Preprints
https://doi.org/10.5194/egusphere-2022-430
https://doi.org/10.5194/egusphere-2022-430
14 Jun 2022
 | 14 Jun 2022

Ocean Color Algorithm for the Retrieval of the Particle Size Distribution and Carbon-Based Phytoplankton Size Classes Using a Two-Component Coated-Spheres Backscattering Model

Tihomir Sabinov Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath

Abstract. The particle size distribution (PSD) of suspended particles in near-surface seawater is a key property linking biogeochemical and ecosystem characteristics with optical properties that affect ocean color remote sensing. Phytoplankton size affects their physiological characteristics and ecosystem and biogeochemical roles, e.g. in the biological carbon pump, which has an important role in the global carbon cycle and thus climate. It is thus important to develop capabilities for measurement and predictive understanding of the structure and function of oceanic ecosystems, including the PSD, phytoplankton size classes (PSCs) and phytoplankton functional types (PFTs). Here, we present an ocean color satellite algorithm for the retrieval of the parameters of an assumed power-law PSD. The forward optical model considers two distinct particle populations (particle assemblage categories) — phytoplankton and non-algal particles (NAP). Phytoplankton are modeled as coated spheres following the Equivalent Algal Populations (EAP) framework, and NAP are modeled as homogeneous spheres. The forward model uses Mie and Aden-Kerker scattering computations, for homogeneous and coated spheres (for phytoplankton and NAP, respectively) to model the total particulate spectral backscattering coefficient as the sum of phytoplankton and NAP backscattering. The PSD retrieval is achieved via Spectral Angle Mapping (SAM) which uses backscattering end-members created by the forward model. The PSD is used to retrieve size-partitioned absolute and fractional phytoplankton carbon concentrations (i.e. carbon-based PSCs), as well as particulate organic carbon (POC), using allometric coefficients. The EAP-based formulation allows for the estimation of chlorophyll-a concentration via the retrieved PSD, as well as the estimation of the percent of backscattering due to NAP vs. phytoplankton. The PSD algorithm is operationally applied to the merged Ocean Colour Climate Change Initiative (OC-CCI) v5.0 ocean color data set. Results of an initial validation effort are also presented, using PSD, POC, and pico-phytoplankton carbon in-situ measurements. Validation results indicate the need for an empirical tuning for the absolute phytoplankton carbon concentrations; however these results and comparison with other phytoplankton carbon algorithms are ambiguous as to the need for the tuning. The latter finding illustrates the continued need for high-quality, consistent, large global data sets of phytoplankton carbon and related variables to facilitate future algorithm improvements.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

26 May 2023
Ocean color algorithm for the retrieval of the particle size distribution and carbon-based phytoplankton size classes using a two-component coated-sphere backscattering model
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023,https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We present a remote sensing algorithm to retrieve the size and concentration of particles...
Share