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Abstract. The particle size distribution (PSD) of suspended particles in near-surface seawater is a key property linking bio-

geochemical and ecosystem characteristics with optical properties that affect ocean color remote sensing. Phytoplankton size

affects their physiological characteristics and ecosystem and biogeochemical roles, e.g. in the biological carbon pump, which

has an important role in the global carbon cycle and thus climate. It is thus important to develop capabilities for measure-

ment and predictive understanding of the structure and function of oceanic ecosystems, including the PSD, phytoplankton5

size classes (PSCs) and phytoplankton functional types (PFTs). Here, we present an ocean color satellite algorithm for the

retrieval of the parameters of an assumed power-law PSD. The forward optical model considers two distinct particle popula-

tions (particle assemblage categories) — phytoplankton and non-algal particles (NAP). Phytoplankton are modeled as coated

spheres following the Equivalent Algal Populations (EAP) framework, and NAP are modeled as homogeneous spheres. The for-

ward model uses Mie and Aden-Kerker scattering computations, for homogeneous and coated spheres(for phytoplankton and10

NAP, respectively)
:
,
::::::::::
respectively,

:
to model the total particulate spectral backscattering coefficient as the sum of phytoplankton

and NAP backscattering. The PSD retrieval is achieved via Spectral Angle Mapping (SAM) which uses backscattering end-

members created by the forward model. The PSD is used to retrieve size-partitioned absolute and fractional phytoplankton

carbon concentrations (i.e. carbon-based PSCs), as well as particulate organic carbon (POC), using allometric coefficients. The

EAP-based formulation allows for
::::
This

::::::
model

::::::::::
formulation

::::
also

:::::
allows

:
the estimation of chlorophyll-a concentration via the15

1



retrieved PSD, as well as the estimation of the percent of backscattering due to NAP vs. phytoplankton. The PSD algorithm is

operationally applied to the merged Ocean Colour Climate Change Initiative (OC-CCI) v5.0 ocean color data set. Results of an

initial validation effort are also presented, using PSD, POC, and pico-phytoplankton carbon in-situ measurements. Validation

results indicate the need for an empirical tuning for the absolute phytoplankton carbon concentrations; however these results

and comparison with other phytoplankton carbon algorithms are ambiguous as to the need for the tuning. The latter finding20

illustrates the continued need for high-quality, consistent, large global data sets of
:::::
PSD, phytoplankton carbon and related

variables to facilitate future algorithm improvements.

1 Introduction

Oxygenic photosynthesis by marine phytoplankton is a critical planetary scale process supplying solar energy to the biosphere

by fixing inorganic carbon; it is responsible for roughly half of global annual net primary productivity (e.g. Field et al. (1998)).25

Ocean ecosystems play a key role in Earth’s carbon cycle and climate by affecting atmospheric CO2 via the biological carbon

pump, which sequesters some of the fixed carbon to the deeper ocean for longer time scales (e.g. Eppley and Peterson (1979);

Chisholm (2000); Henson et al. (2011); Boyd et al. (2019); Brewin et al. (2021)). The biological pump is influenced by

the structure and function of oceanic ecosystems (e.g. Falkowski et al. (1998); Siegel et al. (2014)); therefore, mechanistic,

predictive understanding of ocean ecosystems is of high priority to Earth systems and climate research (e.g. Buesseler and30

Boyd (2009); Siegel et al. (2016)). Satellite remote sensing of ocean color is a key tool for the global characterization of

ocean ecology (e.g. Siegel et al. (2013)). This has led to large efforts to elucidate biological pump mechanisms using multiple

platforms, including satellites, e.g. the EXPORTS Program (Siegel et al., 2016).

Phytoplankton cell size (diameters varying from ≈ 0.5 µm to > 50 µm (e.g. Clavano et al. (2007)) is an important
:
a
::::
key

trait that affects multiple phytoplankton characteristics (Marañón (2015)), as well as sinking rates (e.g. Falkowski et al. (1998);35

Burd and Jackson (2009); Stemmann and Boss (2012); Siegel et al. (2014)). Phytoplankton size classes (PSCs) thus tend

to closely correspond to phytoplankton functional types (PFTs, e.g., Quéré et al. (2005)). Importantly, phytoplankton cells

also affect the inherent optical properties (IOPs) (e.g. absorption and backscattering coefficients) of the water column in a

size-dependent manner (e.g. Mobley et al. (2002); Morel and Bricaud (1986); Stramski and Kiefer (1991); Kostadinov et al.

(2009)). This is because particle size (relative to the incident light wavelength) is one of the governing variables affecting40

the magnitude and spectral shape of light scattering and absorption caused by a particle (e.g. Bohren and Huffman (1983)).

Therefore the particle size distribution (PSD) of phytoplankton (and other suspended particles in seawater) is a key property

affecting both optical properties and cellular physiological and biogeochemical properties, i.e. it is a fundamental property

linking ocean color remote sensing and ecosystem/biogeochemical characteristics. The size distribution of particles suspended

in near surface ocean waters is often described as a power law, given in differential form as follows (e.g. Bader (1970); Sheldon45

et al. (1972); Jonasz (1983); Boss et al. (2001); Twardowski et al. (2001); Kostadinov et al. (2009); Roy et al. (2017)):

dNT

dD
=N(D) =N0

(
D

D0

)−ξ

(1)
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where
::
D

::
is
:::::::
particle

::::::::
diameter, N [m−4] is the differential number concentration of particles per unit volume seawater and

per bin width of particle diameter, N0 =N(2 µm) is the particle number concentration at a reference diameter, here D0 = 2

µm, D is particle diameter, and ξ is the power-law slope of the PSD. Equation 1 has to be integrated over a given diameter50

range to get the total volumetric particle
::::::
particle

::::::
number

:
concentration in that range, NT , [m−3].

Ocean color is quantified by the spectral shape and magnitude of the remote-sensing reflectance, Rrs(λ) [sr−1], where

λ is the wavelength of light in vacuo. The Kostadinov-Siegel-Maritorena 2009 (KSM09, Kostadinov et al. (2009)) algorithm

retrieves the parameters of an assumed power-law PSD (ξ and N0 in Eq. 1) from ocean color remote-sensing observations, using

the spectral shape (Loisel et al., 2006) and magnitude of the particulate backscattering coefficient, bbp(λ) [m−1]. bbp(λ) can be55

retrieved using existing inherent optical property (IOP) inversion algorithms; KSM09 uses the Loisel and Stramski (2000) IOP

inversion. Subsequently, the retrieved PSD parameters allow the quantification of absolute and fractional PSCs — picoplankton,

nanoplankton and microplankton, based on bio-volume (Kostadinov et al., 2010) or phytoplankton carbon (Kostadinov et al.,

2016a) (henceforth TK16) via allometric relationships (Menden-Deuer and Lessard, 2000). Phytoplankton carbon (phyto C)

is the key variable of interest for carbon cycle and climate studies and modeling, and TK16 (data set available — Kostadinov60

et al. (2016b)) represents a relatively unique carbon-based approach among PSC/PFT algorithms (Mouw et al., 2017) as it is

based on knowledge of the PSD and allometric relationships to get at size-partitioned phyto C. Roy et al. (2013, 2017) retrieve

phytoplankton-specific PSD and size-partitioned phyto C, based on the phytoplankton absorption coefficient.

The KSM09 PSD algorithm (and the TK16 phyto C/PSC derived from it) is built on the assumption of a single population of

particles (approximated by homogeneous spheres), representing backscattering due to the entire oceanic particle assemblage65

— phytoplankton cells and non-algal particles (NAP). However, particle internal composition and shape influence its optical

properties (e.g Quirantes and Bernard (2004, 2006)). Recent results suggest that the structural complexity of oceanic particles

enhances backscattering significantly and can explain the so-called "missing backscattering" in the ocean (Organelli et al.,

2018), i.e. the lack of optical closure between theoretically modeled and measured bbp. Coated spheres (i.e. spheres consisting

of concentric layers/shells of different material properties) can be used to better represent phytoplankton cells and their internal70

heterogeneity and composition (e.g. Bernard et al. (2009); Robertson Lain and Bernard (2018)), and they have significantly

enhanced backscattering compared to their homogeneous equivalents (Duforêt-Gaurier et al., 2018; Organelli et al., 2018).

Here, we introduce a major improvement of the KSM09 PSD algorithm
::::
PSD

::::::::
algorithm

:::::::::::
formulation. Two separate particle

populations are modeled, living phytoplankton cells and NAP. Phytoplankton cells are modeled as coated spheres, following

the Equivalent Algal Populations (EAP) framework (Bernard et al., 2009; Robertson Lain et al., 2014; Robertson Lain and75

Bernard, 2018). EAP explicitly models intracellular chlorophyll concentration, Chli, as governing the imaginary index of

refraction, and thus allows for bulk chlorophyll concentration (Chl) to be computed from a specific PSD. The coated sphere

EAP-based model is useful to better represent specifically phytoplankton cells; however, not all backscattering particles are

phytoplankton (Stramski et al., 2004), and in fact, sub-micron NAP even smaller than the smallest autotroph (≈ 0.5 µm in

diameter) are critical for determining the spectral shape of bbp, which is key for PSD retrieval with KSM09 and the algorithm80

presented here. Particles other than and smaller than phytoplankton are likely to significantly contribute to backscattering

(Stramski et al., 2004; Zhang et al., 2020), in spite of evidence that phytoplankton/larger particles contribute more than Mie
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theory predicts, based on homogeneous spheres (e.g. Dall’Olmo et al. (2009)). Thus, a 2-component particle model is used here,

separately modeling NAP as homogeneous spheres of wider size range than phytoplankton, so that bulk bbp of oceanic waters

can be modeled (e.g. Stramski et al. (2001); Moutier et al. (2016); Duforêt-Gaurier et al. (2018)). NAP are modeled as having85

generally organic detrital composition, but with some allowance for higher indices of refraction to account for minerogenic

particle contributions. The PSD forward model can thus also produce a first-order estimate of POC, and the percent contribution

of phytoplankton and NAP to bbp.

Subsequent sections present details of the 2-component, EAP-based forward IOP model, the inversion methodology devel-

oped for operational application of the PSD algorithm, and the subsequent use of the satellite-derived PSD to retrieve derived90

products (following the methods of TK16 with some modifications), namely - absolute and fractional size-partitioned phy-

toplankton carbon (henceforth phyto C) (i.e. carbon-based PSCs), as well as Chl and POC estimates. The novel algorithm is

applied operationally to monthly data from the multi-sensor merged OC-CCI v5.0 data set (Sathyendranath et al., 2019, 2021)

— examples are shown in the manuscript, and the entire data set is publicly available and linked below (See Sec. 4). We then

present and discuss an initial effort of validation of the new PSD algorithm and derived products using global compilations95

of PSD, pico-phytoplankton carbon and POC in-situ data. A comparison with other existing methods to retrieve phyto C is

presented. We also discuss algorithm uncertainties, assumptions and limitations as well as future work directions.

2 Data and Methods

2.1 Particle optical model input specification for Phytoplankton and NAP

The contributions of two separate particle populations to bulk backscattering are modeled using Mie theory (Mie, 1908) for ho-100

mogeneous spherical particles and the Aden-Kerker (Aden and Kerker, 1951) method for coated spheres. Living phytoplankton

cells are represented by the first particle population, and all other suspended particles of any origin (i.e. non-algal particles,

NAP) are represented by the second population. Living phytoplankton cells are modeled as coated spheres using the Equivalent

Algal Populations (EAP) framework (Bernard et al., 2009; Robertson Lain et al., 2014; Robertson Lain and Bernard, 2018) for

determining optical model inputs, in particular the complex indices of refraction of the particle core and coat. NAP are modeled105

as homogeneous spheres meant to represent organic detritus, but also allowing for their real index of refraction to vary over a

wider range to take into account the contribution of mineral particles.

A characteristic of the PSD algorithm presented here is that it is mechanistic to the extent feasible, i.e. based on first principles

and causality, even at the expense of increasing complexity. For example, as in EAP, the imaginary refractive index (RI) of the

cell is a function of intracellular chlorophyll concentration, Chli. Importantly, here we
:::
We vary some optical model inputs in a110

Monte Carlo simulation in order to assess uncertainty and base the PSD inversion on an ensemble of forward runs rather than

a single specific set of inputs. Details of uncertainty estimation and propagation are given in Supplement Sec. S1. Details of

how each input parameter for phytoplankton cells and for NAP is specified, as well as the statistical distributions from which

the Monte Carlo simulation instances were picked are specified in Table 1 and Table 2.
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As in the EAP model, the chloroplast is represented by the particle coat. Its relative volume, Vs, is picked from a distribution115

as shown in Table 1. The chloroplast’s imaginary refractive index (RI) (relative to seawater) at 675 nm, n′(675), is then

computed as follows (Morel and Bricaud, 1986; Bernard et al., 2009; Robertson Lain and Bernard, 2018):

n′(675) =
Chl∗ ×Chli × 106 × 675 × 10−9

4π ×Vs ×nsw(675)
(2)

where Chl∗ = 0.027 m2mg−1 is the theoretical maximum specific absorption coefficient of chlorophyll at 675 nm when

dissolved in water (Bernard et al., 2009; Robertson Lain and Bernard, 2018), Chli is the intracellular chlorophyll concentration120

in kg Chl m−3 of cellular material, and nsw(675) is seawater’s absolute real RI at 675 nm. A hyperspectral basis vector from

the EAP model (based on measurements, for details see Bernard et al. (2009); Robertson Lain and Bernard (2018)) is then

scaled using the value at 675 from Eq. 2, obtaining a hyperspectral relative imaginary RI for the coat as chloroplast. In Eq. 2,

Chli applies to the whole cell and is therefore scaled using Vs to obtain n′(675) for the coat alone. The nominal chloroplast’s

real relative RI is then picked from a distribution as shown in Table 1, and modified as a function of its imaginary RI according125

to the Kramers-Kronig relations (implemented as a Hilbert transform) (Bernard et al., 2009; Robertson Lain and Bernard,

2018).

The cell cytoplasm is represented by the particle core. It’s real relative RI is picked from a distribution given in Table 1, and

it is modified by the Kramers-Kronig relations using a constant hyperspectral detritus-like imaginary RI, i.e. having a colored

dissolved organic matter (CDOM)-like exponential spectral shape, resulting in spectrally-varying hyperspectral relative real130

RI. The phytoplankton particle population relative RIs and their Monte Carlo variability are summarized in Supplement Fig.

S1.

The NAP population is represented by a homogeneous sphere, the relative RIs of which are picked so that its absorption

spectrum is detritus-like (same as the core of phytoplankton), and its real RI is allowed to vary over a wider range of values,

meant to represent mostly organic detritus, but with some minerogenic contributions, resulting in a mean nominal real relative135

RI of ≈1.06. The input RIs and other input parameters for NAP are summarized in Table 2.

Specification of the input PSD parameters and the relationship of NAP to phytoplankton PSDs is key to the construction

of the forward and inverse models. Necessarily, some key simplifying assumptions are made here in order to construct an

algorithm with operational application to modern multi-spectral ocean color sensors. The two key assumptions are: 1) Phyto-

plankton and NAP have a power-law PSD (Eq. 1) with the same slope ξ, and 2) The scaling parameter N0 for NAP is twice140

that of N0 for phytoplankton (the forward model uses default values as in Tables 1 and 2
:
). The latter assumption is chosen so

that it results in a phyto C:POC ratio of 1:3 (see Kostadinov et al. (2016a) and Behrenfeld et al. (2005), and Sec. 3.4 here) (as

long as they are both estimated using the same size ranges). Together, these assumptions allow for the retrieval of one common

PSD parameter set pertaining to the total particle population PSD (one ξ value and one total N0 equal to the linear sum of the

NAP and phytoplankton N0 values).145
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Input Parameter Symbol, Units & Notes

Pure Seawater Ab-

solute Real RI

nsw = f(λ), after Zhang et al. (2009) using Temperature = 15 ◦ C & Salinity

= 33

PSD slope
ξ ∈ [2.5, 6] in steps of 0.05. The same value applies to both phytoplankton

and NAP.
:::
For

::
the

:::::
slope

:::::
range,

:::
see,

:::
e.g.

:::::::::::::
Boss et al. (2001)

Wavelengths in

vacuo

λ ∈ [400, 700] nm; hyperspectral - in steps of 1 nm. Band-averaging used

for the nominal wavelengths of satellite sensors.

Phytoplankton Population Inputs

Intracellular

Chlorophyll Con-

centration

Chli ∈ [0.5, 10], picked from, N (2.5,2.5); µ≈ 3.14 kg Chl m−3 cellular

material
::::::::::::::::::::::::::::::::::::
(Morel and Bricaud (1986); Bernard et al. (2009)).

Coat (Chloroplast)

Relative Volume

Vs ∈ [5, 35] %, picked from N (20,5), resulting in mean coat relative

thickness as fraction of cell radius tcoat = 7.2% (cf. Organelli et al.

