Preprints
https://doi.org/10.5194/egusphere-2022-1343
https://doi.org/10.5194/egusphere-2022-1343
 
09 Dec 2022
09 Dec 2022
Status: this preprint is open for discussion.

Methodology for constructing a flood-hazard map for a future climate

Yuki Kimura1,2, Yukiko Hirabayashi3, Yuki Kita2,4, Xudong Zhou2, and Dai Yamazaki2 Yuki Kimura et al.
  • 1Risk Assessment Department, MS&AD InterRisk Research & Consulting, Inc., 2-105, Kanda Awajicho, Chiyoda-ku, Tokyo 101-0063, Japan
  • 2Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
  • 3Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
  • 4Gaia Vision Inc. 6-23-4 Jingumae, Shibuya-ku, Tokyo, 150-0001, Japan

Abstract. Flooding is a major natural hazard in many parts of the world, and its frequency and magnitude are projected to increase with global warming. With increased concern over ongoing climate change, more detailed and precise information about climate-change risks is required for formulating local-scale countermeasures. However, the impacts of biases in climate-model outputs on river-flood simulation have not been fully evaluated, and thus evaluation of future flood risks using hazard maps (high-resolution spatial distribution maps of inundation depths) has not been achieved. Therefore, this study examined methods for constructing future-flood-hazard maps and discussed their validity. Specifically, we compared the runoff-correction method that corrects for bias in general-circulation-model (GCM) runoff using the monthly climatology of reanalysis runoff with the lookup method, which uses the GCM simulation results without bias correction to calculate changes in the return period, and depends on the reanalysis simulation to determine absolute flood depths. The results imply that the runoff-correction method may produce significantly different hazard maps compared to those based on reanalysis of runoff data. We found that in some cases, bias correction did not perform as expected for extreme values associated with the hazard map, even under the historical climate, as the bias of extreme values differed from that of the mean value. we found that the direction of the change in future hazard (increase or decrease) obtained using the runoff-correction method relative to the reference reanalysis-based hazard map may be inconsistent with the changes projected by the GCMs in some cases. On the other hand, we confirmed that the lookup method can produce future-hazard maps that are consistent with the changes in flood risk projected by the GCMs, indicating the possibility of obtaining reasonable inundation-area distribution. The results imply that the lookup method is more suitable for future-flood hazard-map construction than the runoff-correction method. The lookup method also has the advantage of facilitating research on efficient construction of future-climate hazard maps, as it allows for improvement of the reanalysis hazard map through upgrading of the model and separate estimation of changes due to climate change. We discuss future changes in inundation areas and the affected population within the inundation area. Using the lookup method, the total population living in modeled inundation areas with flood magnitudes exceeding the 100-year return period under a future climate would be around 1.8 billion. In the assessment of future climate risks, we found that an affected population of around 0.5 billion may be missed if the historical hazard map is used as an alternative to constructing future-hazard maps and only frequency changes are considered. These results imply that in global flood-risk studies, future-hazard maps are important for proper estimation of climate-change risks, rather than assessing solely changes in the frequency of occurrence of a given flood intensity.

Yuki Kimura et al.

Status: open (until 03 Feb 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1343', Jeffrey Neal, 05 Jan 2023 reply
  • RC2: 'Comment on egusphere-2022-1343', Francesco Dottori, 01 Feb 2023 reply

Yuki Kimura et al.

Viewed

Total article views: 424 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
287 126 11 424 27 2 3
  • HTML: 287
  • PDF: 126
  • XML: 11
  • Total: 424
  • Supplement: 27
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 09 Dec 2022)
Cumulative views and downloads (calculated since 09 Dec 2022)

Viewed (geographical distribution)

Total article views: 379 (including HTML, PDF, and XML) Thereof 379 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Feb 2023
Download
Short summary
Since both frequency and magnitude of flood will increase by climate change, information on spatial-distribution of potential inundation depth (i.e. flood hazard map) is required. We developed a methods for constructing realistic future flood hazard maps which addresses issues due to biases in climate models. A larger number of population is estimated to face risk in the future flood hazard map, suggesting only focusing on flood frequency change could cause underestimation of future risk.