coloured lines are related to the performance criterion after selecting the best performing 

ML model with respect to the joint minimisation of the global and of the local performance indicator described in Sect. 3.2; (b) 345 
Comparison between the true and the ML-based predicted sl value for 2100 by considering all ML models. The blue colour 

outlines the retained results after selecting the best performing ML model. 

4.3 From local to global explanations 

In this section, we first compute the measures of local importance for each experiment in the MIROC5,RCP8.5-forced GrIS 

MME for a given prediction time (here 2100); such type of diagnostic (Level 1 of the procedure) helps to understand and 350 

quantify the impact of particular assumptions made by the modellers (Sect. 4.3.1). Then, we analyse in Sect. 4.3.2 how the 

influence of each modelling assumption evolves as a function of the considered input value (Level 2 of the procedure). This 

analysis allows us to deepen our understanding of the model structure for a given prediction time. Finally, Sect 4.3.3 

summarises all results over time (Level 3 of the procedure) to provide a global insight (i.e. across all MME members) in the 

sensitivity of sl to the modelling assumptions. 355 

4.3.1 Level 1. Local explanations at a given prediction time 

We first illustrate the application of SHAP to a selected set of ML-based sl predictions for 2100. Figure 6 provides the 

SHAP-based decomposition of the ML-based prediction (blue horizontal bar) into the positive (green bar) or negative (red 

bar) contribution (µ value defined in Eqs. 2-3) of each input using the 2100 ensemble mean of µ0=10.8cm as base value. The 

inputs’ setting are indicated in the vertical axis for each of the considered Cases (a) - (f). The grey colour indicates that the 360 

contribution cannot be distinguished from the predictive error, because its absolute value is below the absolute error. 
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Figure 6: Diagnostic of particular ML-based sl predictions using SHAP for year 2100 considering six different settings of the 

modelling choices (indicated in the vertical axis). The horizontal blue bar corresponds to the ML-based sl prediction (the 

difference with the true value is indicated by the error term e expressed in cm SLE). Each row shows how the positive (green bar) 365 
or negative (red bar) contribution of each input moves the prediction from µ0, i.e. the unconditional expectation of sl. The grey 

colour indicates that the contribution cannot be distinguished from the predictive error, because its absolute value is below the 

absolute error. 

The analysis of Figure 6 illustrates how the SHAP-based approach can be used to diagnose the MME results: 
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- Case (a) corresponds to the largest sl value (of 19.08cm) that is predicted by the ML model at 17.79cm (with a 370 

prediction error e1.30cm). Fig 6(a) confirms the physically expected result regarding  influence: the largest sl is 

mainly attributable to  whose absolute value is the largest, i.e. 0.9705 km.(m3.s-1)-0.4 °C. This choice pushes the sl 

value higher than the base value by µ=+4.89cm, i.e. by 45% of µ0. In this case, the two other largest contributors 

to sl (with an influence of respectively +2.75cm, and -1.54cm) are related to using the M dataset for bed topography 

and initial SMB of type RA. The other modelling choices all have absolute contributions below |e|, which indicates 375 

that their contributions are not significant in comparison to the prediction error level (outlined in grey in Fig. 6a); 

- Case (b) (Fig. 6(b)) corresponds to the second largest sl value (of 15.32cm) that is predicted by the ML model at 

15.36cm (with a prediction error e0.04cm). All modelling choices are similar to Case (a) except  here set up to a 

lower absolute value of 0.37 km.(m3.s-1)-0.4 °C and the minimum grid size set up to a lower value of 8km. Contrary 

to Case (a), the influence of  drops here to low-to-moderate value (+1.24cm), and it is the choice in the minimum 380 

grid size that contributes the largest to sl (µ=+1.59cm). We note that all contributions can be considered with 

confidence because their absolute values are all above the absolute prediction error; 

- Case (c) presents the same setting than Case (b) except for a larger minimum grid size (here of 16km). This results 

in a lower influence of the minimum grid size (µ drops to +1.03cm), but the contributions of all modelling 

assumptions remain, to some extent, similar to Case (b); 385 

- Case (d) corresponds to a sl value close to the one in Case (c) and illustrates that, despite the differences with Case 