(2018));tcoat = 1− (1−Vs)
1/3

Coat (Chloroplast)

Relative Real RI

ncoat ∈ [1.06, 1.22], picked from, N (1.14,0.08); µ≈

1.14; wavelength-dependent via Kramers-Kronig relations

::::::::::::::::::::::::::::::::::::::::::
(Bernard et al. (2009); Robertson Lain and Bernard (2018)

:
).

Core (cytoplasm)

Relative Real RI

ncore ∈ [1.01, 1.03], picked from, N (1.02,0.01); µ≈

1.02; wavelength-dependent via Kramers-Kronig relations

::::::::::::::::::::::::::::::::::::::::::
(Bernard et al. (2009); Robertson Lain and Bernard (2018)

:
).

Coat (Chloroplast)

Relative Imaginary

RI

n′
coat(λ) is computed from a hyperspectral basis vector (from Bernard et al.

(2009); Robertson Lain and Bernard (2018)) that is scaled to the value at

n′(675) using Eq. 2.

Core (cytoplasm)

Relative Imaginary

RI

n′
core(λ) has a prescribed constant magnitude & detritus-

like (exponential) spectral shape, with spectral slope S =

0.0123 nm−1, resulting in Sa ≈ 0.014 nm−1 for acore(λ)

::::::::::::::::::::::::::::::::::::::::::
(Bernard et al. (2009); Robertson Lain and Bernard (2018)

:
).

Minimum outer

particle diameter
Dminϕ = 0.5 µm

:::::::
(smallest

:::::::
autotroph

:::
e.g.

::::::::::::::
Morel et al. (1993)

:
)

Maximum outer

particle diameter
Dmaxϕ ∈ [20, 200] µm, picked from, N (50,50); µ≈ 72.3 µm;

Differential Num-

ber Concentration

at D0 = 2 µm

N0ϕ = 5× 1016 m−4. Used in the forward modeling.

Table 1. Inputs for the coated spheres Aden-Kerker optical scattering computations for the phytoplankton particle population. Modeling

inputs common to both phytoplankton and NAP (see Table 2) are given in the first three table rows. N (µ,σ) stands for a normal distribution

with mean µ and standard deviation σ.
::
For

:::
the

::::::
indices

::
of

::::::::
refraction,

::::
apart

::::
from

::::::::::::::::::::::::::::::::::::::::::
Bernard et al. (2009); Robertson Lain and Bernard (2018)

:
,

::
see

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Morel and Bricaud (1986); Babin et al. (2003); Woźniak and Stramski (2004); Duforêt-Gaurier et al. (2018)
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NAP Population Inputs

Relative Real RI

nNAP ∈ [1.01, 1.2], picked from, N (1.02,0.06); µ≈

1.06; wavelength-dependent via Kramers-Kronig relations.

::::::::::::::::::::::::::::::::::::::::::
(Bernard et al. (2009); Robertson Lain and Bernard (2018)

:
)

Relative Imaginary

RI

n′
NAP (λ) has a prescribed constant magnitude & detritus-like (exponential)

spectral shape
::::::::::::::::::::::::::::::::::::::::::
(Bernard et al. (2009); Robertson Lain and Bernard (2018)),

with spectral slope S = 0.0123 nm−1 , resulting in Sa ≈ 0.014 nm−1 for

aNAP (λ).

Minimum outer

particle diameter

DminNAP = 0.01 µm
:::
(See

::::::::::::
Supplement

:::::
Fig.

:::::
S4

:::::
and

:::::::::::::::::::::::::::::::::::::::
Stramski and Kiefer (1991); Kostadinov et al. (2009)

Maximum outer

particle diameter

DmaxNAP ∈ [200, 500] µm
:::
(e.g.

::::::::::::::::::::::
Duforêt-Gaurier et al. (2018)

:
), picked

from, N (400,10); µ≈ 376.8 µm;

Differential Num-

ber Concentration

at D0 = 2 µm

N0NAP = 2×N0ϕ = 1.0×1017 m−4, resulting in total particle population

N0 = 1.5× 1017 m−4. Used in the forward modeling.
:::::::::::::::
N0NAP = 2×N0ϕ

::::::::
constitutes

::
an

:::::::
important

:::::
model

:::::::::
assumption

:::
and

:
it
::
is
:::::::
discussed

::
in
:::
the

:::
text.

Table 2. Inputs for the homogeneous spheres Mie scattering code for the NAP population. Modeling inputs common to both phytoplankton

and NAP are given in the first three table rows of Table 1. N (µ,σ) stands for a normal distribution with mean µ and standard deviation σ.

2.2 Backscattering Calculations

The backscattering efficiencies Qbb(λ), for a single phytoplankton cell and NAP particle were computed using using the inputs

described above in Sec. 2.1 and Tables 1 and 2. The coated spheres code of Zhang et al. (2002) was used for both coated and

homogeneous spheres. This code is included with the algorithm development scientific code of the PSD algorithm (see Sec. 4).

Calculations were run for N = 3000 instances of Monte Carlo simulations, each with a unique randomly picked combination of150

inputs for phytoplankton and NAP. This resulted in 3000 sets of hyperspectral Qbb values. High sampling resolution in diameter

space was picked for the coated spheres (10000 samples between minimum and maximum diameter) in order to minimize the

influence of resonance spikes in Qbb. For NAP, 1000 samples of D were used.

Indices of refraction for both phytoplankton and NAP are specified hyperspectrally (Supplement Fig. S1) and the computa-

tions are performed from 400 nm to 700 nm wavelength in vacuo with a step of 1 nm, allowing the resulting hyperspectral155

Qbb(λ) values to be adapted for use with any combination of visible optical wavebands pertaining to recent and currently

operating ocean color multispectral sensors, or for planned (e.g. PACE (Werdell et al., 2019)) or existing hyperspectral sensors.

Before bbp calculation, hyperspectral backscattering efficiencies, Qbb, for each Monte Carlo run were first pre-processed by

applying quality control, and band-averaging using a moving average 11-nm-wide top-hat filter, using as central wavelengths

the nominal bands of the following ocean color sensors: Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Reso-160

lution Imaging Spectroradiometer (MODIS) Aqua, Medium Resolution Imaging Spectrometer (MERIS) and Ocean and Land
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Colour Instrument (OLCI), Visible and Infrared Imager/Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Part-

nership (S-NPP), plus 440 and 550 nm, resulting in 19 unique bands for band-averaged backscattering efficiencies, denoted

here as Qbb(λ). The band-averaged spectral particulate backscattering coefficient, bbp(λ) was then calculated from the Qbb(λ)

values and the input PSD as follows (e.g. van de Hulst (1981); Kostadinov et al. (2009)):165

bbp(λ) =

Dmax∫
Dmin

π

4
D2Qbb(D,λ,m)N0

(
D

D0

)−ξ

dD (3)

where m is the complex index of refraction (specified separately for coat and core in the case of phytoplankton). Equation 3

is applied separately to the phytoplankton and NAP modeled Qbb values, and for each of the 3000 Monte Carlo runs. Band-

averaged total bbp(λ) spectra are then calculated as the linear sum of phytoplankton and NAP backscattering. Other IOPs

can be calculated using Eq. 3 by substituting the backscattering efficiency with the corresponding efficiency for the IOP, e.g.170

absorption.

2.3 PSD retrieval via Spectral Angle Mapping

2.3.1 End-member construction

Band-averaged total bbp(λ) spectra were used to construct the backscattering end-members, E(λ), corresponding to a specific

value
::::::
specific

:::::
input

:::::
values

:
of the PSD slope ξ. First, individual total bbp spectra from each Monte Carlo run (N= 3000) were175

normalized by the value at 555 nm. The median of all normalized spectra at each waveband was used as the end-member

for each PSD slope, from ξ=2.5 to ξ = 6 in steps of 0.05 (see Table 1). This approach allows the isolation of bbp spectral

shape (dependent on ξ), and spectral magnitude (dependent on N0) (Eq. 3). Using the hyperspectral underlying Qbb values,

end-members can be constructed for any desired set of wavelengths.

2.3.2 PSD parameter retrieval and operational application to OC-CCI ocean color data180

The PSD parameters ξ and N0 are retrieved using the backscattering end-members, E(λ), via the spectral angle mapping

(SAM) technique (e.g. Dennison et al. (2004)). Briefly, the end-members and satellite-observed bbp spectra are treated as

n-dimensional vectors where n is the number of bands. The spectral angle between a given end-member and the observed

spectrum is then calculated using the vector dot product as:

Θ= cos−1

(
bbp(λ) · E(λ)

||bbp(λ)|| ||E(λ)||

)
(4)185

Thus, spectral angle is an index of spectral shape similarity between two spectra, with more similar spectral shapes resulting

in lower spectral angles. Equation 4 was used to calculate the spectral angle Θ between each of the 71 end-members,E(λ),

and the input observed bbp(λ) spectrum. The value of ξ corresponding to the smallest spectral angle is then assigned as the

8



retrieved PSD slope. Three wavebands were used, namely 490, 510 and 550 nm. For operational application to OC-CCI v5.0

(Sathyendranath et al., 2021) data (which does not have the 550 nm band), band-shifting was applied to the input Rrs(560) to190

estimate the corresponding Rrs(550), which is used in the Loisel and Stramski (2000) IOP inversion. The band-shifting was

constructed using the band ratios between the respective original and target bands from a hyperspectral run of the Morel and

Maritorena (2001) (MM01) model. No other bands were shifted.

The N0 parameter is subsequently retrieved as the ratio of 1) the satellite observed value of bbp(443) and 2) the median value

of the quantity bbp(443)/N0 corresponding to the end-member class of the retrieved ξ and all statistically similar classes (see195

Supplement Sec. S1) across all Monte Carlo simulations.

2.4 Derived products: Size-partitioned phytoplankton carbon, PSCs, POC and Chlorophyll

Once the PSD parameters are known, they can be used to compute derived products (Kostadinov et al., 2010, 2016a; Roy

et al., 2017)). Phytoplankton carbon in any size class spanning from cell diameter Dmin to cell diameter Dmax (in m) can be

estimated as:200

phyto C =

Dmaxϕ∫
Dminϕ

10−9 a
(
1018

π

6
D3

)b

N0ϕ

(
D

D0

)−ξ

dD (5)

where N0ϕ = 1
3 N0 , and N0 (m−4) for the total PSD is the satellite-retrieved parameter from total particulate backscattering;

the other PSD parameters are as in Eq. 1. Equation 5 was used to compute size-partitioned phyto C in three size classes -

picophytoplankton (0.2 to 2 µm in diameter), nanophytoplankton (2 to 20 µm in diameter) and microphytoplankton (20 to 50

µm in diameter), as well as total phyto C as the sum of the three classes. Carbon-based PSCs are defined as the fractional205

contribution of each of the three size classes to total phyto C (Kostadinov et al., 2016a). Given the first-order correspondence

between PSCs and PFTs (e.g. Quéré et al. (2005)), these PSCs can also be interpreted as PFTs. The allometric coefficients

of Roy et al. (2017) are used here, namely a = 0.54 and b = 0.85; when cell volume V is expressed in µm3, cellular carbon

is computed in pg C per cell using these coefficients (Eq. 5, see also Menden-Deuer and Lessard (2000)). Phyto C in Eq. 5

is given in mgm−3; the conversion factors in Eq. 5 are used to convert from m3 to µm3, and from pg to mg C (Kostadinov210

et al. (2016a); Roy et al. (2017)). The factor of 1
3 is an assumption of the model (Tables 1 and 2). Thus, an estimate of POC

(computed using the same size limits as total phyto C) was calculated as 3 × phyto C.

Chlorophyll concentration was estimated from the PSD retrievals and the input intracellular chlorophyll concentration, Chli

(Table 1; Roy et al. (2017)) as follows:

Chl =

Dmaxϕ∫
Dminϕ

π

6
D3ChliN0ϕ

(
D

D0

)−ξ

dD (6)215
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Here, Chli, D, D0 and N0ϕ all have to be expressed in consistent units so that Chl is obtained in mgm−3. Here we use the

median Chli across all Monte Carlo simulations to produce a single Chl estimate.

2.5 Validation and Comparison

A data set of near-surface in-situ PSD measurements was compiled for validation of the PSD parameter products, ξ and

N0 (Eq. 1). The data set consists of mostly Coulter counter measurements, some LISST
::::::
Coulter

:::::::
counter

:::
and

:::::
Laser

:::::::
In-Situ220

::::::::
Scattering

:::
and

:::::::::::::::
Transmissometry

:::::::
(LISST) measurements, and a small set of PSDs derived from multiple instruments and mod-

eling. Specifically, the compilation consists of the following data sets: 1) a compilation of several data sets of Coulter counter

measurements, as used in the KSM09 algorithm validation in Kostadinov et al. (2009), 2) LISST-100X (Sequoia Scientific©)

measurements from the Plumes and Blooms Project (e.g. Toole and Siegel (2001); Kostadinov et al. (2007)) in the Santa Bar-

bara Channel, as used in Kostadinov et al. (2012), 3) Coulter counter measurements from the Atlantic Meridional Transect225

:::::
cruise #26 (AMT26) (Organelli and Dall’Olmo, 2018), as compiled and used in Organelli et al. (2018, 2020);

::
4)

::::::
In-line

::::::
LISST

:::::
100-X

::::::::::::
measurements

:::::
from

:::
the

::::::::
following

:::::::
cruises:

:::::
North

:::::::
Atlantic

::::::::
Aerosols

:::
and

:::::::
Marine

::::::::::
Ecosystems

:::::
Study

:::::::::::
(NAAMES)

:
3
:
and

4 (https://doi/org/10.5067/SeaBASS/NAAMES/DATA001;
:
https://science.larc.nasa.gov/NAAMES/

:
),

::::::
EXport

:::::::::
Processes

::
in

:::
the

:::::
Ocean

:::::
from

::::::
Remote

:::::::
Sensing

:::::::::::
(EXPORTS)

:::::
North

:::::::
Pacific

:::::
(NP),

:::
and

:::::::::
EXPORTS

::::::
North

:::::::
Atlantic

:::::
(NA)

:
(https://doi.org/10.5067/

SeaBASS/EXPORTS/DATA001;
:

https://oceanexports.org/
:
);

::::
and

:
5) PSDs obtained using a VSF-inversion technique (Zhang230

et al., 2011, 2012) from the volume scattering functions (VSFs) measured during the NASA EXPORTS campaign (Siegel

et al., 2016) in the North Pacific in 2018 (Siegel et al., 2021).

The compiled PSD data set was used to fit for the PSD parameters of Eq. 1 using the 2 to 20 µm diameter range. One data

point was removed from the 2018 EXPORTS PSD data due to a poor fit to a power-law PSD. These in-situ estimates were

matched to satellite OC-CCI v5.0 (Sathyendranath et al., 2019, 2021) satellite Rrs using the same matching methods described235

below for POC and pico-phytoplankton carbon data. Matched reflectances were used as input to the novel PSD algorithm

presented here. The in-situ and satellite PSD parameters were then compared using a type II linear regression and several

additional algorithm performance metrics (e.g. Seegers et al. (2018)), details of which are given in the Fig. 8 caption.

A large compilation of in-situ POC data was collected from various public databases and private contributors and was used

here to perform match-ups with satellite OC-CCI v5.0 data. In addition to the POC data (1997-2012) used in Evers-King et al.240

(2017) for algorithm validation (N = 3891), this study also incorporated recent in-situ POC data (2013-2020) from the SeaWiFS

Bio-optical Archive and Storage System archive (https://seabass.gsfc.nasa.gov/). The daily, 4 km, sinusoidal projection OC-

CCI v5.0 data (1997-2020) (Sathyendranath et al., 2019, 2021) were used to extract the closest central satellite pixels to the

in-situ data points. If the central satellite match-up pixels was valid, the surrounding eight pixels (a 3 x 3 pixel box) were also

extracted to estimate the mean, median, and standard deviation of all OC-CCI variables. The match-up data points were then245

averaged with respect to depth (0 to 10 m), location, and date. Moreover, a number of uncertain match-up data points (e.g. with

less than 4 valid pixels out of 9) were removed
::::
were

::::::::
removed,

::
as

::::::::
described

:::::
below. A total number of 6041 match-up data points

were obtained and used for analysis. Here, the median satellite Rrs(λ) matched-up variables
::::::
spectra were used to compute the
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satellite-retrieved POC data using the PSD-based algorithm. Duplicate in-situ match-ups (in the sense of points receiving the

same satellite match-up) were treated as separate match-up points.250

The in-situ pico-phytoplankton carbon data set compiled and used for algorithm inter-comparison as part of the ESA POCO

project (Martínez-Vicente et al., 2017) was used here to generate match-ups with satellite OC-CCI v5.0 Rrs data for further

validation. Match-ups were generated in the same way as described above for POC.

