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Abstract. Flooding is a major natural hazard in many parts of the world, and its frequency and magnitude are projected to 10 

increase with global warming. With increased concern over ongoing climate change, more detailed and precise information 

about climate-change risks is required for formulating local-scale countermeasures. However, the impacts of biases in 

climate-model outputs on river-flood simulation have not been fully evaluated, and thus evaluation of future flood risks 

using hazard maps (high-resolution spatial distribution maps of inundation depths) has not been achieved. Therefore, this 

study examined methods for constructing future-flood-hazard maps and discussed their validity. Specifically, we compared 15 

the runoff-correction method that corrects for bias in general-circulation-model (GCM) runoff using the monthly climatology 

of reanalysis runoff with the lookup method, which uses the GCM simulation results without bias correction to calculate 

changes in the return period, and depends on the reanalysis simulation to determine absolute flood depths. The results imply 

that the runoff-correction method may produce significantly different hazard maps compared to those based on reanalysis of 

runoff data. We found that in some cases, bias correction did not perform as expected for extreme values associated with the 20 

hazard map, even under the historical climate, as the bias of extreme values differed from that of the mean value. we found 

that the change direction of the change ina future hazard (increase or decrease) obtained using the runoff-correction method 

relative to the reference reanalysis-based hazard map may be inconsistent with the changes projected by the GCMsCaMa-

Flood simulations based on GCM runoff input in some cases. On the other hand, we confirmed that the lookup method can 

produceproduced future-hazard maps that are consistent with theflood hazard changes in flood risk projected by the 25 

GCMsCaMa-Flood simulations obtained using GCM runoff input, indicating the possibility of obtaining reasonable 

inundation-area distribution. TheThese results implysuggest that the lookup method is more suitable for future-flood hazard-

map construction than the runoff-correction method. The lookup method also has the advantage of facilitating research on 

efficient construction of future-climate hazard maps, as it allows for improvement of the reanalysis hazard map through 

upgrading of the model and separate estimation of changes due to climate change. We discuss future changes at global scale 30 

in inundation areas and the affected population within the inundation area. Using the lookup method, the total population 

living in modeled inundation areas with flood magnitudes exceeding the 100-year return period under a future climate would 
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be aroundapproximately 1.886 billion. In the assessment of future climate risks, we found that an affected population of 

aroundapproximately 0.52 billion may be missed if the historical hazard map is used as an alternative to constructing future-

hazard maps and only frequency changes are considered. These results implysuggest that in global flood-risk studies, future-35 

hazard maps are important for proper estimation of climate-change risks, rather than assessing solely changes in the 

frequency of occurrence of a given flood intensity. 

1 Introduction 

Flooding is a common major natural hazard in many parts of the world, and its frequency and magnitude are projected to 

increase with global warming. The 6th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 40 

Chapters 11 indicated that the incidence of heavy rainfall has increased in many regions since 1950 (Seneviratne et al., 2021). 

Hirabayashi et al., 2021 assessed changes in the frequency of flood risk in the future and showed that flood risk will increase 

in many regions, including South Asia, Southeast Asia, Northeast Eurasia, eastern and low-latitude Africa, and South 

America. According to Dottori et al., 2018, with a temperature increase of 1.5°C, human losses from flooding could rise by 

70–83% and direct flood damage by 160–240% in the absence of future adaptation measures. Alfieri et al., 2017 showed that 45 

with 4°C warming, countries representing more than 70% of the global population and global gross domestic product (GDP) 

would face increases in flood risk of more than 500%. While these global-scale studies have projected total future flood 

losses at the continental, regional or national scales, they do not provide local flood risk information under future climatic 

conditions. 