(c) (i.e. initial SMB, initialisation type and minimum resolution), the contribution of largest contributors to sl, i.e. 

ice flow’s type, initial year and  , remains of the same order of magnitude between both cases;  

- The comparison between Cases (b) to (d) also points out that, for relatively close predicted values, the modelling 

choices contribute equivalently to the prediction despite some minor differences in the setting of the modelling 390 

assumptions; 

- Cases (e) and (f) illustrate however that, when the dissimilarity in the settings is larger, the modelling choices 

contribute differently to the prediction although the predicted values are very close (here close to the ensemble 

mean of 10.8cm). In Case (f), all modelling assumptions contribute equivalently to sl, whereas it is mainly ice 

flow’s type and the type of dataset for bed topography in Case (f). 395 

Such type of diagnostic can be performed for any MME results (they are all provided by Rohmer (2022) for year 2100) to 

inform the modellers on the most and least impactful modelling choices for any sl prediction; such information being helpful 

to explain why a given instance of modelling choice lead to a given sl value. 

4.3.2 Level 2. Model structure at a given prediction time 

We explore in Fig. 7 and in Fig. 8 how the magnitude of the modelling assumption’s contribution to sl, as well as the 400 

direction, change depending on the value of the considered input by applying the SHAP dependence plot proposed by 
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Lundberg et al. (2020). To judge the significance of the contribution, we compare the results to the range defined by +/- 

MAE=0.18cm (calculated from the leave-one-out cross-validation procedure, see Sect. 4.2): contributions falling within this 

range (outlined by the red dashed horizontal lines in Fig. 7) indicates that they cannot be distinguished from the predictive 

error.  405 

We first analyse the continuous variables. Fig. 7a confirms the large influence of  (of several cm) for large absolute values 

of . We also note that setting this parameter to -0.17 km.(m3.s-1)-0.4 °C leads to quasi-negligible influence, because µ falls 

within the range of MAE. A clear trend can be noticed:  influence decreases with increasing value in a quasi-linear manner 

(with slope of ~-8 cm per unit of retreat parameter). We also note that for setting  above -0.17 km.(m3.s-1)-0.4 °C even 

impacts negatively the sl prediction, which means that this modelling assumption pushes the prediction lower than the mean 410 

value for 2100. Finally, Fig. 7a provides indication of where to perform additional numerical experiments to confirm  

influence, namely over then range -0.97 to -0.37 km.(m3.s-1)-0.4 °C (where the results are scarce). 

 

Figure 7: Application of SHAP additive explanation to all members of the MIROC5,RCP8.5-forced GrIS MME for year 2100. 

Each panel provides µ (y-axis) as a function of the value of the minimum and maximum grid resolution (a,b), of the initial year (c), 415 
and of the retreat parameter  (d). The horizontal dashed red lines indicate the limits defined by +/- MAE calculated from the 

leave-one-out cross-validation procedure: contributions falling within this range indicates that they cannot be distinguished from 

the predictive error. The blue line indicates the smooth regression fitted to the data (using locally estimated scatterplot smoothing 

method), and the grey-envelope is the 95% confidence interval. 
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Though a trend in the (initial year - µ) mathematical relationship is not straightforward to detect, Fig. 7b shows that the 420 

influence can be considered significant with respect to the predictive error MAE for some particular cases; |µ| reach low-to 

moderate values not larger than 2cm.  

Fig. 7c,d give insights into the influence of the spatial resolution by showing a zone of low-to-moderate influence defined for 

a minimum and a maximum grid size <5km and <16km respectively. In this zone, the average value of |µ| across the cases is 

0.55cm and 0.27cm for the minimum and maximum resolution respectively (with a maximum value up to 1.1cm for both 425 

grid sizes). The influence can even be considered non-significant with 40% of the cases falling within the +/- MAE range for 

the maximum grid size. From a modelling perspective, this analysis suggests that there is clear interest in running high 

resolution simulations. This means that if spatial grid resolution is too coarse (i.e. if the minimum and maximum grid 

resolution is outside the identified zone), this choice may highly influence the results of sea-level projections; |µ| can be as 

high as 1.60 and 2.50cm for the minimum and maximum grid size respectively. A comparison with the contributions of the 430 

other modelling assumptions in Figure 8 further suggests that the influence of spatial resolution may dominate all other 

modelling choices, since their contributions do not exceed +1cm, i.e. they are smaller than those of the identified zone. 