All in-situ data described above were excluded from the validation if any of the following conditions were met: 1) average

bathymetric depth from an ≈9 km buffer around the in-situ sample location was less than or equal to 200 m, or any grid255

cell elevations in that buffer were 0 m or higher, using a downsampled, 4 km version of the NOAA ETOPO1 data set (https:

//www.ngdc.noaa.gov/mgg/global/); 2) the in-situ sample depth was 15 m or greater, or 3) there were four
::::
three

:
or fewer

satellite pixels available to use in the match-up, as detailed above.

:::
All

::::::::
duplicate

:::::
in-situ

:::::::::
match-ups

:::
(in

:::
the

:::::
sense

::
of

::::::::
multiple

:::::
in-situ

:::
data

::::::
points

:::
that

::::
are

::::
close

::
in
::::::

space
:::
and

::::
time

::::
and

::::::::
receiving

::
the

:::::
same

:::::::
satellite

:::::::::
match-up)

:::::
were

::::::::
combined

::::
into

:
a
::::::

single
::::::::
match-up

:::::
point

::
as

:::::::
follows:

:::
for

::::
the

::::
PSD,

::::
the

:::::::
medians

::
of

:::
the

:::::
PSD260

:::::::::::
measurements

:::::
from

:::
the

::::::::::
NAAMES

:::
and

::::::::::
EXPORTS

::::::
cruised

:::
in

::::
each

::::::
LISST

::::
size

::::
bin

:::
for

::::
such

:::::::::
duplicates

:::::
were

::::
used

:::
for

::::
the

:::::::::
calculation

::
of

::::::
in-situ

:::
PSD

::::::::::
parameters

::
(a

:::::
large

::::::
number

:::
of

:::::::::
duplicates

::::
since

:::
the

:::::
data

::
is

:::::::
in-line);

:::
for

:::
the

:::
rest

:::
of

:::
the

::::
PSD

:::::
data,

::
the

:::
fit

::::
PSD

:::::::::
parameters

::::::::::
themselves

::::
were

::::::::
averaged

::
(a

:::::
small

:::::::
number

::
of

::::::::::
duplicates).

::::
For

:::
the

::::
POC

:::::
(large

:::::::
number

::
of

::::::::::
duplicates)

:::
and

::::::::::::::::
pico-phytoplankton

::::::
carbon

::::
data

:::::
(small

:::::::
number

::
of

::::::::::
duplicates),

:::
the

:::::::
averages

::
of

:::
the

::::::::
duplicate

::::::
in-situ

::::
were

:::::
used.

In addition to validation against in-situ measurements of the PSD, POC and pico-phytoplankton carbon, satellite chlorophyll-265

a (Chl) retrievals (using the standard algorithm of OC-CCI v5.0 at the match-up points
:
) were compared with Chl estimated

using the EAP-based formulation of the PSD algorithm developed here and the retrieved PSD
:::
PSD

:::::::
retrieval

:
(Eq. 6). Finally,

global algorithm retrievals of total phyto C for May 2015 (using OC-CCI v5.0 data as input) were also compared with two

alternative methods of retrieving phyto C: 1) the Roy et al. (2017) algorithm, and 2) the Graff et al. (2012, 2015) algorithm, as

implemented by NASA’s Ocean Biology processing Group (OBPG). Modeling and processing of results presented here is done270

using the sinusoidal projection images; maps presented here are given in equidistant cylindrical projection (i.e. un-projected

latitude/longitude).

3 Results and Discussion

3.1 Forward and Inverse Modeling

The first step in the algorithm development is the generation of 3000 Monte Carlo realizations of backscattering efficiencies as275

a function of particle diameter and wavelength, Qbb(D,λ). The important differences between backscattering efficiencies of

homogeneous and coated particles is discussed in Supplement Sec. S2and illustrated in Supplement Fig. S2. Here, we continue

the discussion with the resulting integrated backscattering spectra (Eq. 3. Hyperspectral bbp(λ) spectra modeled using a single

forward optical model run are shown in Fig. 1. The computations use the median values of inputs that are varied in the Monte

Carlo simulations (Tables 1 and 2). These normalized spectra illustrate the strong spectral shape dependence on the PSD slope280

ξ. Phytoplankton bbp spectral shapes are complex, with various peaks and troughs near the absorption peaks of chlorophyll, but
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are more linear in the 490 to 550 nm range, which is the one used for the multi-spectral operational PSD algorithm. Regardless,

the SAM methodology of retrieval here allows for any spectral shape and does not impose a power-law fit to the shape of bbp,

as is done in KSM09 (Kostadinov et al. (2009)) (see also Loisel et al. (2006)). NAP backscattering exhibits smooth shapes due

to the smooth shape of their absorption (Fig. 1B). Fundamentally, it is evident from Figs. 1A and 1B that the higher the PSD285

slope ξ, the steeper bbp spectral shape becomes, with higher values in the blue, since smaller particles dominate the signal.

This dependence is at the root of the principle of operation of the PSD algorithm. For completeness, corresponding absorption

spectra are illustrated in Supplement Fig. S3.

Figure 1. Modeled hyperspectral backscattering coefficient by (A) phytoplankton, using EAP-based coated spheres Mie scattering computa-

tions, and (B) NAP, modeled as homogeneous spheres, as a function of the input power-law PSD slope (color-coded solid lines, as in legend).

All spectra are shown normalized to the respective values at 555 nm. See Sec. 2 for more details.

The 71 end-members (EMs) created for operational application to existing major satellite ocean color missions and corre-

sponding to PSD slope values between 2.5 and 6.0 with a step of 0.05 are displayed in Fig. 2A. They represent the modeled290

bbp(λ) spectra against which satellite-measured bbp spectra are compared using the SAM method (Eq. 4). The spectral shape

dependence on ξ demonstrates the
::::::::
theoretical

:
ability to retrieve this parameter from space.

An important question in bio-optical oceanography is determining the sources of backscattering in the ocean and their relative

contributions. This is still not a resolved issue (Stramski et al., 2004), though progress has been made (e.g. Organelli et al.

(2018); Koestner et al. (2020); Zhang et al. (2020)). This issue is of central importance to the PSD model, as it assigns varying295

fractions of the bbp signal to phytoplankton vs. NAP, under certain assumptions (Tables 1 and 2). Since in the 2-component PSD

model presented here phytoplankton and NAP bbp are modeled separately, the fraction of bbp due to phytoplankton vs. NAP

can be calculated. For a given PSD slope ξ and wavelength, the assumptions of the model dictate fixed fractional contributions
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Figure 2. (A) Normalized spectral shapes of the bbp end-members
::::
(EMs)developed for spectral angle mapping (SAM), shown at the 19

unique wavelengths used for band-averaging (See Sec. 2.2)
:
,
:::
and

:::
for

::::
PSD

:::::
slopes

::
as

::
in

:::
the

::::
color

:::::
legend. (B) The fraction of bbp(λ) due to

phytoplankton as a function of the PSD slope ξ. The wavelengths shown are indicated in the legend (nm). The means across all 3000 Monte

Carlo simulations are shown. (C) Uncertainties in the PSD slope ξ retrieval using the SAM method, for each end-member (EM). Shown

are the minimum and maximum value of the PSD slope for all end-member classes that are statistically similar to the given EM, according

to the Kruskal-Wallis ANOVA (Supplement Sec. S1) (left y-axis), and the resulting range of PSD slopes (right y-axis) falling within these

asymmetric uncertainty bounds. (D) Statistics of the parameter log10(bbp(443)/N0) for each EM, calculated for all 3000 Monte Carlo

simulations and across all neighboring EM classes determined to be statistically similar to the given EM. µ in the legend stands for the mean,

and σ - the standard deviation. The standard deviation of this parameter is used to estimate uncertainties in the N0 retrieval.
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by NAP and phytoplankton to total bbp, which are given in Fig. 2B. There is variability by wavelength, but the first-order

variability is driven by the PSD slope, namely at low ξ values (ξ < 4.0), phytoplankton contribution to bbp is on the order300

of 30 to 50%, and it drops off to near 0% for higher slopes as ξ approaches 6.0. The curves are not monotonic, and peak

phytoplankton contribution to bbp occurs at ξ ≈ 3.25.

The fractional contributions of Fig. 2B are derived from the forward theoretical modeling, and they are influenced by all

model assumptions and are not validated independently. In particular, the decisions of integration diameter limits for NAP

and phytoplankton, as well as on the distributions of the indices of refraction for phytoplankton and NAP will have a strong305

influence on these values. Since NAP are here permitted to have higher RIs than RIs typical of organic detritus only, if NAP

were strongly dominated by or composed only of organic particles, then NAP contribution to bbp would be overestimated

here. Of course these RIs are likely to be spatially and temporally variable, and the algorithm can be further improved by

investigating and implementing such variability. Bellacicco et al. (2018) estimated global absolute bbp due to NAP and its

fractional contribution to total bbp using analysis of correlations with Chl. Qualitatively and to first order, their global pattern310

of percent bbp due to NAP agrees with the model results reported here, i.e. low relative NAP contributions in high latitudes

and eutrophic areas, and higher relative contributions in more oligotrophic areas such as the fringes of the subtropical gyres

(they exclude the gyres from their analysis) (cf. their Fig. 2C and Fig. 2B here). Note that the Bellacicco et al. (2018) estimate

pertains only to NAP non-covarying with Chl, making comparison harder. Further investigation is warranted to more rigorously

compare their product to the values implicit in the PSD algorithm described here. Apart from analyzing the relative contribution315

of phytoplankton vs. NAP to total bbp, it is of interest to investigate the relative contributions of various size ranges to the

modeled backscattering coefficient. This is illustrated in Supplement Fig. S4 and further discussed in Supplement Sec. S3.

The uncertainty in PSD slope ξ retrieval as a function of ξ is illustrated in Fig. 2C. These estimates are not symmetric about

the ξ value and are derived via Kruskal-Wallis analysis of variance to determine class similarity (Supplement Sec. S1). As in

KSM09, the general tendency is for the range of uncertainty in ξ to increase for lower PSD slopes, but it is always less than320

0.5. The uncertainty in the bbp(443)/N0 ratio used to retrieve the N0 parameter is shown in Fig. 2D in log10 space. Mean

and median values are similar, and the uncertainty about them does not vary much with PSD slope, also similarly to KSM09.

Importantly, the
:::
The

:
uncertainty in Fig. 2D at each ξ value includes all statistically similar classes of EMs.

3.2 Operational Application of the PSD/Phyto C Algorithm to OC-CCI v5.0 Merged Satellite Data

3.2.1 PSD Parameters325

The operational PSD algorithm presented here was applied to the monthly 4-km OC-CCI v5.0 Rrs(λ) data set (Sathyendranath

et al. (2019, 2021)). Both PSD parameters (ξ and N0, Eq. 1) and derived products were generated (Sec. 2.3 and Sec. 2.4). These

data and their monthly and overall climatologies (and associated uncertainties) are made publicly available (see 4). Here, we

use May 2015 data to illustrate and discuss the new algorithm.

The PSD map (Fig. 3A) reveals a global spatial pattern consistent with expectations and with KSM09, namely the subtrop-330

ical oligotrophic gyres are characterized by high PSD slopes , i.e.
:
(relatively high numerical dominance of small particles),
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whereas more eutrophic areas such as coastal areas, Equatorial upwelling zones, and high latitudes exhibit lower slopes , i.e.

:
(increasing relative abundance of larger particles

:
). This is consistent with oligotrophic ocean ecosystems being dominated by

picophytoplankton, whereas microphytoplankton contribute significantly to the phytoplankton assemblage in eutrophic areas

and during blooms (e.g. Kostadinov et al. (2009, 2010)
:::
and

::::
refs.

::::::
therein). PSD slope values retrieved by the SAM-based algo-335

rithm span the full modeled range of 2.5 ≤ ξ ≤ 6.0. This is in contrast to KSM09, where values below 3.0 were not retrieved.

The N0 PSD parameter (Eq. 1) is, as expected, higher in coastal, high latitude and eutrophic areas (indicating higher particle

loads), and lower in the oligotrophic subtropical gyres (Fig. 3B). N0 varies over a few orders of magnitude, and it is generally

the first order control on absolute particle loads in seawater. Note N0’s units of m−4 (Eq. 1) and that care should be taken when

comparing Eq. 1 and N0 to other formulations of the PSD, e.g. the k parameter in Roy et al. (2017), as these are related, but340

not equivalent (see also Vidondo et al. (1997)).

Figure 3. Example operational retrievals of the PSD parameters (Eq. 1) and their uncertainties, using monthly OC-CCI v5.0 Rrs data for

May 2015: (A) PSD slope ξ (A); (B) N0 parameter (in m−4 in log10 space); (C) uncertainty range for ξ, and (D) standard deviation of log10

of N0.

Algorithm uncertainties are provided on a per-pixel basis. The uncertainty range estimates for ξ (Fig. 3C) (not necessarily

symmetric about the ξ value) indicate that the gyres are characterized by lower uncertainties than the more eutrophic areas, as

can be expected from Fig. 2C. These are partial uncertainty estimates, including those quantifiable and internal to the modeling,

i.e. due to Mie parameter choices. Additional uncertainties inherent in the input OC-CCI Rrs values and those due to the IOP345
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inversion algorithm used are not included in Fig. 3C and 3D and in subsequent propagated errors. Uncertainties of the N0

parameter are more uniform spatially, but higher in the gyres (Fig. 3D. Note that those are given in log10 space as a standard

deviation, and a relatively small absolute value of the uncertainty translates to relatively large uncertainties in absolute particle

concentrations.

3.2.2 Phytoplankton Carbon and Carbon-based PSCs; POC and Chlorophyll from the PSD350

Global patterns of total phytoplankton carbon
:::::
(phyto

::
C)

:
retrieved via the PSD and allometric relationships (Fig. 4A) exhibit the

expected lower values in the oligotrophic gyres and higher values elsewhere. Similarly to the results of the Kostadinov et al. (2016a)

algorithm
::::::::::::::::::::
Kostadinov et al. (2016a), values range over approximately 3 orders of magnitude, which is a higher range than re-

trievals based on other methods, namely direct empirical algorithm POC retrieval (Stramski et al., 2008) or the Behrenfeld

et al. (2005) method of scaling backscattering, and it is also higher than the range in CMIP5 model ensembles (cf. Fig. 1 in355

Kostadinov et al. (2016a)). This putative underestimation in the gyres and overestimation in eutrophic areas suggests the need

for algorithm tuning, which is discussed in Sec. 3.3 along with implications of validation results. Global validation of phyto C

retrievals with analytical phyto C measurements is planned, but is currently challenging as phytoplankton-specific carbon data

are relatively novel (Graff et al., 2012, 2015) and still scarce. Here, an initial validation effort is undertaken using several other

variables, see Sec. 3.3.360
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Figure 4. Example operational PSD-based retrievals of total size-partitioned phytoplankton carbon, using monthly OC-CCI v5.0 Rrs data

for May 2015: total phytoplankton carbon (A), pico-phytoplankton carbon (B), nano-phytoplankton carbon (C), and micro-phytoplankton

carbon (D). Units are mgm−3, mapped in log10 space. The diameter limits for the three size classes are: picophytoplankton (0.2 to 2 µm),

nanophytoplankton (2 to 20 µm) and microphytoplankton (20 to 50 µm).

A key feature of the PSD-based algorithm is that phyto C can be partitioned into any number of size classes by choosing

appropriate integration limits of Eq. 5. Absolute concentrations of pico-, nano-, and micro-phytoplankton are illustrated for May

2015 in Fig. 4B, C, and D, respectively. Pico-phytoplankton C is mapped on the same color scale as total phyto C (Fig. 4A),

but pico- and nano-phytoplankton C maps have differing scales, illustrating that while pico-phytoplankton C varies over ≈3

orders of magnitude spatially globally, nano-phytoplankton C varies over ≈4-5 orders of magnitude, and micro-phytoplankton365

— over ≈7 orders of magnitude spatially (see also Kostadinov et al. (2010, 2016a).
::::
Note

:::
that

::::::::
empirical

::::::
tuning

:::
will

:::::
affect

:::::
these

:::::
ranges

::
of

:::::::::
variability,

::::
see

::::
Sect.

::::
3.3. Fractional contributions of each of the three PSCs used here to total phyto C are illustrated

in Fig. 5. Pico-phytoplankton dominate much of the open-ocean, lower latitude oligotrophic areas, contributing nearly 100%

of the carbon biomass there (Fig. 5A), nano-phytoplankton contribute up to ≈50% of biomass in the higher latitude and

more eutrophic areas, and micro-phytoplankton contribute significantly only in the most eutrophic areas, e.g. during the North370

Atlantic bloom at ≈45-50◦ N latitude (May 2015 is shown). As previously noted (Kostadinov et al., 2010, 2016a), this general

pattern is consistent with current understanding of ocean ecosystems.
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Figure 5. Example operational retrieval of the percent contribution of each phytoplankton size class (PSC) to total phytoplankton carbon,

determined via the PSD (Sec. 2.4). Retrievals are using monthly OC-CCI v5.0 Rrs data for May 2015. The PSCs are: pico-phytoplankton

(A), nano-phytoplankton carbon (B), and micro-phytoplankton carbon (C).

