Preprints
https://doi.org/10.5194/egusphere-2022-269
https://doi.org/10.5194/egusphere-2022-269
30 May 2022
 | 30 May 2022

Rolling vs. Seasonal PMF: Real-world multi-site and synthetic dataset comparison

Marta Via, Gang Chen, Francesco Canonaco, Kaspar Rudolf Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay Gates Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón

Abstract. Particulate Matter (PM) has become a major concern in terms of human health and climate impact. In particular, the source apportionment (SA) of organic aerosols (OA) present in submicron particles (PM1) has gained relevance as an atmospheric research field due to the diversity and complexity of its primary sources and secondary formation processes. Moreover, relatively simple but robust instruments such as the Aerosol Chemical Speciation Monitor (ACSM) are now widely available for the near real-time online determination of the composition of the non-refractory PM1. One of the most used tools for SA purposes is the source-receptor Positive Matrix Factorization (PMF) model. Even though the recently developed rolling PMF technique has already been used for OA SA on ACSM datasets, no study has assessed its added value concerning the more common seasonal PMF method from a practical approach yet. In this paper, both techniques were applied to a synthetic dataset and to nine European ACSM datasets in order to spot the main output discrepancies between methods. The main advantage of the synthetic dataset approach was that the methods’ outputs could be compared to the expected ‘true’ values, i.e. the original synthetic dataset values. This approach revealed similar apportionment results amongst methods, but differing with respect to the truth, although the rolling PMF profile adaptability feature has been proven advantageous. Also, these results highlighted the impact of the profile anchor on the solution. In the multi-site study, while differences were generally not significant when considering year-long periods, their importance grew towards shorter time spans, as in intra-month or intra-day cycles. Rolling PMF performed better than seasonal PMF globally for the ambient datasets investigated here as far correlation with external measurements is concerned, especially in periods between seasons. The results of this comparison also support rolling PMF benefits even though output discrepancies with seasonal PMF were scarce. Altogether, the results of this study provide solid evidence of the robustness of both methods and on the overall efficiency of the recently-proposed rolling PMF approach.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

27 Sep 2022
Rolling vs. seasonal PMF: real-world multi-site and synthetic dataset comparison
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022,https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) for the...
Share