 

Figure 8: Application of SHAP additive explanation to all members of MIROC5,RCP8.5-forced GrIS MME for year 2100. Each 

panel provides the boxplots of µ values given the modelling choice for the numerical method (a), the ice flow (b), the initialisation 435 
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(c), the initial SMB (d) and type of bed topography dataset (e). Each dot corresponds to a given MME member. The horizontal 

dashed red lines indicate the limits defined by MAE calculated from the cross-validation procedure. 

 

Focusing on the categorical input variables, Figure 8 further indicates that the most impactful modelling assumption for sl is 

the ice flow’s choice, either of SIA or HYB type with positive or negative contribution, and the B dataset for bed topography: 440 

the corresponding boxplots in Fig. 8b and in Fig. 8e are well outside the +/- MAE range. Finally, Fig. 8 also points out some 

modelling choices with contributions that are hardly distinguishable from the prediction error; namely any type of numerical 

method, FD or FE (Fig. 8a), NDm and NDs for initialisation (Fig. 8c), HIR or RA for initial SMB (Fig. 8d), and M dataset for 

bed topography though some specific cases present low-to-moderate values (see grey dots outside the box in Fig. 8e). 

4.3.3 Level 3. Global explanations over time 445 

The analysis of Sect. 4.3.2 is performed for all members of the MIROC5,RCP8.5-forced GrIS MME for any prediction time. 

As indicated in Sect. 3.1, to be able to compare the influence between the different predictions across time, we analyse in 

Fig. 9 the statistics of the absolute value of µ𝑛(t) = µ(t)/(𝑠𝑙(t) − µ0(t)). To judge on the negligible level of the influence 

with respect to the ML prediction error, we analyse the quartiles of 𝑅𝐴𝐸𝑛(t) = |
𝑒(t) 

𝑠𝑙(t)−µ0(t)
| calculated at each time instant for 

all members of MIROC5,RCP8.5-forced GrIS MME. If the boxplot depicted in Fig. 9 does not overlap with the region 450 

defined by the interval between the lower and the upper red cross, this means that the influence measured by |µ𝑛|  can be 

considered significant with respect to the ML prediction error.  

Considering initial conditions, Fig. 9a,c shows that it is the initialisation type that has the largest impact in the medium term 

(before 2050/2060), and after this date, it is the choice in the initial year that impacts the most. Conversely, in the long term 

(after 2050/2060), the influence of the initialisation type reduces up to negligible level (compared to the prediction error). 455 

Fig. 9b shows that the influence of the initial SMB is low (even negligible) regardless of the considered prediction time at the 

exception of some particular cases outlined by black dots lying outside the boundaries of the whiskers (illustrated in Fig. 

6a,e). 

Considering numerical implementation, the choice in the numerical method has here small (even negligible) contributions to 

sl values (Fig. 9d) especially in the medium / long term (after 2050). We note also that the moderate influence of the 460 

minimum and maximum grid size remains quasi-constant over time (Fig. 9e,f), hence suggesting that the grid size’s 

influence is time-invariant, i.e. all modelled processes are affected by the spatial resolution in a similar way, independently 

of the prediction time. 

Finally, considering ice-sheet processes and environmental forcing, an important influence of  is shown only after 

2030/2040 (Fig. 6h) with a quasi-constant value after this date. An increasing influence over time is also identified for the ice 465 

flow’s type; though the temporal trend is only clear up to year 2070. We also show that the type of bed topography dataset 
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has only low (even negligible) influence compared to the prediction error, at the exception of some particular cases 

(illustrated in Fig. 6a,e) and outlined by black dots lying outside the boundaries of the whiskers. 