The fractional carbon-based PSCs (Fig. 5) are ratios of two integrals of Eq. 5, thus they are analytical functions of the PSD

slope ξ and
::
the b , the allometric coefficient (and

::
as

::::
well

::
as the limits of integration used for each class and total phyto C). The

N0 parameter and the a allometric coefficient cancel. These functions are plotted in Fig. 6, together with the satellite-observed375

ξ histogram for May 2015, illustrating which the most common values for the PSCs in the ocean are. Area-wise, the ocean is

dominated by oligotrophic areas with high pico-phytoplankton contributions to C biomass.

18



Figure 6. Percent contribution of each PSC to total phytoplankton carbon (blue curves as in legend, left y-axis), as a function of the PSD

slope ξ. A histogram of the PSD slope from the (sinusoidal projection) OC-CCI v5.0-based image for May 2015 is shown in the background

in
:
as
:
red

:::
bars (right y-axis). The three PSC curves are analytically derived from the model, and no satellite data is used in producing them.

As an illustration of uncertainty propagation to derived products, the propagated uncertainty to total phyto C (Fig. 7A) and

fractional pico-phytoplankton C biomass (Fig. 7B) are shown. Comparison of Fig. 4A with Fig. 7A indicates that absolute

total phyto C uncertainties are of the same order of magnitude as the values themselves. As noted earlier, this
::::
This is a partial380

uncertainty estimation due to the assumed distributions of the Mie inputs (Tables 1 and 2), and due to the allometric coefficients.

The Mie inputs are varied over wide ranges to accommodate various environments in the global ocean, with the goal of having

a single first-principles-based operational algorithm applicable to first order globally. This increases the uncertainty estimates.

The uncertainty for the fractional PSC products depends only on the uncertainties in ξ and b,
::::
thus

::::
they

::::::
exhibit

::::::
much

:::::
lower

::::::
internal

::::::::
algorithm

::::::::::
uncertainty

::::::::
compared

:::::
with

:::::::
absolute

:::::
values. For pico-phytoplankton, they are <≈ 2% for the oligotrophic385

gyres, and do not exceed ≈ 7% globally. As stated above, the N0 parameter and a (the allometric coefficient) cancel when

fractional PSCs are calculated, thus they exhibit much lower internal algorithm uncertainty compared with absolute values.

This suggests that the fractional PSCs are more reliable products than the absolute values, and they can also be used with

other products to partition them - e.g. total phytoplankton carbon estimated using the alternative methods shown in Fig. 9

(namely Graff et al. (2015) and Roy et al. (2017)), or the Behrenfeld et al. (2005) or Sathyendranath et al. (2020) methods;390

POC products (e.g. Stramski et al. (2008)) can be partitioned this way as well. Figs. 7A and 7B illustrate some propagated
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uncertainties. Per-pixel uncertainties are estimated for all products and composite imagery as well (climatologies)
::
as

::::
well,

::::
and

::
are

:
provided with the OC-CCI-based data set associated with this manuscript (Sec. 4).

Figure 7. Propagated uncertainty of (A) total phytoplankton carbon given as one standard deviation (in mgm−3), mapped in log10 space,

and (B) fractional contribution of pico-phytoplankton to total phytoplankton carbon, given as one standard deviation in percent. (C) POC

derived using the PSD retrievals, (in mgm−3), mapped in log10 space; and, (D) Chlorophyll concentration (Chl) derived using the PSD

retrievals, (in mgm−3), mapped in log10 space. Monthly OC-CCI v5.0-based data for May 2015 is shown in all panels.

The formulation of the PSD algorithm allows for both POC and Chl (Eq. 6) to be estimated from the retrieved PSD. Due

to the assumptions used, POC is phyto C multiplied by three (Fig. 7C). This is strictly true only if the POC estimate uses the395

same limits of integration as phyto C, which is an approximation to the usual POC operational definition (e.g. see discussion

of POC-PSD closure analysis in Kostadinov et al. (2016a)). POC
:::
thus

:
is estimated to first order, treating the retrieved NAP

as being composed of POC only, and applying the same allometric relationships to it as phyto C, in spite of the fact that the

assumed RI distribution of the NAP is broader (Table 2). These are simplifying assumptions of the 2-component model; a

more accurate POC representation can be achieved if organic and inorganic NAP are modeled as separate particle populations400

(e.g. Duforêt-Gaurier et al. (2018)). This is a planned development of the model in the future; the goal here is to build an

operational PSD/phyto C algorithm
:::::
(based

:::
on

::::
first

:::::::::
principles,

::
as

::::::::::
mechanistic

::
as

::::::::
feasible) for use with multi-spectral satellite

data of limited degrees of freedom. Hyperspectral sensors such as PACE (Werdell et al., 2019) should allow for
::::
some

:
more

degrees of freedom and thus for more independent particle components and their PSDs to be modeled separately. However, note

that even hyperspectral data has limits on its degrees of freedom that are expected to be much fewer than the number of sensor405
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bands (Lee et al., 2007; Cael et al., 2020). An important benefit of POC is that it is a widely observed variable, available for

global validation efforts (Sec. 3.3)
:
,
::
as

::
is

:::
Chl. Similarly to POC, there are benefits of the PSD-derived estimate of Chl (Fig. 7D)

- it can be used as additional verification/validation of model retrievals, and/or PSD-retrieved Chl can be used as a parameter

to optimize for in algorithm tuning, as discussed shortly (Sec. 3.3). Like POC, many global in-situ and satellite observations of

Chl are available for such efforts. Next, we discuss validation/verification and tuning efforts in which both PSD-derived POC410

and PSD-derived Chl are used.

3.3 Algorithm Validation,
::::::::::::
Comparisons

:
and Empirical Tuning for the N0 PSD Parameter and Absolute

Concentrations

In an initial validation effort, the novel PSD/phyto C algorithm is validated/verified using several variables. It is challenging

to directly globally
:::
and

:::::::::
thoroughly

:
validate the major products of the algorithm - the PSD and size-partitioned phyto C, due415

to a paucity of
:::::::::::::::
globally-spanning

:
in-situ observations which are further reduced when performing satellite match-ups. Here,

we validate or verify algorithm performance against compilations of the following variables: 1) in-situ PSD observations (Sect

2.5); 2) in-situ POC observations; 3) in-situ pico-phytoplankton C observations; 4) concurrent satellite observations of Chl.

Maps of the locations of in-situ observations are shown in Supplement Fig. S5. In addition, we compare phyto C retrievals to

several existing methods using the example May 2015 OC-CCI v5.0 image. Below we discuss the results of these validation,420

verification and comparison efforts and a suggested
::::::
Further,

::::::
based

::
on

:::::
these

:::::::
results,

:::
we

::::::
suggest

:::
an

::::::::
empirical

:
tuning of the

algorithm.

Validation results for the PSD slope ξ (Fig. 8A) indicate a statistically significant but noisy relationship between retrieved

and observed slopes, with a positive bias for satellite retrievals, and two distinct clusters of points for which satellite values

differ - centering about 3.25 vs. 4.75, respectively, but the
:
a
:::::::::
regression

:::::
slope

::::::::::
substantially

::::::
greater

::::
than

::::::
unity.

::::
Most

:::::::::
validation425

:::::
points

:::
are

::::::::
scattered

::
in

:
a
::::::

cloud
::
of

::::
data

:::::::
between

:::
3.0

::::
and

:::
4.5

::::
that

::::
does

:::
not

::::::
exhibit

:::::
much

::::::::::
correlation,

::::
and

::::
there

::
is
::

a
:::::::::
somewhat

:::::::
separate

::::::
cluster

::
of

::::
data

:::::::
centered

:::::
about

::
a
:::::
slope

::
of

::::
5.25

::
in
::::

the
::::::
satellite

::::::::
retrieval

:::
that

::::
has

::::::
smaller

::::::::::::
corresponding

:
in-situ values

differ less and both cluster around 3.5 to
:
of

:::::
about

:
4.0. There is generally a clear tendency for points from more oligotrophic

areas (as indicated by Chl color coding) to exhibit higher satellite values, and more eutrophic areas to exhibit much lower

satellite values. This tendency is weaker for the in-situ observations, which tend to have a narrower range, mostly between 3.0430

and 4.5. The same validation regression with the points classified by location, rather than Chl, is shown in Fig. 8C. Data from

two specific locations are numerous and also likely drive the regression to a large degree - 1) the Plumes and Blooms (PnB)

Project LISST data , which represents a coastal site, namely the Santa Barbara Channel in California, USA (SBC), and 2)

the Equatorial Pacific (EqPac). While at SBC the
::
To

::::
first

:::::
order,

:::
the satellite data underestimates PSD slopes , it overestimates

them at EqPac. Data from higher latitudes from various locations in the North hemisphere, from CA coastal areas other than435

PnB, and from the Southern Ocean span a wider
::
are

:::
in

:::
the

:::::
same

:::::
range

::
as

:
in-situ range, which is captured by the satellite

retrievals, albeit with substantial noise. Overall, the satellite retrievals capture the
:::
data

:::
and

:::
the

::::::::
retrievals

::::::
capture

:::
the

::::::
in-situ

::::
data

:::::
trend;

:::::::
however,

:::::
there

::
is

:
a
::::::
pattern

:::
of

::::::
having

:
a
::::::
bigger

:::::
range

::
of

::::
PSD

::::::
slopes

::
in

:::::::
satellite

::::
data

::::
than

::
in

:::
the in-situ data trend to first

order
:::::::::
match-ups,

::::
with

:::
the

::::::::
algorithm

::::::::::::::
underestimating

:::
low

::::::
values

:::
and

::::::::::::
overestimating

::::
high

::::::
values.
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Figure 8. (A) Comparison of PSD slope derived from in-situ measurements with the matched-up satellite retrieval (Sec. 2.5). Points are

color-coded according to the corresponding
:::::::::
matched-up satellite OC-CCI v5.0 Chl (colormap in mgm−3 in log10 space). Type II regres-

sion is used, and regression and validation statistics are given in the figure panel. ’y-int’ stands for the y-intercept, RMS - room mean

square (square root of the mean of squared differences between the in-situ and satellite values), Bias is the mean of the satellite minus

in-situ values, and MAE - mean absolute error (the mean of the absolute values of the differences between the in-situ and satellite val-

ues) (e.g. Seegers et al. (2018)). (B) Same as in panel A, for the N0 parameter (Eq. 1) (axes in log10 space).(C) The same validation

regression as in panel A, but the points are color and symbol coded according to geographic area, as follows: Plumes and Blooms project

(e.g. Toole and Siegel (2001); Kostadinov et al. (2007)) (PnB, green ’x’); Equatorial Pacific (EqPac, red circles); Equatorial Indian Ocean

(EqIO, red ’+’); Southern Ocean (SO, black ’*’); California (CA) coastal area (purple squares); higher latitude Northern Hemisphere points

(> 30◦ latitude, NH, cyan diamonds), and South Atlantic (SA, black triangles); (D) same as in panel C, but for the N0 parameter (axes in

log10 space).

Validation for the N0 parameter (Fig. 8B) is statistically significant but noisy, with a somewhat better
::::::::
(somewhat

::::::
higher R2 .440

Clustering
:::
than

:::
the

::
ξ

:::::::::
regression)

:::
but

:::
also

:::::
quite

::::::::::
noisy.Strong

:::::::::
clustering of the in-situ observations around 1015.5 - 1016.0 m−4 is

observed, and the majority of these observations are underestimated
::::::::
somewhat

::::::::::::
overestimated

:
in the satellite retrievals,

::::::
which

:::::
cluster

::::::
around

:::::::
1016.25 .

::::::::
Notably,

:::::
much

::::
lower

:::::::
satellite

::::::
values

::
of

::::::::
validation

:::::
points

::::
that

::::
form

:
a
:::::::
separate

::::::
cluster

:::
are

:::::::::
associated

::::
with

:::::
lower

:::
Chl,

::::
and

:::
are

:::::::::::::
underestimated

::::::
instead

:
-
:::
the

::::::
in-situ

:::::
values

:::
are

::::
also

:::::
lower

::::
than

:::
the

:::::
main

::::::
cluster

::
of

::::
point

::::
just

:::::::::
discussed,

:::
but

:::
less

::
so. Since N0 is the PSD scaling parameter which generally controls absolute number, volume and carbon concentrations445

variability to first order, this has implications for the global pattern of phytoplankton carbon retrievals (Fig. 4), namely it

is consistent with underestimation in the oligotrophic gyres (mostly lower Chl) and overestimation in the eutrophic areas.
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Inspection of the location-coded plot
::::::
Overall,

::::
both

:::::::
satellite

:::
and

::::::
in-situ

::::
data

::::::
exhibit

::::::::
increasing

::::::
values

::
of

:::
N0 ::::

with
::::::::
increasing

::::
Chl

::::::::::::
concentrations,

::
as

::::::::
expected

::
—

:::
i.e.

:::::
more

::::::::::
oligotrophic

:::::
waters

:::
are

:::::::::
associated

::::
with

::::::
smaller

::::::
overall

:::::::
particle

::::::
number

:::::::::::::
concentrations.

::::::
Further

:::::::::
discussion

::
of

:::
the

::::
PSD

:::::::::
validation

::
by

:::::::
location

::
of

::::::
in-situ

:::
data

:
(Fig. 8D) indicates that a lot of the underestimated points450

come from the Equatorial Pacific clustered around in-situ N0 = 1015.75 ; many overestimated points are from the SBC
:::
S5A

::::
and

::::
S5B)

::
is

::::::::
provided

::
in

::::::::::
Supplement

::::
Sect.

:::
S4

:::
and

:::::::::
illustrated

::
in

:::
Fig.

:::
S6.

This pattern of under- and overestimation in the N0 validation
:::::
drives

:::
the

:::::
slope

:::
of

:::
the

:::::::::
validation

:::::::::
regression

::
to

:::
be

:::::
much

::::::
greater

::::
than

:::::
unity,

:::
and

:
suggests an empirical tuning to absolute phytoplankton carbon of the TK16 algorithm

:::::::
estimates, via

a linear (in log10 space) tuning of N0, as done in TK16 (Kostadinov et al., 2016a), who based the tuning on the validation455

regression. A similar approach is proposed here, but it is derived differently. Details of the tuning derivation procedure are

given in Supplement Sec. S5. The following global tuning equation was obtained:

N0_tuned= 100.3859 log10(N0)+9.5531 (7)

where N0 is the original (un-tuned) PSD parameter. This tuning changes N0 retrievals in a similar fashion to the TK16 tuning

and
::
is

::::::::
consistent

::::
with

:
a tuning suggested by the N0 in-situ validation reported

:::::::
presented

:
here (Fig. 8B), namely, low

::::::
satellite460

N0 values are increased, and high N0 values are decreased, decreasing the overall range of variability of retrieved N0 and

thus the range of the retrieved derived variables as well. This addresses the low bias in oligotrophic gyres and the high bias

in eutrophic areas. The goal of the tuning is to get more realistic absolute retrievals of POC and Chl (hypothesizing that this

should also lead to more realistic phyto C retrievals as well - however, see discussion below about the pico-phytoplankton C

validation
:
-
:::::
Sect.

::::
3.3.2).465

The tuned N0 parameter for May 2015 is mapped in Supplement Fig. S7A. The overall spatial pattern of higher values in

more eutrophic areas is preserved, but the global range of values is reduced compared to the original value, increasing N0 in

the gyres, and decreasing it in more productive areas. The resulting multiplicative factor to be applied in linear space to phyto

C, POC and Chl values is mapped in log10 space in Supplement Fig. S7B. Values in red are
::::::::::
oligotrophic

:::::
areas

:::
are

::::::::
generally

greater than unity in linear space (mostly between 1 and 10), indicating that the tuning increases phyto C, POC and Chl in these470

areas, up to about an order of magnitude (in limited areas mostly in the South Pacific gyre), and more moderately elsewhere in

the tropical and subtropical, oligotrophic oceans. The Equatorial upwelling areas and other transitional zones are not changed,

and high latitude oceans exhibit correction factors mostly less than unity in linear space (mostly between 0.1 and 1), which

decreases phyto C and Chl up to an order of magnitude (rare, mostly less). This tuning is not applied to figures previously

discussed here.475

3.3.1 Comparison of the PSD-based phytoplankton carbon retrieval with existing satellite algorithms

In this section, we compare
::::::::
PSD-based

:
phyto C retrievals

:::::::
presented

::::
here

:
with two existing methods for its retrieval. The May

2015 original total phyto C retrieval is compared with the tuned total phyto C and the retrievals of the absorption- and PSD-

based algorithm of Roy et al. (2017) and with the Graff et al. (2015) algorithm in Supplement Fig. S8. The histograms of

these four images are compared in Fig. 9. The most notable feature of these comparisons is that the tuned PSD-based
:::::
tuned480
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retrievals are similar to those of Graff et al. (2015), whereas the original PSD-based retrievals are similar to those of Roy et al.

