21 Dec 2022
21 Dec 2022
Status: this preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).

Evaluation of total ozone measurements from Geostationary Environmental Monitoring Satellite (GEMS)

Kanghyun Baek1, Jae Hwan Kim1, Juseon Bak2, David P. Haffner3, Mina Kang4, and Hyunkee Hong5 Kanghyun Baek et al.
  • 1Department of Atmospheric Science, Pusan National University, Busan, Republic of Korea
  • 2Institute of Environmental Studies, Pusan National University, Busan, Republic of Korea
  • 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
  • 4Department of Atmospheric Science and Engineering, Ewha Woman’s University, Seoul, Republic of Korea
  • 5National Institute of Environmental Research, Incheon, Republic of Korea

Abstract. As all life on earth depends crucially on atmospheric ozone, low earth orbiting (LEO) satellites have been used to monitor atmospheric ozone to reduce its impact on the environment and public health. The continued interest in air pollution and stratospheric ozone variability has motivated the development of a geostationary environmental monitoring satellite (GEMS) for hourly ozone monitoring. This paper provides the atmospheric science community with the world's first assessment of GEMS total column ozone (TCO) retrieval performance and diurnal ozone variation. The algorithm used for GEMS is a more advanced version of its predecessor, the TOMS-V8 algorithm. In addition to calculating total ozone, the algorithm has the advantage of providing ozone profile and retrieval error information. To assess the performance of the GEMS algorithm, the hourly GEMS total ozone was compared with ground-based measurements from four Pandora instruments and other satellite platforms from TROPOMI and OMPS. A high correlation of 0.91 or more with GEMS and Pandora TCO at Seoul, Busan, and Yokosuka but a low correlation of 0.83 at Ulsan, which is significantly smaller than at other sites. Root-mean-squared error (RMSE) showed satisfactory small values, with the lowest RMSE of 2.06 DU. Positive mean biases (MBs) were observed at all sites. This agreement suggests that the GEMS hourly ozone monitoring allows for continuous updates about stratospheric ozone and its related atmospheric changes. The quantitative comparison of GEMS TCO data with TROPOMI and OMPS TCO data shows a high correlation coefficient greater than 0.98 and a low RMSE of less than 1.8 DU over clear sky conditions. GEMS TCO underestimates by - 0.14 % (0.4 DU) with a standard deviation of 2.0 % relative to TROPOMI and overestimates by + 0.1 % (0.3 DU) with a standard deviation of 2.3 % relative to OMPS. It shows that the GEMS TCO agrees very well with the TROPOMI and OMPS TCO. The results are a meaningful scientific advance by providing the first validated, hourly UV ozone retrievals from a satellite in geostationary orbit. This experience can be used to advance research with future geostationary environmental satellite missions, including incoming TEMPO and Sentinel-4.

Kanghyun Baek et al.

Status: open (until 14 Feb 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1402', Anonymous Referee #1, 27 Jan 2023 reply

Kanghyun Baek et al.

Kanghyun Baek et al.


Total article views: 263 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
169 83 11 263 8 7
  • HTML: 169
  • PDF: 83
  • XML: 11
  • Total: 263
  • BibTeX: 8
  • EndNote: 7
Views and downloads (calculated since 21 Dec 2022)
Cumulative views and downloads (calculated since 21 Dec 2022)

Viewed (geographical distribution)

Total article views: 207 (including HTML, PDF, and XML) Thereof 207 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 03 Feb 2023
Short summary
The GEMS mission was the first mission of the geostationary satellite constellation for hourly atmospheric composition monitoring The GEMS ozone measurements were cross-compared to those of Pandora, OMPS, and TROPOMI satellite sensors, and excellent agreement was found. GEMS has proven to be a powerful new instrument for monitoring and assessing the diurnal variation of atmospheric ozone. This experience can be used to advance research with future geostationary environmental satellite missions.