 

 470 

Figure 9: Statistics of |µ𝒏|  summarised by a boxplot at each time instant for all members of the MIROC5,RCP8.5-forced GrIS 

MME. The lower and upper red cross is respectively the 1st and 3rd quartile of the cross-validation error 𝑹𝑨𝑬𝒏. If the boxplot does 

not overlap with the region defined by the interval between the red crosses, this indicates that the influence measured by |µ𝒏|  can 

be considered significant with respect to the ML prediction error. For readability, the upper bound of the y-axis has been set up to 

2. 475 

5 Discussion 

Improving the interpretability of sea level projections is a matter of high interest given their importance to support decision 

making for coastal risk management and adaptation. To this end, we adopt the local attribution approach developed in the 

machine learning community to provide results about the role of various modelling choices in generating inter-model 

differences in MME. These results are intended for different potential users. 480 

First, the diagnostics illustrated in Fig. 6 (and all provided by Rohmer (2022) for MIROC5,RCP8.5-forced GrIS MME in 

2100) help the individual modellers involved in the modelling exercise to understand and quantify the impact of their 

particular assumptions. Figure 6b-d illustrate situations where the SHAP approach allows such critical analysis including 

checking that the same modelling assumptions have a similar impact on close sl values. 
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Second, aggregating all diagnostic results (Level 2 and 3 of the proposed approach) provides guidance to the modelling 485 

group involved in the definition of experimental protocols for MME (such as ISMIP6, Nowicki et al., 2016; 2020). Some 

key aspects are identified and deserve to be taken into account in future model developments and modelling exercises: 

- our results confirm the need for simulations that are sufficiently spatially resolved: sl results are largely affected by 

too coarse grids (here with minimum and maximum grid size larger than 5km and 16km respectively) regardless of 

the prediction time; 490 

- the influence of the modelling assumptions depends on the considered prediction time: in the short/medium term 

(before 2050), initialisation and ice flow’s type primarily contribute to sl, whereas in the long term, initial year and 

 are tagged as key contributors; though  importance has relatively well understood physical basis, additional 

analysis should be carried out for the initial year; 

- some modelling choices have little impacts on the sl values (in average across the considered MME results), in 495 

particular choosing a finite element or finite difference numerical scheme or the dataset for bed topography; 

- additional computer experiments are worth conducted to better explore given parts of the parameter space in the 

view to confirm the identified trends (Figs. 7 and 8); in particular for minimum grid size ranging from 3 to 4km and 

for  ranging from -0.97 to -0.37 km.(m3.s-1)-0.4 °C.  

Finally, framing the diagnostic results with narratives is expected to facilitate the communication between modellers and 500 

end–users. What is ‘easily explained’ through narratives is expected to increase the end-user’s level of trust in the model, 

and eventually their engagement in the decision-making process (e.g. Jack et al., 2020). The narratives can follow the 

example of the GrIS study (Fig. 6(a)): “the largest sl predicted value is 19.1cm by 2100 and is mainly attributable (by a 

positive factor of almost 50% of the ensemble mean) to setting  to its largest absolute value, i.e. a large contribution of 

outlet glacier retreat, while the other modelling assumptions have only moderate influence”. More broadly, this provides a 505 

clear message for risk-adverse stakeholders interested in the upper tails of the distribution (named “high-end” sea level 

scenarios, Stammer et al., 2019), namely the importance of the dynamics of ice sheet processes on projected high sl values, 

especially in the second half of the century. This message then calls for intensified future research work to reduce 

uncertainty related to these processes. 

These results were obtained by overcoming two major difficulties. The first one is related to the incomplete and unbalanced 510 

design of the numerical experiments (Sect. 4.1). here, applying more commonly-used statistical methods, namely the linear 

regression model or the ANOVA-based approach, would hardly be feasible. On the one hand, Sect. 4.2 clearly shows that the 

mathematical relationship between sl and the inputs is not necessarily linear, and more advanced regression techniques need 

to be used (like RF or XGB models). On the other hand, the considered design of experiments is incomplete and unbalanced 