(2017), and the latter two have exaggerated ranges globally compared to the former two. Of these algorithms, the simplest is

the Graff et al. (2015), as it is a direct scaling of bbp, and it is based on in-situ chemical analytical measurements of phyto

C (Graff et al., 2012, 2015). These dichotomous inter-comparison results suggest that further algorithm inter-comparison and

validation with direct in-situ measurements of phyto C are needed to guide future algorithm developments; however these data485

are relatively novel and scarce globally. Validation results using in-situ POC and pico-phytoplankton carbon (discussed next)

exhibit a similar dichotomy.

Figure 9. Histograms of the images of Supplement Fig. S8, including the original PSD-based phyto C retrieval (Fig. 4A). Histogram counts

are given on a log10 scale on the y axis, and the variable (x axis) is log-transformed as well. Values less than ≈0.3 mgm−3 are exceedingly

rare for any of the retrieval variants and are shown here for completeness. All four histograms are derived from the sinusoidal projection

images for May 2015, using monthly OC-CCI v5.0 data.

3.3.2 Validation using POC and pico-phytoplankton carbon in-situ data

PSD-based estimates of POC are validated against in-situ measurements for the original algorithm (Fig. 10A), and the tuned

algorithm (Fig. 10C). Both regressions have satisfactory R2 values, and
:::
also

:
illustrate that in general higher POC values are490
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associated with higher Chl (colormap). Notably, the original algorithm validation has a slope of ≈2 and exhibits substantial

underestimates at low POC, and overestimates at high POC. As intended, the tuning corrects this range exaggeration, and

significantly improves the slope, intercept, bias, RMS, and MAE. The regression with the N0 tuning applied should not be

considered a truly independent validation, because the algorithm has been empirically tuned to retrieve POC well;
:::::::
however,

the tuning was done with global POC imagery
:::::
(using

:::::::
monthly

::::::
images

:::
for

:::::
2004

:::
and

:::::
2015)

:
that uses the Stramski et al. (2008)495

empirical POC algorithm, not with these in-situ POC data directly.

In addition to the validation with in-situ POC, we performed a comparison of the matched satellite Chl and the corresponding

PSD-based Chl estimate (Eq. 6), for the original (Fig. 10B) and the tuned algorithm (Fig. 10D). Both comparisons exhibit very

high R2 values, and similarly to POC, the original algorithm underestimated Chl at low values, and overestimated at high Chl

values. The tuning successfully addresses this, leading to excellent overall comparison of the tuned algorithm, with slope near500

1.0 , low intercept, near nil bias, and low RMS and MAE values
:::
and

:::
low

::::::::
intercept. However, for the lowest Chl values (Chl

< 0.1 mgm−3), performance deteriorates. The tuned comparison is not a fully independent validation, as the algorithm was

tuned to compare well with OC-CCIv5.0 satellite retrievals (using global monthly images for 2004 and 2015). Overall, the

comparison with Chl is encouraging, indicating that the model is able to reasonably reproduce (with tuning) OC-CCI v5.0

standard satellite Chl values at the match-up points.505

Validation against in-situ pico-phytoplankton carbon is presented in Fig. 11A (with no N0 tuning applied), and in Fig. 11C

with the tuning applied. The corresponding Chl comparisons between matched standard OC-CCIv5.0 Chl and Chl derived via

the PSD model are shown in Fig. 11B (with no N0 tuning applied), and in Fig. 11Dwith the tuning applied
:::
and

::
D. As with

the POC match-ups (Fig. 10B and D), comparisons with Chl are better for the tuned version of the algorithm, indicating that

the tuning is needed to reproduce more realistic Chl values globally. However, the tuning does not lead to any improvement510

in the validation results of pico-phytoplankton C (cf. Fig. 11A and C). The validation regression without tuning is statistically

significant (p<0.05), albeit noisy (low R2 = 0.18); satellite retrievals and in-situ data cover approximately the same ranges,

and increasing Chl and in-situ pico-phytoplankton C generally correspond to increasing satellite values as well
:
,
::::
with

:::::
some

:::::::
tendency

:::
for

::::::
under-

:::
and

:::::::::::::
over-estimation

::
as

::::
with

:::
the

:::::
other

::::::::
variables. However, the tuned satellite retrievals have a very narrow

range that does not cover the range of the in-situ data, and validation statistics are generally worse than those of the original515

validation (the regression is not significant at the p=0.05 level). These validation results are generally consistent with the results

of Martínez-Vicente et al. (2017), where the tuned version of the TK16 (Kostadinov et al., 2016a) algorithm was used.

The number of matched up sample points in the validation regression is very different among PSD, POC and pico-phytoplankton

C, and their geographic distribution is different as well. Namely, there are an order of magnitude more POC match-ups than

pico-phytoplankton carbon ones, and there are even fewer PSD points. A lot of the PSD data come from the Equatorial Pacific520

and off of California, whereas POC samples are more global with a large number coming from the Atlantic Ocean, where a lot

of the pico-phytoplankton C points are located as well, and some of the latter are also from the Mediterranean. Thus the different

validation results presented here do not necessarily represent the same oceanographic conditions, e.g. the pico-phytoplankton

C in-situ data has less representation of eutrophic areas and spans a smaller range of Chl than the POC validation, with very

few points exceeding Chl = 1.0 (cf. Fig. 10B and 11B). Furthermore, size is not the only distinguishing characteristic of the525
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Figure 10. Validation of PSD-based POC retrievals vs. in-situ POC measurements, and comparison of satellite retrievals of Chl using the

standard OC-CCI v5.0 algorithm vs. Chl estimated from the PSD. Panels (A) and (B) have no tuning applied, whereas empirical tuning is

applied to the N0 parameter (Eq. 7) for panels C and D. The
:::::
tuning

::::::::
procedure

:::::
applies

::
a
:::::
linear

:::::::
correction

::
to
:::
N0::

in
:::::
log10

::::
space

::
to
::::::

ensure

::::::::
reasonable

:::::::
retrievals

::
of

::::
POC

:::
and

:::
Chl,

:::::
based

::
on

::::::
monthly

::::::
satellite

::::::
images

::::
from

::::
2004

:::
and

::::
2015

:
-
::
for

::::::
details,

:::
see

:::::::::
Supplement

:::
Sec.

:::
S5.

:::
The

:
data

points in panels A and C are colored by their matched standard OC-CCI v5.0 satellite Chl values (colormap, in mgm−3 in log10 space).
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Figure 11. Validation of pico-phytoplankton carbon derived from the PSD model using daily OC-CCI v5.0 satellite data vs. in-situ measure-

ments, as used in the POCO project (Martínez-Vicente et al., 2017) (panels A and C). Comparison of PSD-derived satellite Chl (y-axes) with

the matched satellite retrieval of Chl using the standard OC-CCI v5.0 algorithm, at the locations of the in-situ pico-phytoplankton carbon

match-up points (panels B and D). Panels (A) and (B) have no tuning applied, whereas empirical tuning is applied to the N0 parameter (Eq.

7) for panels C and D. The
::::
tuning

::::::::
procedure

:::::
applies

::
a

::::
linear

::::::::
correction

::
to

::
N0::

in
:::::
log10

::::
space

::
to

:::::
ensure

::::::::
reasonable

:::::::
retrievals

::
of

::::
POC

:::
and

::::
Chl,

::::
based

::
on

:::::::
monthly

::::::
satellite

:::::
images

::::
from

:::::
2004

:::
and

::::
2015

:
-
::
for

::::::
details,

:::
see

:::::::::
Supplement

:::
Sec.

:::
S5.

:::
The

:
data points in panels A and C are colored

by their matched standard OC-CCI v5.0 satellite Chl values (colormap, in mgm−3 in log10 space).
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PSCs — differences in internal composition and structure, as well as shape, can be important too, and can significantly affect

bbp and the validation results.

3.4 Further Discussion, Summary, and Conclusions

The novel PSD/phyto C algorithm described here represents a major overhaul of the KSM09 algorithm (Kostadinov et al., 2009)

::
(a

:::::::::
comparison

::::::::
between

:::::::
KSM09

:::
and

:::
the

:::::::
present

::::::::
algorithm

::
is

::::::
briefly

::::::::
discussed

::
in

::::::::::
Supplement

:::::
Sect.

:::
S6). Unlike KSM09, two530

distinct particle populations are used - phytoplankton and NAP. Phytoplankton backscattering is modeled using coated spheres

Mie calculations with inputs based on the Equivalent Algal Populations (EAP) approach (Bernard et al., 2009; Robertson Lain

and Bernard, 2018). This model formulation allows assessment of percent contribution of phytoplankton and NAP to total bbp,

as well as Chl to be estimated from the retrieved PSD. Underlying bbp forward modeling is hyperspectral, facilitating adaptation

of the algorithm to upcoming hyperspectral sensors like PACE (Werdell et al., 2019). PSD retrieval is achieved via spectral535

angle mapping (SAM), and no spectral shape is imposed on bbp; operational end-members for current and past multi-spectral

sensors and the OC-CCI v5.0 merged ocean color data set are created via band-averaging from the underlying hyperspectral

modeled bbp.

The algorithm has been used to create an accompanying data set based on the OC-CCI v5.0 data set (See
:::::::::::::::::::
Kostadinov et al. (2022)

:
,
:::
see Sec. 4).540

:::
We

::::::::
emphasize

::::
that

:::
the

::::
PSD

:::::::::
parameters

:::
and

::::::
derived

::::::::
retrievals

::::::::
presented

::::
here

:::
and

::
in

:::
the

::::::::::::
accompanying

::::
data

::
set

:::::::::::::::::::::
(Kostadinov et al. (2022)

:
)
:::
are

::
an

::::::::::::
experimental,

:::::::
research

:::::::
satellite

::::::
product

:::::
with

::::::::
relatively

::::
large

::::::::::::
uncertainties.

:::
We

::
do

::::
not

:::::
claim

:::
that

::
it
::
is

::::
akin

::
in

:::::::
validity

:::
and

:::::::
accuracy

:::
to

::
the

:::::
more

:::::::::
established

:::::
(and

::::
much

:::::
more

::::::::::
empirical!)

:::::::::
algorithms

::
for

:::::::::
canonical

:::::::
products

::::
such

::
as

::::
Chl

:::
and

:::::
POC.

:::
As

:::::::::
emphasized

:::::::::
elsewhere

::
in

:::
this

::::
text,

:::
the

::::
goal

:
is
::
to

:::::
build

::
an

:::::::::
operational

::::::::
algorithm

:::::
based

:::
on

:::
first

:::::::::
principles

::
as

::::
much

:::
as

:::::::
feasible,

::::
even

:
at
:::
the

:::::::
expense

::
of

::::::::
accuracy,

::
in

:::::
order

::
to

::::
push

:::
the

:::::::::
boundaries

::
of

::::
what

::
is
:::::::::
retrievable

::::
from

:::::
space

::::
and

::::
move

:::
the

:::::::
science

::
of

:::::::::
bio-optical545

::::::::
algorithm

:::::::::::
development

:::::::
forward.

::::::::
Potential

:::::
users

::
of

:::::
these

::::
PSD

::::
and

:::::::
derived

::::
data

::::::::::::::::::::
(Kostadinov et al. (2022)

:
)
::::
need

:::
to

::
be

::::::
aware

::
of

::
its

::::::::::
limitations,

:::::::::::
uncertainties

:::
and

:::::::::
validation

::::::
status,

::::::
before

:::::
using

:::::
them,

:::
for

::::::::
example,

::
in

:::::::
building

:::
or

:::::::::::::::::::
validation/constraining

:::::::::::::
biogeochemical

::::::
models.

:
The choice of IOP algorithm to retrieve bbp(λ) is key for the PSD/phyto C algorithm, as the spectral

shape of bbp is what the PSD slope retrieval is based upon (Eq. 4). The Loisel and Stramski (2000) IOP algorithm is chosen

here, as in KSM09, because it allows spectral bbp retrievals that are not constrained by a specific spectral function or parameter-550

ization on bbp as is done, for example, in QAA (Lee et al., 2002) and GSM (Maritorena et al., 2002, 2010). For the wavelengths

used in the PSD slope retrieval, modeled and satellite-derived bbp spectral shapes compare well when the Loisel and Stramski

(2000) algorithm is used and global patterns of the retrieved PSD parameters appear reasonable. Preliminary tests with Loisel

et al. (2018) indicate that this algorithm is not as suitable for PSD retrieval in this regard. Use of Loisel et al. (2018), Jorge

et al. (2021) and other IOP algorithms will be further investigated in future development of the PSD algorithm.555

An important assumption of the model is that N0 for NAP is twice that for phytoplankton, so that the phyto C to POC ratio

is a constant 1:3. This ratio is expected to vary in the real ocean, and the value used here is a reasonable average choice (e.g.

Behrenfeld et al. (2005); Jackson et al. (2017); Thomalla et al. (2017) and refs. therein). Graff et al. (2012)
:::::::::::::::
Graff et al. (2015)

employed the cell sorting and chemical analysis methods of Graff et al. (2012) to measure phyto C in the Equatorial Pacific
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and along the Atlantic Meridional Transect (AMT). Their results indicate that a phyto C:POC value of 1/3 is reasonable, falling560

within their observed ranges; however, they do observe many higher values, particularly in the oligotrophic gyres. The Roy

et al. (2017) phyto C to Stramski et al. (2008) POC ratio (applied to the May 2015 monthly image of the OC-CCI v5.0 data)

indicates generally lower values of this ratio (with some high latitude and coastal exceptions), and even lower values occur

in the gyres, with values mostly below 0.1 in the low-latitude open ocean (not shown). In light of this observation, note the

difference between the Graff et al. (2015) and Roy et al. (2017) phyto C retrievals (Fig. 9 and Supplement Fig. S8). Further565

direct analytical observations of phyto C and the reconciliation and better understanding of the spatio-temporal variability of

the phyto C to POC ratio should be a high priority in order to improve understanding of carbon pools and their relationships in

the ocean (Brewin et al., 2021) and to retrieve phyto C reliably from space.

When the modeled bbp spectra (Fig. 2) are used to design look-up tables (LUTs)as in KSM09 (Kostadinov et al., 2009), one

can compare the KSM09 algorithm to the model developed here. Results indicate that the LUTs relating the bbp slope to the570

PSD slope are quite similar, differing by ≈0.2 (in PSD slope)at the most, when ξ values are from 3.5 to 4.0 (not shown). The

LUTs practically coincide for very low and very high PSD slopes. LUTs of the new algorithm for the various sensors are very

similar to each other. The LUTs linking the bbp slope to the N0 parameter for KSM09 and the new algorithm are also similar

to first order (in logarithmic space). Importantly, the new algorithm LUTs (also nearly coinciding for the various sensors)

indicate higher backscattering per particle for low
:::
The

::::::::
relatively

::::
poor

::::
PSD

:::::::::
parameter

::::::::
validation

::::::
results

::::::
should

:::
be

:::::::::
interpreted575

::::
with

:::::::
caution,

::
as

::::
there

::::
are

:::::::
multiple

::::::
reasons

:::
for

::::::::::::
discrepancies

:::::::
between

:::
the

::::::
in-situ

:::
and

:::::::
satellite

::::
data

::::
and

:::
for

:::
the

:::::::
observed

:::::
poor

::::::::
regression

::::::::
statistics,

::::
and

::
the

::::::
in-situ

:::
data

::::
have

::::
their

::::
own

::::::::::
limitations.

::::::::::
Importantly,

:::
the

::::::
in-situ

::::
data

::::
PSD

:::::::::
parameters

:::
are

::
fit

::::
over

::
a

::::
much

::::::::
narrower

::::::::
diameter

:::::
range

::::
than

::
the

::::
size

:::::
range

::::::::
optically

::::::::::
contributing

:::
the

::::
bulk

::
of bbp slope values below ≈0.75 (typical for

more eutrophic waters), and they indicate lower backscattering per particle for steeper backscattering spectral slopes (typical for

more oligotrophic conditions). This can lead to up to a factor of ≈2 difference in retrieved
::::
(e.g.

:::
see

::::::::::
Supplement

:::
Fig.

::::
S4),

::
at

::::
least580

::::::::
according

::
to

:::
the

:::::::
modeled

:::::::
spectra.

:
It
::
is
:::::::::
recognized

::::
that

::
in

:::
the

:::
real

:::::
world

:::
the

:::::::
particle

:::::::::
assemblage

::
is
::::
very

::::::::
complex

:::
and

::
its

:::::::
sources

::
of

::::::::::::
backscattering

:::
are

:::
still

:::
not

:::::
fully

:::::::
resolved

::::
(e.g.

::::::::::::::::::::::::::::::::::::
Stramski et al. (2004); Organelli et al. (2018)

::
).

::
In

::::::::
particular,

:::
the

:::::::::::
composition

:::
and

::::
PSD

:::
of

:::::
small

:::::::::
sub-micron

::::::::
particles

:::::::
appears

::
to

::
be

:::
of

:::::::::
importance

::::
and

::
is

:::
not

::::
well

:::::::
known;

::::
here

:::
we

:::::::
assume

:::
the

::::
same

:::::
PSD

:::
and

::::
NAP

:::::::::::
composition

:::::
across

:::
all

:::
size

::::::
classes

::::
and

:::::::
globally.

:::::
There

::
is
::::
also

:
a
:::::::::
mismatch

::
in

:::::::
temporal

::::
and

:::::
spatial

::::::
scales

::
of

::::::::
sampling

:::::::
between

:::
the

::::::
satellite

::::
and

:::::
in-situ

::::
data.

:::
For

::::::::
example,

:::
the

:::::::
matched

::::::
in-situ

::::
PSD

::::
data

:::
do

:::
not

::::::
exhibit

:::
the

::::
same

::::::::
negative

:::::::::
correlation585

:::::::
between

:
ξ
::::
and N0 :::

that
:::
the

::::::
satellite

::::
data

:::
do

:::::::::::
(Supplement

::::
Fig.

::::
S9).

:::
We

::::
note

::::
that

:::
this

:::::::
negative

::::::::::
correlation

::
in

:::
the

:::::::
satellite

::::
data

:::
has

:
a
:::::::::
theoretical

:::::::::::
underpinning

:::::::
because

:::::
what

:::
we

:::::
know

:::::
about

:::::
global

:::::
ocean

:::::::::::
ecosystems,

::::::
namely

::::
that

::::::::::
oligotrophic

:::::
areas

::::::
exhibit

::::::
relative

:::::::::
dominance

::
of

:::::::
smaller

::::::::::::
phytoplankton

::::
(and

::::::
smaller

::::::
overall

::::::::::::
concentrations

::
of

::::::::::::::::
particles/biomass),

::
as

:::::::
opposed

::
to

::::::::
increased

:::::::::
importance

::
of

:::::
larger

::::::::::::
phytoplankton

::::
and

::::::::
increased

:::::::
biomass

::
in

::::
more

::::::::
eutrophic

:::::
areas.

:::
We

::::
thus

::::::
expect

::::::::::::
backscattering

::
in

:::
the

:::::
ocean

::
to

::::::
become

:::::::
“bluer”, i.e.

::
to

::::
have

::
a
::::::
steeper

:::::::
spectral

:::::
slope,

:::
in

::::::::::
oligotrophic

:::::
areas.

:::::
This

::
is

::::::
indeed

:::::::
observed

:::
in

:::::::
satellite

::::
data

::::
(e.g.590

:::::::::::::::
Loisel et al. (2006)

:
)
:::
and

::
is
:::

the
:::::

basis
:::
for

:::
our

:::::::::
algorithm.

:::::::::
Therefore,

:::
we

:::::::
expect, in particle concentrations retrieved. This LUT

difference leads to a reduction of the apparent range exaggeration of retrieved phyto C globally (low values in the subtropical

gyres, and high values in the eutrophic areas). It is this rangeexaggeration that led to the need for the empirical tuning in

Kostadinov et al. (2016a). While the need for this tuning seems to persist for the new algorithm and is also implemented here
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(Sec. 3.3), validation and comparisons results here suggest that for some variables and algorithms being compared with,
:::::
ocean,595

:::::::
globally

:::
and

::
on

:::::::
average,

:::
N0::

to
::::::::
decrease

::::
with

::::::::
increasing

::
ξ.

::::
This

::
is

:::
not

:::::::::
necessarily

:::::
going

::
to

::
be

::::::::
captured

::
by

::::::
in-situ

::::
data

::
of

::::::
limited

:::::::::::::
spatio-temporal

:::::::
coverage

::::
and

::
fit

::::
over

:
a
::::::::
narrower

:::
size

::::::
range.

:::
We

::::::
further

::::
note

::::
that

:
the original version of

::::::
number

::
of

::::::::
matched

:::
up

::::::
sample

::::::
points

::
in

:
the novel PSD/phyto C algorithm

performs better.

::::::::
validation

:::::::::
regression

::
is

:::::::
different

::::::
among

:::::
PSD,

::::
POC

:::
and

::::::::::::::::
pico-phytoplankton

:::
C,

:::
and

::::
their

::::::::::
geographic

::::::::::
distribution

:
is
::::::::
different600

::
as

::::
well

::::::::::
(Supplement

::::
Fig.

::::
S5).

:::::::
Namely,

:::::
there

:::
are

:::::
about

::
an

:::::
order

::
of

:::::::::
magnitude

:::::
more

:::::
POC

::::::::
match-ups

::::
than

:::::::::::::::::
pico-phytoplankton

:::::
carbon

:::::
ones.

::::
Thus

:::
the

:::::::
different

:::::::::
validation

:::::
results

::::::::
presented

::::
here

:::
do

:::
not

:::::::::
necessarily

:::::::
represent

:::
the

:::::
same

::::::::::::
oceanographic

:::::::::
conditions,

:::
e.g.

:::
the

::::::::::::::::
pico-phytoplankton

::
C

::::::
in-situ

:::
data

::::
has

:::
less

::::::::::::
representation

::
of

::::::::
eutrophic

:::::
areas

:::
and

:::::
spans

::
a
::::::
smaller

:::::
range

::
of

::::
Chl

::::
than

:::
the

::::
POC

:::::::::
validation,

::::
with

::::
very

:::
few

::::::
points

::::::::
exceeding

::::
Chl

::
=

:::
1.0 mgm−3

:::
(cf.

::::
Fig.

::::
10B

:::
and

:::::
11B).

:
The pico-phytoplankton C data in

Martínez-Vicente et al. (2017) are derived from cell counts (abundance) converted to carbon using specific conversion factors605

for different species/groups. Namely, 60 fg C per cell was used for Prochlorococcus, 154 fg cell−1 - for Synechococcus, and

1319 fg cell−1 for pico-eukaryotes. This differs from the PSD-based phyto C retrieval algorithm in which the conversion is a

function of cell volume and is continuous. For the allometric coefficients of Roy et al. (2017) used here, the equivalent con-

version factor is ≈53 fg cell−1 for cells of the smallest diameter within the pico-phytoplankton range (0.5 µm), and is ≈1825

fg cell−1 for the largest diameter cells within the pico-phytoplankton range (2.0 µm), indicating first order consistency, but not610

full equivalency, with the methods of Martínez-Vicente et al. (2017).

The
:::::
global

::::::::::
relationships

::
of

:::
the

::::
PSD

::::::::::
parameters,

::::::
derived

::::::::::
PSD-based

:::::
phyto

::
C,

:::
and

:::::
POC

:::::
versus

:::
Chl

:::
for

:::
the

::::
May

:::::
2015

:::::::
monthly

:::::
image

:::
are

::::::::
illustrated

:::
in

::::::::::
Supplement

::::
Fig.

::::
S10.

::::::::
Globally,

::
as

::::::::
expected,

:::::
there

::
is

:
a
::::::
strong

:::::::::
correlation

::
of

::::
Chl

::::
with

::::
these

:::::::::
variables,

::::
with

::::::::
increasing

::::
Chl

:::::::::
associated

::::
with

:::::::::
decreasing

:::::
PSD

:::::
slope,

::::
and

::::::::
increasing

::::
N0,

:::::
phyto

::
C
::::

and
:::::
POC.

::::::
While

:::
the

::::::::::
relationship

::
is

::::::
strong,

:::::
there

::
is

:::::::::
significant

:::::
spread

::
of
:::
the

:::::
PSD

:::::::::
parameters

:::
and

:::::
phyto

::
C

::::
data

:::
for

:
a
:::::
given

:::
Chl

::::::
value,

:::::::::
suggesting

:::
that

:::::
there

:
is
::::::
added615

::::
value

::
in
:::::::::
retrieving

::::
them

:::::::::
separately,

::::
and

:::
that

::::
they

::::::
should

:::
not

:::
all

::
be

::::::
treated

:::
as

::::::
simply

::::::::
correlates

::
of

::::
Chl.

:::
We

::::
note

::::
that

::::
there

::
is
::
a

::::
need

:::
for

::::::
further

:::::::::::
investigation

::
to

:::::
avoid

:::::::::
uniqueness

::
of

::::::::
retrieval

:::::
issues

:::
and

:::::::
degrees

::
of

:::::::::::::::::::
freedom/independence

::::::
issues,

::
as

::::
well

:::
as

::::
more

:::::::::::::
comprehensive

:::
and

::::::::
complete

:::::
error

::::::::::
propagation,

:::::
since

:
a
:::
lot

::
of

:::::::::
ecosystem

:::::::::
properties

:::
are

::::::
indeed

::::::::
correlated

::::
with

::::
Chl,

::::
and

::
all

:::::
these

:::::::
retrievals

:::::
come

:::::
from

:::
the

::::
same

:::::::::::
multispectral

:::::
data.

:::
The power law (Eq. 1) is a parameterization of real-world PSDs, and while there are theoretical underpinnings (e.g. West et al.620

(1997); Brown et al. (2004); Hatton et al. (2021)) and observations (e.g. Quinones et al. (2003)
:::::::::::::::::::::::::::::::::::::::::::::
Quinones et al. (2003); Buonassissi and Dierssen (2010)

:
,
:::
see

:::
also

::::
refs.

::
in

:::::::::::::::
Boss et al. (2001)) supporting its applicability

:
,
:::::::::
particularly

:
over large size ranges, real-world PSDs may devi-

ate from the power-law, especially in coastal zones (e.g. Reynolds et al. (2010); Buonassissi and Dierssen (2010); Koestner et al. (2020)

).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Reynolds et al. (2010); Koestner et al. (2020); Runyan et al. (2020); Reynolds and Stramski (2021)

::::::
).There

::
is

:::
less

::::::::::
information

::
on

:::::
living

::::::::::::
phytoplankton

::::
only,

::::
and

::::
their

::::::
specific

::::::
PSDs,

:::::::
because

:
it
:::
has

::::
been

::::::::::
historically

:::::::
difficult

::
to

:::::::
separate

:::::
living

::::::::::::
phytoplankton625

:::
and

::::::::
measure,

:::
say,

::::
their

:::::
PSD

::
or

::::::
carbon

::::
(e.g.

:::::::::::::::::::::
(Graff et al., 2012, 2015)

:
).

::
A

:::::
recent

:::::
study

:::
by

:::::::::::::::::::
(Haëntjens et al., 2022)

::::::::::
investigates

::::::::::::
phytoplankton

::::::
specific

::::::
PSDs;

::::
their

::::::::::
observations

::::::
support

:::
the

:::::::::
conclusion

::::
that

:::
the

::::::::::::::::::
phytoplankton-specific

:::::
PSD

:::::
shape

:
is
:::::::::
consistent

::::
with

:
a
:::::::::
power-law

::
to

::::
first

:::::
order.

:::
We

::::
note

::::
that

::::::::::::
phytoplankton

::::
share

:::::
their

:::
size

:::::::
domain

::::
with

::::
other

:::::::::
organisms

::::::::
(bacteria

::
on

:::
the

::::
low

:::
end

:::
and

:::::::::::
zooplankton

::
at

:::
the

::::
high

::::
end)

::::
and

:::
we

::::
note

:::
that

::
a

:::::::
drop-off

::
in

:::
the

::::::::::::
phytoplankton

::::
PSD

::::
will

:::
be

:::::::
expected

::
at
:::
the

:::::
limits

:::
of
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::
the

::::
size

:::::
range

::
of

:::::::::
autotrophs

::::
(e.g.

:::
see

::::::::::::::::
Hatton et al. (2021)

:
)
:::::
hence

:
a
:::::::::::::::::::
phytoplankton-specific

:::::::::
power-law

:::
will

::::
have

:::::
upper

::::
and

:::::
lower630

::::
range

::::::
limits

::
of

:::::::::::
applicability,

:::
and

::
it
::
is

:::
not

::::::::
expected

::
to

:::::
apply

::::::
equally

:::::
well

::::
over

:::
the

::::
same

::::
size

:::::
range

::::::::::
everywhere

:::
and

:::::::
always

::
in

::
the

::::::
global

::::::
ocean.

:::::::::::::::::
Hatton et al. (2021)

:::
offer

:::
an

:::::::::
assessment

:::
of

:::
the

::::
PSD

::
of

::::::
marine

::::
life

::::
over

:
a
:::::
huge

:::::
range

::
of

:::::
sizes

:::::
(body

::::::
mass),

:::::::::::
demonstrating

::::
that

:
a
:::::::
specific

:::::::::
power-law

::::::
applies,

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::::::::::::
Sheldon et al. (1972)

:::::::::
hypothesis

:::
that

:::::
equal

:::::::
biomass

:::::
tends

::
to

::::
occur

::
in
:::::
each

::::::::::::::::::
logarithmically-spaced

::::
size

::::
bin;

::::
their

::::
work

:::::
offer

::::::
support

:::
for

:::
use

::
of

:::
the

:::::::::
power-law

:::
for

::::::::
modeling

::::::::::::
phytoplankton

::::
(over

::::
their

::::
size

::::::
range)

:::::::
globally.635

The power-law is not a converging PSD model, i.e. it is sensitive to the chosen limits of integration (for a sensitivity analysis

to the integration limits, see Kostadinov et al. (2016a)). Gamma functions may be a better choice to represent marine PSDs

(Risović, 1993; Risović, 2002). However, we choose to use the power-law because of its theoretical underpinnings and because

the goal is to build an operational algorithm
:::::
(based

:::
on

::::
first

:::::::::
principles

::
as

:::::
much

:::
as

:::::::
possible)

:
for existing multispectral data

with limited degrees of freedom. We additionally assume that the PSD slope for both phytoplankton and NAP is the same,640

limiting the number of parameters to be retrieved. Hyperspectral data and observations of phytoplankton and NAP-specific

PSDs
:::
and

:::::
IOPs will be needed to relax these assumptions in the future. Organelli et al. (2020) observed that the PSD slope

steepened for small particles, deviating from a power-law. This steepening could partially explain the putative under-estimates

of the original algorithm in oligotrophic gyres. Moreover, the absolute number of particles retrieved is sensitive to uncertainties

in the real index of refraction assumed.
::
In

::::
this

:::::::
context,

:::
we

::::
note

::::
that

:::
the

::::::::
algorithm

::
is
::::

able
:::

to
::::
pick

:::
up

:::
the

:::::::::::
concentration

:::
of645

:::::::
particles,

::
to

::::
first

:::::
order,

:::::::::
according

::
to

:::
the

:::
N0 ::::::::

validation
::::
(Fig.

::::
8B).

::::
We

:::
find

::::
this

::
to

::
be

:::::::::
impressive

::::
and

:::::::
consider

:
it
::
a
:::::::
success,

:::::
given

:::
that

:::
the

::::::::
algorithm

::::::
makes

::
no

:::::::
a-priori

::::::::::
prescriptions

:::::
about

:::::::
particle

::::::::::::
concentrations

:
–
::::
they

:::
are

::::::
solved

:::
for

::::
from

:::
the

:::::::::
magnitude

::::
and

:::::
shape

::
of

:::::::::::::::
satellite-observed

:::
bbp.

:
While the goal here is to create a global algorithm which uses one set of end-members, we

recognize that future implementations can be improved by assessing the impact of using regionally variable subsets of index

of refraction distributions. The PSD parameterization and choices of Mie inputs, in particular complex indices of refraction,650

represent important sources of uncertainty and can also affect the need for tuning and the degree of suitability of estimating

POC with our generic NAP population. Further algorithm analysis of performance and improvements need to focus on the

index of refraction choices for the particle populations. For further discussion of algorithm uncertainties, see Kostadinov et al.

(2009),Kostadinov et al. (2010) and Kostadinov et al. (2016a).

Graff et al. (2015) observe a relationship between phyto C and bbp that is stronger than that for other proxies. This is encour-655

aging for the use of backscattering as a proxy for phytoplankton carbon biomass. However, the link between the PSD and bbp

spectral shape is a second-order effect that is not easily observed in in-situ observations (Kostadinov et al., 2009; Slade and Boss, 2015; Organelli et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kostadinov et al., 2009; Slade and Boss, 2015; Boss et al., 2018; Organelli et al., 2020), even though theoretical modeling demon-

strates a clear link (Kostadinov et al. (2009); this study). Kostadinov et al. (2012) discuss some reasons why it may be difficult

to observe this relationship in current in-situ data, e.g. the fact that the PSD is fit over a narrow range of diameters compared to660

the size range theoretically affecting bbp. Nevertheless, these considerations and the overall performance of the KSM09 homo-

geneous algorithm as compared to the algorithm presented here leads to the conclusion that there are four primary directions

that should be priorities for moving forward. First, investigate the effect of choices of index of refraction distributions, as dis-

cussed above. Second, rather than relying only on bbp for PSD and phyto C retrieval, a blended approach should be developed
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that also uses absorption, i.e. combine the approach here with that of Roy et al. (2017). Third, investigate the ability of hyper-665

spectral data to provide more degrees of freedom for retrieval of more variables simultaneously, allowing relaxation of some

key assumptions and perhaps a third particle population to represent POC and mineral particles separately; this is important

in light of the upcoming PACE mission (Werdell et al., 2019). Hyperspectral absorption data in particular have the potential

to increase information content and allow group-specific retrievals (e.g. Kramer et al. (2022), but see also Cael et al. (2020)).