(as shown in Sect. 2), which complicates the application of ANOVA. Ideally a full factorial design should be used to 515 

properly apply ANOVA: in our case, the design should then contain 3,200 experiments, i.e. far larger than the available 

experiments. Some solutions have been proposed in the literature (see e.g., Evin et al. (2019) and references therein), and an 

avenue for future work could focus on the comparison of ANOVA with our approach. The second difficulty is related to the 
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presence of statistical dependencies (as outlined in Sect. 4.1), which makes the interpretation of the individual effects less 

straightforward (a problem related to multicollinearity in the statistical community, e.g., Shrestha, 2020) and might even lead 520 

to wrong conclusions regarding uncertainty partitioning (see discussion by Do and Razavi (2020)). Here the SHAP-CTREE 

combined approach developed by Redelmeier et al. (2020) helps alleviate this problem by explicitly incorporating the 

dependence in the computation of the Shapley values (Sect. 3.4; see also Aas et al. (2021) for an extensive study of this 

problem). In light of the different algorithms available in the literature (Aas et al., 2021; Frye et al., 2020), an interesting line 

of future research could focus on a more systematic analysis of the inputs’ dependence, which could serve as a strong basis 525 

for defining clear recommendations on how to treat it in the context of MME. 

However, it should be underlined that the high performance of our approach is strongly dependent on two key prerequisites. 

First, the high predictive capability of the ML model should be carefully checked and confirmed as done in the GrIS case 

(Sect. 4.2). For this purpose, several aspects need further investigation in future work: (1) instead of selecting one single ML 

model, a combination of models could be proposed following e.g. the ‘super-learner’ method of van der Laan et al. (2007) or 530 

the model class reliance approach of Fisher et al. (2019); (2) finding the optimal hyperparameters’ setting could benefit from 

more advanced search algorithms for optimization (Probst et al., 2019). 

The second prerequisite is the careful selection of which input variables to include in the analysis. The set of quantified 

contribution is always guaranteed, by construction (see Sect. 3.3), to add up to exactly the total sl projection. This has the 

practical advantage to ease the interpretation and communication of the results. However, this also means that the quantified 535 

contributions are themselves dependent on the choice of the input variables. One advantage of SHAP approach is that 

variables whose influence is negligible will be assigned a low contribution, but this does not address the issue of the impact 

of some missing input variables that are important for the sl prediction, i.e. the influence of some ‘hidden factors’. The 

proposed cross validation error partly addresses this problem since high cross validation error reflects any difficulties in 

approximating the mathematical relationship between the inputs, which includes the afore-mentioned problem. To provide 540 

additional discussion, we conducted a robustness analysis by re-running the local attribution approach (and ML model fitting 

and selection) for the largest simulated sl value in 2100 (Case (a) in Figure 6); at each iteration, one of the nine input 

variables being removed in turn. Figure 10 provides the changes in the quantified contributions represented by a horizontal 

black error-bar. The comparison with the width of the horizontal coloured bar (representing the value of the original analysis 

including all nine input variables), confirms the high robustness of the large  contribution (regardless of the selection of the 545 

input variables), and shows the lack of robustness of most of the input variables that were identified as non-significant with 

respect to the prediction error (coloured in grey). In addition, though the variability is higher, the contribution of the second 

and third larger contributor (initial SMB and bed topography dataset) show consistent results with the original study. 

However, one disadvantage of this type of robustness analysis is the much higher computational cost (at least 9 times), 

which makes it difficult to implement for the whole MME results. This requires further research work related to the active 550 

research area of ‘sensitivity of the sensitivity analysis’ (e.g., Razavi et al. 2021). 
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Figure 10: Robustness analysis of the local importance analysis for the largest simulated sl value in 2100 (Case (a) in 

Figure 6). The horizontal coloured bars correspond to the quantified contributions by including all input variables 

(results of Fig. 6a). The endpoints of the thick and thin horizontal black error-bar are respectively the minimum / 555 

maximum, and the percentiles at 25 and 75% computed when iteratively excluding one of the nine input variables. 

6 Concluding remarks and further work 

In this study, we described the use of the machine-learning-based SHapley Additive exPlanation (SHAP) approach to 

quantify the importance of modelling assumptions in sea-level projections produced in a MME study. The proposed 

approach was applied to a subset of the GrIS ensemble that is characterised by a limited number of experiments (50-100), an 560 

unbalanced design, and the presence of dependence between the inputs. Our results have shown the added value of the 

proposed approach to inform on the influence of the modelling assumptions at multiple levels: (Level 1) locally for particular 

instances of the modelling assumptions, (Level 2) on the model structure at a given prediction time, and (Level 3) globally 

over time. These results are intended for different potential users, namely the ice-sheet modelling community (individual 