Finally, fourth, collect more global, comprehensive in-situ data sets of all relevant variables, including and especially of phyto670

C (Graff et al. (2015)), for further model development and validation. With regard to the latter, agencies and investigators

should focus on building quality controlled, one-stop-shop data sets.

4 Additional Information

Code and data availability. Code and data associated with algorithm development, as well as operational application to OC-CCI v5.0 data

are published on the Zenodo® repository (Kostadinov et al., 2022) and are available at the following URL: https://doi.org/10.5281/zenodo.675

6354654.

An OC-CCI v5.0-based satellite PSD/phyto C data set (monthly, 1997-2020, plus monthly and overall climatologies) has been published

on the PANGAEA® repository (Kostadinov et al., 2022) and is freely available in netCDF format and browse images at the following URL:

https://doi.org/10.1594/PANGAEA.939863

Appendix A: Details on the OC-CCI v5.0 Dataset680

Processing and analysis was done using the sinusoidal projection of OC-CCI v5.0. For user convenience, once the final products

were generated, they were re-projected to equidistant cylindrical projection (unprojected latitude/longitude) before publication

to the data repository linked above (Sec. 4). The empirical tuning (Sec. 3.3) is not applied to the variables in the published

data set (Sec. 4). Instead, the spatially-explicit linear-space multiplicative tuning factor (Supplement Fig. S7B) is given. The

choice to provide an optional tuning to be applied at the user’s discretion is dictated by the validation and comparison results685

discussed in the manuscript.
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Supplement to "Ocean Color Algorithm for the Retrieval of the
Particle Size Distribution and Carbon-Based Phytoplankton Size
Classes Using a Two-Component Coated-Spheres Backscattering
Model"
Tihomir S. Kostadinov et al.

S1 Assessment and propagation of uncertainties

The Monte Carlo simulations (N=3000) of the two-population Mie scattering model were used to estimate uncertainty of the

retrieved PSD parameters that is due to assumptions of the values of the model input parameters. The input distributions from

which the varying input parameters were sampled for the Monte Carlo simulations are shown in main text Tables 1 and 2. This

approach resulted in 3000 different realizations of modeled spectral bbp, for each ξ input value. The median of all realizations is5

used as the SAM end-members, and Kruskal-Wallis analysis of variance is used to determine class similarity (where each input

ξ value represents a class). This analysis determined, for each class, the neighboring classes that are statistically not different

from it (at the 5% significance level) in terms of spectral angle. This gave a range of possible retrieved ξ values. This range is

not always symmetric, but it is approximated as a symmetric 95% confidence interval (CI) and converted to standard deviation

for use in subsequent analytical error propagation. The standard deviation of the corresponding N0 parameter across all similar10

classes and all Monte Carlo realizations is used as the uncertainty estimate for N0.

The uncertainties of the PSD parameters and allometric coefficients were used with the first order derivatives of the derived

products (absolute and fractional size-partitioned phyto C) with respect to those variables to analytically propagate the un-

certainty estimate to the derived products. Phyto C absolute values are functions of both PSD parameters and both allometric

coefficients, whereas the fractional values are functions only of ξ and the b allometric coefficient because a ratio of phyto15

C values is taken (Eq. 5). We use the allometric coefficients obtained by Roy et al. (2017), who use information from three

different regressions presented in Menden-Deuer and Lessard (2000). The weighted mean of the confidence intervals of the

Menden-Deuer and Lessard (2000) allometric coefficients was used. Uncertainties were also propagated analytically to the

composite imagery (monthly and overall climatologies) provided in the OC-CCI-derived PSD/phyto C data set (linked in main

text Sec. 4)
:::::::::::::::::::
Kostadinov et al. (2022)

::
). For more details see the scientific code used to do the uncertainty propagation (linked in20

main text Sec. 4
:::::::::::::::::::
Kostadinov et al. (2022)), as well as Kostadinov et al. (2016) and their Supplement.

S1



S2 Modeled Backscattering Efficiencies

Example output phytoplankton Qbb are plotted in Fig. S2A. For a fixed diameter, wavelength can significantly affect the

values, especially at intermediate diameters. Coated sphere scattering patterns also exhibit spikes, the influence of which on

computed IOPs is minimized here by having a high sampling frequency in diameter, D. Figure S2A also shows the Qbb curves25

corresponding to the Gladstone-Dale (GD) equivalent homogeneous spheres. For most diameters, homogeneous spheres exhibit

significantly lower backscattering efficiencies, which is consistent with prior studies (e.g. Bernard et al. (2009); Quirantes and

Bernard (2006); Organelli et al. (2018)). This indicates that the contribution of phytoplankton to backscattering in the global

ocean has likely been underestimated in previous studies (see Dall’Olmo et al. (2009)), in which homogeneous spheres were

assumed for modeling of phytoplankton (e.g. Stramski and Kiefer (1991); Kostadinov et al. (2009)).30

The difference between modeled phytoplankton and NAP Qbb curves is shown in Fig. S2B. Unlike panel A, the curves here

are band-averaged (see main text Sec. 2.2) and the median across all Monte Carlo runs is shown as an example. Note that NAP

are modeled over a wider range of diameters as compared with phytoplankton. Phytoplankton represented as coated spheres

still exhibit higher efficiencies than homogeneous NAP, but mostly only over the 1 to 10 µm diameter range. The difference

here is driven by the choices of Mie inputs for phytoplankton vs. NAP. In particular, NAP are allowed to have a wider range of35

real RIs, accommodating possible contributions by minerogenic particles. Purely organic detrital NAP would have lower Qbb

than is shown in Supplementary Fig. S2B.

S3 Cumulative Backscattering Analysis

Here, we focus on investigating what particle size ranges contribute to the backscattering signal, which is investigated via

cumulative bbp plots (Fig. S4). Cumulative modeled bbp curves for phytoplankton (Fig. S4A, 443 and 560 nm shown) indicate40

that, as expected, the higher the PSD slope, the larger fraction of the phytoplankton bbp signal is due to the smallest phyto-

plankton cells. Generally, the 443 and 560 nm bands behave similarly, however, differences exist, e.g. at PSD slopes 3.5 and

4.0; specifically, at ξ=4.0, ≈60% of the signal is due to phytoplankton cells with D < 3 µm at 560 nm, whereas this value rises

to ≈85% at 443 nm. A sigmoidal-like shape of this curve indicates that asymptotic values tend to be reached at low diameters

and high diameters, i.e. most of the bbp signal is captured within the range of D values used. Note that the size of the smallest45

photoautotroph - Prochlorococcus ( ≈ 0.5 µm in diameter (Morel et al. (1993)) informs the choice of the lower diameter limit

used for phytoplankton (Table 1).

Cumulative NAP bbp for modeled spectra (Supplement Fig. S4B) indicates that for most PSD slopes, the size range used

captures most of the signal, if NAP can be reasonably represented by homogeneous spheres. Importantly, for ξ=4.0, most of

the signal comes from particles with D between 0.1 and 1.0 µm, and these smaller particles are also essential for reproducing50

modeled spectral shapes in the same range as observed satellite bbp spectra. Coated spheres representing phytoplankton within

their size range alone are not able to do so (not shown). This is an important observation, illustrating the need to better

understand the nature of sub-micron particles (e.g. Stramski et al. (2004)). The difference between coated spheres and their

Gladstone-Dale (GD) homogeneous equivalents in terms of cumulative bbp (Fig. S4C) are a function of the differences in Qbb
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curve shapes (Fig. S2A) and the PSD slope used. At intermediate values of the PSD slope such as 4.0, ≈30% of the signal is55

due to particles smaller than D = 1.0 µm in the case of coated spheres, whereas almost 60% of the signal is due to particles

smaller than this threshold in the case of homogeneous spheres.

S4
::::
PSD

:::::::::
Validation

::::::::
Results:

:::::::
Further

:::::::::
Discussion

:::
by

::::::::
Location

:::
The

::::
PSD

:::::::::
validation

::
is

::::::
briefly

::::::::
analyzed

::::
here

::::::
further

::
by

::::::::
location,

::::::
taking

:
a
::::
look

::::
first

::
at
:::
all

::::
data

::::::
except

:::
the

::::::
in-line

::::::
LISST

::::
data

::::
from

:::
the

:::::::::
NAAMES

:::
and

::::::::::
EXPORTS

::::::
cruises

::::
(Fig.

:::::
S6A

:::
and

:::
B),

::::
and

::::
then

:::
the

:::::::::
EXPORTS

::::
and

:::::::::
NAAMES

::::::
cruises

::::::
in-line

::::::
LISST60

:::
data

:::::
alone

::::
(Fig.

::::
S6C

::::
and

:::
D).

:::
Fig.

::::
S6A

:::::::::
illustrates

:::
that

::::
data

::::
from

::::
two

::::::
specific

::::::::
locations

:::
are

:::::::::
numerous

:::
and

::::
also

:::::
likely

::::
drive

:::
the

:::::::::
regression

::
to

:
a
:::::
large

::::::
degree

:
-
::
1)

:::
the

::::::
Plumes

::::
and

:::::::
Blooms

:::::
(PnB)

::::::
Project

::::::
LISST

::::
data,

::::::
which

:::::::::
represents

:
a
::::::
coastal

::::
site,

::::::
namely

:::
the

:::::
Santa

:::::::
Barbara

::::::::
Channel

::
in

:::::::::
California,

::::
USA

::::::
(SBC),

::::
and

::
2)

:::
the

:::::::::
Equatorial

::::::
Pacific

::::::::
(EqPac).

:::::
While

::
at

::::
SBC

:::
the

:::::::
satellite

::::
data

:::::::::::::
underestimates

::::
PSD

::::::
slopes,

::
it

:::::::::::
overestimates

:::::
them

::
at

::::::
EqPac.

::::
Data

:::::
from

::::
these

::::::::
locations

::::
tend

:::
to

::
be

:::::::
clusters

::::::
around

:::::::
specific

:
ξ
::::::
values,

::::
and

:::::
these

::::
span

:
a
::::::

larger65

::::
range

:::
in

::
the

:::::::
satellite

:::::
data,

::::::::
consistent

::::
with

::::::
higher

::::::::::
oligotrophy

::
in

:::
the

:::::
EqPac

::::
than

::
in

:::
the

:::::
SBC;

:::
the

:::::
same

:
is
::::::::
observed

::
in

:::
the

::::::
in-situ

::::
data,

:::
but

::
to

::
a
:::::
lesser

:::::::
degree.

::::
Data

:::::
from

::::
other

:::::::
various

::::::::
locations

::::
tend

::
to

:::::
span

:
a
:::::
wider

::::::
in-situ

:::::
range,

:::::
which

::
is
::::::::

captured
:::
by

:::
the

::::::
satellite

:::::::::
retrievals,

:::::
albeit

::::
with

:::::::::
substantial

:::::
noise.

::::
With

:::::::
regards

::
to

:::
N0,

:::::::::
inspection

::
of

:::
the

:::::::::::::
location-coded

:::
plot

::::
(Fig.

:::::
S6B)

::::::::
indicates

:::
that

::
a

::
lot

:::
of

:::
the

:::::::::::::
underestimated

:::::
points

:::::
come

:::::
from

:::
the

:::::::::
Equatorial

::::::
Pacific

::::::::
clustered

::::::
around

::::::
in-situ

:::::::::::
N0 = 1015.75 m−4

:
;
:::::
many

:::::::::::
overestimated

::::::
points

::
are

:::::
from

:::
the

:::::
SBC.70

::::::::
Validation

::::
with

:::
the

:::::::::
NAAMES

::::
and

:::::::::
EXPORTS

::::::
LISST

::::
data

::::
(Fig.

::::
S6C

::::
and

::
D)

::::
adds

::
a
::::
very

:::::::::
significant

:::::::
number

::
of

::::::::::
matched-up

:::::
points,

:::::::::
compared

::
to

::
all

:::
the

:::
rest

::
of

:::
the

:::::
data,

:::::::::
illustrating

:::
the

::::
value

::
of

::::::
in-line

::::
data

:::::::::
collection.

::::::::
Validation

:::::::::
regression

:::::
slopes

:::
for

:::::
these

:::::
figures

:::
are

:::::
quite

::::::
similar

::
to

::::
those

:::
for

:::
all

::
the

::::
rest

::
of

:::
the

::::::::
validation

::::
data,

:::::::::
indicating

:
a
::::::::
tendency

::
for

:::
the

:::::::
satellite

::::
data

::
to

::::::
exhibit

:::::
larger

:::::
ranges

::::
and

::
to

:::::::::::
overestimate

:::::
values

::
at
::::

the
::::
high

::::
end,

:::
and

::::::::::::
underestimate

::::::
values

::
at

:::
the

:::
low

::::
end,

:::
for

:::::
both

:
ξ
::::
and

:::
N0.

:::::::::::
Importantly,

::::
both

:::::::::
regressions

:::
for

:::
the

:::::::::
EXPORTS

:::
and

:::::::::
NAAMES

::::
data

::::::
appear

::
to

::
be

::::::
driven

::
by

:
a
::::::
cluster

::
of

::::::
points

:::
that

::
is

:::::::
separate

::::
from

:::
the

:::::
main75

::::::
another

::::::
cluster

::
of

:::::
data.

:::::
These

:::::
main

::::::
clusters

::::
are

::::
quite

:::::
noisy

::::
and

::
do

:::
not

:::::
have

:
a
::::
very

:::::
large

:::::::
dynamic

::::::
range.

:::
We

::::
note

::::
that

:::::
these

:::
data

:::::
come

:::::
from

:::
the

:::::::::
NAAMES

::
4

:::::
cruise

:::
for

::::
both

::
ξ
:::
and

::::
N0,

::::
and

::::
may

:::
not

:::::::::
necessarily

::::::::
represent

:::
the

:::::
same

::::::
points.

:::::::::::
Importantly,

::
the

:::::::::
NAAMES

::
4
:::::
cruise

::
is
:::
the

:::::
only

:::
one

::
of

:::
the

::::
four

::::::
cruises

::::
that

:::::::
samples

:::::
lower

:::::::
latitude,

:::::::::::
oligotrophic,

:::::
open-

:::::
ocean

::::::
waters

:::::
(Fig.

:::::
S5B).

::::
This

::::::::
illustrates

::
a
:::::::::
limitation

::
of

:::
the

::::::
in-situ

::::::::
validation

::::
data

:
-
::::
that

:::
its

:::::::::::::
spatio-temporal

::::::::
coverage

:::::
might

:::
be

:::::::::
insufficient

:::
to

:::::::::::::
representatively

::::::
sample

:::
the

:::
full

:::::::
dynamic

:::::
range

:::
of

:::
the

::::
PSD

:::::::::
parameters

::::::
and/or

::
to

::::::
capture

::::
their

::::::
global

::::::
overall

::::::::::
relationship.

:
80

S5 Details of Empirical Tuning Derivation

This section describes the details of the derivation of the NO empirical tuning method. Monthly OC-CCI v5.0 imagery for

years 2004 and 2015 (48 total images, 24 each for Chl and POC) were used to compute the PSD-derived Chl and POC. These

values were then compared on a per-pixel basis against the standard OC-CCI v5.0 Chl product, and against the Stramski et al.

(2008) POC retrieval (termed the standard values here). These comparisons were used in an optimization procedure that finds85
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the best linear regression correction of the decimal logarithm of N0. The cost function used was the average absolute value of

the decimal logarithm of the ratio between the PSD-based and the standard values, summing the Chl and POC contributions and

weighting them equally. This cost function is minimal when both Chl and POC standard and PSD-based retrievals are the same

everywhere. The optimization was performed using the Statistics and MachineLearning® Toolbox of MATLAB®. A hybrid

optimization technique was implemented, using genetic algorithms (ga function) and the fmincon function. The optimization90

for each month returns one global value of linear slope and intercept to be applied to the original, un-tuned N0 retrievals, in

order to obtain the tuned retrievals (henceforth retrievals without tuning applied are referred to as "original"). The median of

the 48 tuning slopes and intercepts thus obtained were subsequently used to adjust N0 in log10 space as follows:

S6
:::::::::::
Comparison

::::
with

:::::::
KSM09

::::::::
Look-Up

::::::
Tables

:::::
When

:::
the

:::::::
modeled

:::
bbp ::::::

spectra
:::::
(main

:::
text

::::
Fig.

:::
2A)

:::
are

::::
used

::
to

::::::
design

::::::
look-up

:::::
tables

:::::::
(LUTs)

::
as

::
in

::::::
KSM09

:::::::::::::::::::::
(Kostadinov et al., 2009)95

:
,
:::
one

:::
can

::::::::
compare

:::
the

::::::
KSM09

:::::::::
algorithm

::
to

:::
the

:::::
model

:::::::::
developed

::::
here.