modellers, or modelling group in charge of the design of experiments), but also adaptation practitioners, who take decisions 565 

based on sea-level projections that rely on models such as those modelling the Greenland ice mass losses. Trust in these 

projections, and therefore accelerated coastal adaptation, can be enabled by the analyses described in this study allowing to 

better interpret the uncertainty range in projections. This study illustrates that performing such diagnoses rigorously require 

advanced mathematical techniques.  
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This study should however be seen as a first assessment of the potential of the SHAP-based approach, and in order to bring 570 

the SHAP-based approach to a fully operational level, we recognise that several aspects deserve further improvements. First, 

a common pitfall of any new tool is its misuse and over-trust on the results (as highlighted by Kaur et al. (2020)). Future 

steps should thus concentrate on multiplying the application cases (in particular by varying the AOGCM and the RCP 

choice) with an increased cooperation between the different communities, namely ice sheet modellers, MLs, human-

computer interaction researchers and socio-economic scientists.  575 

Second, it is the question of the global effects of the modelling assumptions that deserves particular intensified investigation. 

In addition to methodological work exploring advanced procedures such as SAGE (Shapley Additive Global importance, 

Covert et al., 2020) or variance-based approach used in the Uncertainty Quantification community (e.g. Iooss and Prieur, 

2019), the key will be the developments of robust protocols to design balanced and complete numerical experiments. This 

partially resolved problem (see e.g. discussion by Aschwanden et al., 2021) could benefit from an increased inter-580 

disciplinary cooperation as well. 
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Appendix A Model characteristics 

Table A1. Model characteristics used in the MIROC5,RCP8.5-forced GrIS MME considered in the study (adapted from 740 

Goelzer et al., 2020: Appendix A). 
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AWI-ISSM1 FE HO DAv 1990 RA J M  G 1 7.5 

AWI-ISSM2 FE HO DAv 1990 RA J M  G 1 7.5 

AWI-ISSM3 FE HO DAv 1990 RA J M  G 0.75 7.5 

BGC-BISICLES FE SSA DAv 2000 HIR RM M   1 4.8 

GSFC-ISSM FE SSA DAv 2007 RA J M  SR 0.5 25 

ILTS_PIK-

SICOPOLIS1 

FD SIA NDs 1990 ISMB J M M G 5 5 

ILTS_PIK-

SICOPOLIS2 

FD HYB NDs 1990 ISMB J M M G 5 5 

IMAU-IMAUICE1 FD SIA NDm 1990 RA  M  SR 16 16 

IMAU-IMAUICE2 FD SIA NDm 1990 RA  M  SR 8 8 

JPL-ISSM FE HYB DAv 1979 MAR RM M  SR 0.25 15 

JPL-ISSMPALEO FE SSA DAv 1979 RA RM M  SR 3 30 

LSCE-GRISLI FD HYB DAs,i 1995 MAR  M M SR 5 5 

MUN-GSM1 FD HYB NDm 1980 MAR  B  MIX 5 14 

MUN-GSM2 FD HYB NDm 1980 MAR  B  MIX 5 14 

NCAR-CISM FE HO Das,i 1990 MAR  M M SR 4 4 

UAF-PISM1 FD HYB NDs 2008 RA  M M SR 0.9 0.9 

UAF-PISM2 FD HYB NDs 2008 RA  M M SR 0.9 0.9 

UCIJPL-ISSM1 FE HO DAv 2007 RA RM M  SR 0.5 30 

UCIJPL-ISSM2 FE HO DAv 2007 RA RM M  SR 0.2 20 

VUB-GISM FD HO DAs,i 1990 MAR  M M SR 5 5 

VUW-PISM FD HYB NDs 2000 RA  M  SR 2 2 

 

The modelling assumptions colored in grey were not considered in the analysis, namely velocity type, surface/thickness, and 

geothermal heat flux GHF because they are not commonly shared across the different models.  
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Appendix B ML models and hyperparameters’ definition 745 

Let us first denote sli=1,…,n the ith value of sea level change calculated relative to the ith vector of p input parameters’ values 

𝒙i=1,…,n = {𝑥1, 𝑥2, … , 𝑥𝑝}i=1,…,n  where n is the total number of experiments. In the following, we present the machine-

learning ML models used in the study as well as their hyperparameters. 

B.1 Linear (LIN) regression model 

The linear (LIN) regression model is given by: 750 

𝑠𝑙 = 
0

+ ∑ 
𝑗
𝑥𝑗

𝑝
𝑗=1 ,           (B1) 

where the βj are regression coefficients that are estimated using a least-square criterion minimization method. 

B.2 Random Forest (RF) regression model 

The Random Forest (RF) regression model is a non-parametric technique based on a combination (ensemble) of tree 

predictors (using regression tree, Breiman et al. 1984). Each tree in the ensemble (forest) is built based on the principle of 755 

recursive partitioning, which aims at finding an optimal partition of the input parameters’ space by dividing it into L disjoint 

sets R1, …, RL to have homogeneous Yi values in each set Rl=1,…,L by minimizing a splitting criterion (for instance based on 

the sum of squared errors, see Breiman et al. 1984). The minimal number of observations in each partition is termed 

nodesize (denoted ns). 

The RF model, as introduced by Breiman (2001), aggregates the different regression trees as follows: (1) random bootstrap 760 

sample from the training data and randomly select mtry variables at each split; (2) construct ntree trees T(), where t denotes 

the parameter vector based on which the tth tree is built; (3) aggregate the results from the prediction of each single tree to 

estimate the conditional mean of sl as: 

E(𝑠𝑙|𝑿 = 𝒙) = ∑ 𝑤𝑗(𝐱)𝑠𝑙𝑗𝑛
𝑗=1 ,          (B2) 

where E is the mathematical expectation, and the weights 𝑤𝑗  are defined as 765 

𝑤𝑗(𝐱) =
∑ 𝑤𝑡(𝐱, 𝑡)

𝑛tree
𝑡=1

𝑛𝑡𝑟𝑒𝑒
 with 𝑤𝑗(𝐱,) =

I
{𝑋𝑖ϵR𝑙(𝑥,𝜶)}

#{𝑗∶ 𝑋𝑖ϵR𝑙(𝑥,𝜶)}
,        (B3) 

where I(A) is the indicator operator which equals 1 if A is true, 0 otherwise; R𝑙(𝑥,𝛼) is the partition of the tree model with 

parameter  which contains x. 

The RF hyperparameters considered in the study are ns and mtry which have shown to have a large impact on the RF 

performance (Probst et al., 2019). The number of ntree was set up to a large value of 2,000 because of its smaller influence on 770 

the RF model performance (relative to ns and mtry).  
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B.3 Gradient tree boosting (XGB) regression model 

Gradient tree boosting (Friedman, 2001) is a tree ensemble method like RF model but differs regarding how trees are built 775 

(gradient boosting builds one tree at a time), and how tree-based results are combined (gradient boosting combines results 

along the process). 

Formally let us denote by 𝑓𝑗(𝐱) = 𝑤𝑗(𝐱,) the jth tree model prediction. The set of tree models are learnt by minimizing the 

following regularized objective: 

∑ 𝑙(𝑠𝑙𝑖 , 𝑠𝑙𝑖̂) + ∑ (𝑓𝑡)
𝑛𝑡𝑟𝑒𝑒
𝑡=1

𝑛
𝑖=1 ,          (B4) 780 

where (𝑓𝑡) = 𝑇 +
1

2
‖𝑤‖² with T the number of leaves in the t-th tree, and , and  are two regularization parameters.  

The first term l is a differentiable convex loss function that measures the difference between the prediction 𝑠𝑙𝑖̂ and the true 

value 𝑠𝑙𝑖 . The second term  penalizes the complexity of the regression tree functions. Equation (B4) is solved through an 

additive training procedure by using a scalable implementation of Chen and Guestrin (2016) of tree boosting named 

“XGBoost”. Among the different hyperparameters of this algorithm, we focus on: 785 

- The maximum depth of the tree models, which corresponds to the number of nodes from the root down to the 

furthest leaf node. This hyperparameter controls the complexity of the tree model; 

- The learning rate, which is a scaling factor applied to each tree when it is added to the current approximation. Low 

rate value means that the trained model is more robust to overfitting but slower to compute; 

- The maximum number of iterations of the algorithm. 790 

 