:::::::
Results

:::::::
indicate

:::
that

:::
the

:::::
LUTs

:::::::
relating

:::
the

:::
bbp:::::

slope
::
to

::
the

:::::
PSD

::::
slope

:::
are

:::::
quite

::::::
similar,

::::::::
differing

::
by

:::::
≈0.2

:::
(in

::::
PSD

::::::
slope)

::
at

:::
the

:::::
most,

::::
when

::
ξ
::::::
values

::
are

:::::
from

:::
3.5

::
to

:::
4.0

::::
(not

:::::::
shown).

:::
The

:::::
LUTs

::::::::::
practically

:::::::
coincide

:::
for

::::
very

::::
low

:::
and

:::::
very

::::
high

::::
PSD

::::::
slopes.

::::::
LUTs

::
of

:::
the

::::
new

:::::::::
algorithm

:::
for

:::
the

::::::
various

:::::::
sensors

::
are

:::::
very

::::::
similar

::
to

::::
each

::::::
other.

:::
The

::::::
LUTs

::::::
linking

:::
the

:::
bbp:::::

slope
:::
to

:::
the

:::
N0::::::::

parameter
:::

for
::::::::

KSM09
:::
and

:::
the

::::
new

:::::::::
algorithm

:::
are

:::
also

::::::
similar

::
to
::::

first
:::::
order

:::
(in

:::::::::
logarithmic

:::::::
space).

::::::::::
Importantly,

:::
the

::::
new

::::::::
algorithm

:::::
LUTs

:::::
(also

:::::
nearly

:::::::::
coinciding

:::
for

:::
the

:::::::
various100

:::::::
sensors)

::::::
indicate

::::::
higher

::::::::::::
backscattering

:::
per

:::::::
particle

:::
for

:::
low

:::
bbp:::::

slope
:::::
values

::::::
below

::::::
≈0.75

::::::
(typical

:::
for

:::::
more

::::::::
eutrophic

:::::::
waters),

:::
and

::::
they

:::::::
indicate

:::::
lower

::::::::::::
backscattering

::::
per

::::::
particle

:::
for

:::::::
steeper

::::::::::::
backscattering

:::::::
spectral

::::::
slopes

::::::
(typical

:::
for

:::::
more

:::::::::::
oligotrophic

:::::::::
conditions).

:::::
This

:::
can

::::
lead

::
to

::
up

::
to

::
a

:::::
factor

::
of

:::
≈2

:::::::::
difference

::
in

:::::::
retrieved

::::
N0,

:::
i.e.

::
in

::::::
particle

::::::::::::
concentrations

::::::::
retrieved.

::::
This

:::::
LUT

::::::::
difference

:::::
leads

::
to

:
a
::::::::
reduction

::
of
:::

the
::::::::

apparent
:::::
range

:::::::::::
exaggeration

::
of

:::::::
retrieved

::::::
phyto

:
C
:::::::
globally

:::::
(low

:::::
values

::
in

:::
the

::::::::::
subtropical

:::::
gyres,

:::
and

:::::
high

:::::
values

:::
in

:::
the

::::::::
eutrophic

::::::
areas).

::
It

::
is

:::
this

::::::
range

:::::::::::
exaggeration

:::
that

:::
led

:::
to

:::
the

::::
need

:::
for

:::
the

:::::::::
empirical

:::::
tuning

:::
in105

:::::::::::::::::::
Kostadinov et al. (2016)

:
.
:::::
While

:::
the

:::::
need

:::
for

:::
this

::::::
tuning

:::::
seems

::
to
::::::

persist
:::
for

:::
the

::::
new

::::::::
algorithm

::::
and

::
is

::::
also

:::::::::::
implemented

::::
here

::::
(Sec.

::::
S5),

:::::::::
validation

:::
and

:::::::::::
comparisons

::::::
results

::::
here

::::::
suggest

::::
that

:::
for

:::::
some

::::::::
variables

:::
and

:::::::::
algorithms

:::::
being

:::::::::
compared

:::::
with,

:::
the

::::::
original

:::::::
version

::
of

:::
the

:::::
novel

:::::::::
PSD/phyto

::
C

::::::::
algorithm

::::::::
performs

:::::
better.

:
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S7 Supplement Figures

Figure S1. EAP-based hyperspectral complex refractive index (RI) inputs to the coated spheres (representing phytoplankton cells) Mie code,

given relative to the index of refraction of seawater: A) real RI of the coat as chloroplast, B) real RI of the core as cytoplasm, C) imaginary RI

of the coat as chloroplast, and D) imaginary RI of the core as cytoplasm. In panel A, the mean and median curves almost coincide. For panels

A-C, the statistics of the input distributions used in the Monte Carlo simulation are given, namely mean, median, mean plus and minus one

standard deviation, and the minimum and maximum values. Panels A and B exhibit spectral dependencies according to the Kramers-Kronig

relations.
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Figure S2. (A) Example backscattering efficiencies, Qbb, for phytoplankton modeled as coated spheres. A single Aden-Kerker computation

run is shown, using the median inputs from the Monte Carlo simulations. The coated sphere results for three different wavelengths (corre-

sponding to OLCI nominal bands and the OC-CCI v5.0 data set bands;
::::
color

:::::
coded

::
as

::
in

:::::
legend) are shown as solids lines. The corresponding

Gladstone-Dale (GD) - equivalent homogeneous sphere results are shown in dash-dot lines. (B) Band-averaged backscattering efficiencies,

Qbb, for phytoplankton modeled as coated spheres (solid lines) and NAP modeled as homogeneous spheres (dash-dot lines). The median

values across all Monte Carlo simulation runs are shown.

S6



Figure S3. Modeled hyperspectral particulate absorption coefficient by (A) phytoplankton, aϕ(λ), using EAP-based coated spheres Mie

scattering computations, and (B) NAP,aNAP (λ), modeled as homogeneous spheres, as a function of the input power-law PSD slope (color-

coded solid lines, as in legend). All spectra are shown normalized to the respective values at 555 nm.
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Figure S4. Cumulative bbp(443) (solid lines) and bbp(560) (dash-dot lines) for phytoplankton (A) and NAP (B) as a function of PSD slope ξ

(color coded as in legend). For each particle diameter (x-axes) the plots show the percentage of backscattering due to particles smaller than or

equal to that diameter (y-axes). (C) Cumulative bbp(443) for phytoplankton modeled as coated spheres (solid lines) and for the corresponding

Gladstone-Dale (GD) equivalent homogeneous spheres (dash-dot lines). Curve pairs are shown for three different PSD slopes ξ, namely 2.5,

4.0 and 6.0 (color coded as in legend). All panels display results of the single forward illustrative Mie calculation run which uses medians of

the Monte Carlo varied inputs.
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Figure S5. A) Locations of in-situ PSD data used in algorithm validation
:
,
::::
other

::::
than

:::::
those

::::
from

:::
the

::::::::
EXPORTS

:::::
North

:::::::
Atlantic

:::::
(NA),

::::::::
EXPORTS

:::::
North

:::::
pacific

::::
(NP)

:::
and

:::::::::
NAAMES

:
3
:::
and

::::::::
NAAMES

::
4
:::::
cruises. Different regions are shown using symbols as in the legend, in

which acronyms are as follows - Plumes and Blooms Project (PnB), Equatorial Pacific (EqPac), Equatorial Indian Ocean (EqIO), Southern

Ocean (SO), CA coastal areas excluding PnB (CA coastal), Northern Hemisphere higher latitudes (NH), and Southern Atlantic (SA). B)

:::::
In-line

:::::
LISST

::::
PSD

:::
data

::::
used

:
in
::::::::
algorithm

::::::::
validation,

::::
from

::
the

:::::::::
EXPORTS

::::
North

::::::
Atlantic

:::::
(NA),

::::::::
EXPORTS

:::::
North

:::::
Pacific

::::
(NP)

:::
and

::::::::
NAAMES

:
3
:::
and

::::::::
NAAMES

:
4
::::::
cruises

::
(as

::
in

::::::
legend).

:::
C) Locations of in-situ data used in validation match-ups for all variables, as shown in the legend -

particulate organic carbon (POC, green
:::
blue triangle),

:::
and pico-phytoplankton carbon (pico C, red

::::
yellow

:
’x’).

::
In

::
all

::::
three

:::::
panels, and PSD

:::
only

:::::::
locations

:::
for

:::::
which

:
a
::::
valid

:::::::
match-up

::
is

:::::::
available (blue dot

:::
and

::::
used

::
in

::
the

::::::::
validation

:::::::
presented

::::
here)

::
are

:::::
shown.
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Figure S6.
:::
(A)

:::
The

::::
same

::::::::
validation

::::::::
regression

::
as

:
in
::::
main

::::
text

:::
Fig.

:::
8A,

:::
but

:::
only

::::
data

::
not

:::::
coming

::::
from

:::
the

::::::::
EXPORTS

:::
and

::::::::
NAAMES

::::::
cruises

:::::
in-line

:::::
LISST

:::::::::::
measurements

:::
are

::::::
plotted,

:::
and

::
the

:::::
points

:::
are

::::
color

::::
and

:::::
symbol

:::::
coded

::::::::
according

::
to

::::::::
geographic

::::
area,

::
as
:::::::
follows:

::::::
Plumes

:::
and

::::::
Blooms

:::::
project

::::
(e.g.

::::::::::::::::::::::::::::::::::::
Toole and Siegel (2001); Kostadinov et al. (2007))

:::::
(PnB,

:::::
green

:::
’x’);

::::::::
Equatorial

::::::
Pacific

::::::
(EqPac,

::
red

:::::::
circles);

::::::::
Equatorial

:::::
Indian

:::::
Ocean

::::::
(EqIO,

::
red

::::
’+’);

::::::::
Southern

:::::
Ocean

::::
(SO,

:::::
black

:::
’*’);

::::::::
California

:::::
(CA)

:::::
coastal

::::
area

::::::
(purple

:::::::
squares);

:::::
higher

:::::::
latitude

:::::::
Northern

:::::::::
Hemisphere

:::::
points

::
(>

:::
30◦

::::::
latitude,

::::
NH,

::::
cyan

::::::::
diamonds),

::::
and

::::
South

:::::::
Atlantic

::::
(SA,

::::
black

::::::::
triangles);

:::
(B)

::::
same

::
as

::
in

::::
panel

:::
A,

:::
but

::
for

:::
the

:::
N0

:::::::
parameter

::::
(axes

::
in

:::::
log10

:::::
space).

:::
(C)

::::
Same

::
as

::
in

::::
panel

::
A,

:::
but

:::
for

::
the

:::::
in-line

:::::
LISST

:::::::::::
measurements

::::
from

:::
the

::::::::
EXPORTS

:::
and

::::::::
NAAMES

::::::
cruises,

:
as
::

in
:::

the
:::::
legend

::::
(NA

::
=

::::
North

:::::::
Atlantic,

:::
NP

:
=
:::::

North
:::::::
Pacific).

:::::
Points

::
are

:::::::::
color-coded

::::::::
according

::
to

::::::
satellite

::::::::::
chlorophyll-a

:::::::
retrievals

:::::
(from

:::
the

::::::
OC-CCI

::::
v5.0

:::::::::
match-ups),

::
as

::
in

:::
the

::::::
colorbar

::::::
(log-10

::::
scale

::
in
:
mg m−3

::
).

:::
(D)

::::
Same

::
as

::
in

:::::
panel

::
C,

:::
but

::
for

:::
the

:::
N0::::::::

parameter
::::
(axes

::
in

:::::
log10

:::::
space).
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Figure S7. (A) The N0 parameter (m−4, mapped in log10 space) after tuning has been applied (main text Eq. 7) in order to achieve more

realistic global estimates of POC and Chl via the PSD model presented here; (B) A multiplicative tuning factor (dimensionless) to be applied

to absolute carbon (and Chl) estimates from the PSD-based algorithm; the factor is applied in linear space, but it is plotted in log10 space,

i.e. a map value of 0 indicates a tuning factor of 1, meaning that the tuned and original values are the same. Both panels use the monthly

OC-CCI v5.0 data for May 2015 as input.
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Figure S8. (A) Original PSD-based phyto C, same as main text Fig. 4A; (B) Tuned PSD-based phyto C; (B) The Roy et al. (2017) absorption-

based and PSD-based phyto C retrieval, and (C) the Graff et al. (2015) phyto C retrieval, based on a scaling of bbp. All three panels use the

monthly OC-CCI v5.0 data for May 2015 as input. Note the different color scale of panels A and C vs. panels B and D.
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Figure S9.
:
A

:::
2D

:::::::::
histogram

:::
of

:::
the

::::
PSD

:::::
slope

::
ξ
::::

vs.
:::
the

::::
N0 ::::::::

parameter.
::::

The
::::::

overall
::::::::::::

climatological
::::

PSD
:::::::::

parameters
:::::::

images

::::::::::::::::::
Kostadinov et al. (2022)

:::
from

:::
the

:::::::
OC-CCI

:::::
v5.0

:::
data

:::
set

::::::::::::::::::::::
(Sathyendranath et al. (2021)

:
)
::::
were

::::
used

:::
for

:::::
these

:::::::::
histograms,

:::
in

::::::::
sinusoidal

::::::::
projection.

::::
Panel

::
A

:::
uses

:::
the

::::::
original

:::
(not

::::::
tuned)

::
N0::::::::

parameter,
:::
and

:::::
panel

:
B
::::
uses

:::
the

::::
tunes

:::
N0.

:::
The

:::::::::::
climatological

::::::
satellite

:::
data

::::::::
histogram

::
is

::::::
overlaid

::::
with

:
a
:::::
scatter

:::
plot

::
of

:::
the

:::::::::
matched-up

:::::
in-situ

:::
data

::::
used

::
in

:::
the

::::::::
validation.

::::
Type

::
II

:::
least

::::::
squares

::::::::
regression

::::
lines

::::::
through

::::
both

::::::
satellite

:::
and

:::::
in-situ

:::
data

:::
are

:::::
shown,

::::
with

::::::::
regression

::::::
statistics

::::::
printed.

:::
The

:::::::
satellite

:::
data

::::::::
regression

:::
line

:::
and

:::::::
statistics

::
are

:::
red,

::::
with

::
N

:
=
:::::::::
16,833,792

:::
and

::
the

:::
line

::
is
::::
with

:
a
:::::::
negative

::::
slope.

::::
The

:::::
in-situ

:::
data

::::::::
regression

:::
line

::
is
::::
with

:
a
::::::
positive

:::::
slope

:::
and

:::::
black,

:::
and

::
its

::::::::
associated

::::::
statistics

::
is
::::::
printed

::
in

::::
black,

::::
with

::
N

:
=
::::
911.
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Figure S10.
:
A

:::
2D

:::::::::
histogram

::
of

::::
the

::::
PSD

:::::
slope

::
ξ
:::

vs.
:::

the
::::
N0:::::::::

parameter.
::::
The

::::::
overall

:::::::::::
climatological

::::
PSD

:::::::::
parameters

:::::::
images

::::::::::::::::::
Kostadinov et al. (2022)

:::
from

:::
the

:::::::
OC-CCI

:::::
v5.0

:::
data

:::
set

::::::::::::::::::::::
(Sathyendranath et al. (2021)

:
)
::::
were

::::
used

:::
for

:::::
these

:::::::::
histograms,

:::
in

::::::::
sinusoidal

::::::::
projection.

::::
Panel

::
A

:::
uses

:::
the

::::::
original

:::
(not

::::::
tuned)

::
N0::::::::

parameter,
:::
and

:::::
panel

:
B
::::
uses

:::
the

::::
tunes

:::
N0.

:::
The

:::::::::::
climatological

::::::
satellite

:::
data

::::::::
histogram

::
is

::::::
overlaid

::::
with

:
a
:::::
scatter

:::
plot

::
of

:::
the

:::::::::
matched-up

:::::
in-situ

:::
data

::::
used

::
in

:::
the

::::::::
validation.

::::
Type

::
II

:::
least

::::::
squares

::::::::
regression

::::
lines

::::::
through

::::
both

::::::
satellite

:::
and

:::::
in-situ

:::
data

:::
are

:::::
shown,

::::
with

::::::::
regression

::::::
statistics

::::::
printed.

:::
The

:::::::
satellite

:::
data

::::::::
regression

:::
line

:::
and

:::::::
statistics

::
are

:::
red,

::::
with

::
N

:
=
:::::::::
16,833,792

:::
and

::
the

:::
line

::
is
::::
with

:
a
:::::::
negative

::::
slope.

::::
The

:::::
in-situ

:::
data

::::::::
regression

:::
line

::
is
::::
with

:
a
::::::
positive

:::::
slope

:::
and

:::::
black,

:::
and

::
its

::::::::
associated

::::::
statistics

::
is
::::::
printed

::
in

::::
black,

::::
with

::
N

:
=
::::
911.
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