    Following the increase in concern about ongoing climate change, detailed and high-resolution information about climate-50 

change risk that can be used for local-scale countermeasures is essential. To elucidate the potential impacts of flood disasters, 

a high-resolution map of potential disaster impactsinundation-depth maps must be developed, commonly named a hazard 

map. The Sendai Framework for Disaster Risk Reduction 2015–2030 produced by the United Nations Office for Disaster 

Risk Reduction (UNISDR) also highlighted the importance of developing hazard maps to clarify disaster risk. Flood-hazard 

maps describe the spatial distribution of potential inundation depths for an event of specific occurrence probability to 55 

illustrate quantitatively the risk distribution at a local scale. 

    Local-scale flood-hazard maps have been developed by many research institutes and local governments using historical 

observation data and flood-inundation models, and these maps are used for various purposes. Governments and 

municipalities use flood-hazard maps to identify risks and formulate business-continuity plans (BCPs) (De Moel et al., 2009). 

In the research field, for example, Bates et al., 2022 estimated annual flood damage in UK and Wing et al., 2022 estimated 60 

flood damage in US by using local-scale flood-hazard maps. In many countries, flood-hazard maps are made available to the 

public to assist residents in identifying their own risks and facilitate evacuation activities. The private sector is also making 

progress in using local-scale flood-hazard maps. For example, the insurance industry uses local-scale hazard maps to set 

premium rates corresponding to local hazards. The National Flood Insurance Program (NFIP) in the United States uses 



 

3 
 

flood-insurance-rate maps (flood surface elevations for the N-year return period) provided by the Federal Emergency 65 

Management Agency (FEMA) to calculate flood-insurance-premium rates (FEMA, 2018). Companies also use local-scale 

hazard maps to identify flood risks to their own buildings and factories, scrutinize the contents of their insurance policies, 

and formulate BCPs in preparation for a possible disaster (Japan Institute of Country-ology and Engineering 39th report, 

2021). However, in many developing countries in Asia and Africa, detailed local hazard maps are unavailable. 

    In the research field, large-domain flood-hazard maps have been developed to assess flood risks and their distribution at 70 

the global scale. Examples of large-domain flood-hazard maps include maps constructed by Fathom (Sampson et al., 2015), 

the Joint Research Centre (JRC, 2022), Global Assessment Report (GAR, 2015), and Aqueduct Floods published by the 

World Research Institute (WRI) (Aqueduct, 2022). Uses of largeLarge-domain flood-hazard maps includehave been used in 

many applications such as estimation of the affected population within an inundation area and determination of the impacts 

of flooding on GDP and urban areas in the current climate (Ward et al., 20202020a). Validation of large-domain flood-75 

hazard maps is currently underway. Hirabayashi et al., 2022 and, Trigg et al., 2016 and Bernhofen et al., 2018 compared 

multiple global flood models and analyzed the factors contributing to differences in inundation areas and depths. Although 

their accuracy may be insufficient, large-domain hazard maps for the current climate are now being used for various 

decision-making purposes. Hirabayashi et al., 2022 provided recommendations for the practical application of large-domain 

hazard maps in corporate practice. 80 

    In addition to flood-hazard maps of the historical period, developing flood-hazard maps for a future period is also essential 

to assess climate-change risk quantitatively. While assessment ofAlthough climatic and meteorological hazards under future 

climate- change risks (e.g.., extreme temperatures, droughts and heavy-rainfall events) hashave been widely 

performedassessed using direct output variables of general circulation models (GCMs), such as precipitation and temperature 

(Li et al., 2021, Lu et al., 2019), assessment of future flood risks based on the spatial distribution of inundation depths has 85 

not yet been established. Given that inundation depths are regulated by local topography at scales much finer than the 

resolution of GCMs, additional processing of GCM outputs using a flood-risk model is essential. At presentto date, no global 

high-resolution future-climate flood hazard (i.e., inundation- depth profile) has been sufficiently verified. Some studies have 

evaluated future flood risks (e.g., affected population and GDP) at the global scale (e.g., Ward et al., 2020b); however, it is 

important to analyze global future flood hazards (i.e., inundation depth distribution), and to assess uncertainties such as those 90 

caused by various bias correction methods. 

    Simulation of inundation areas and depths under a future climate at high resolution is technically possible using the latest 

global river models together with climate-projection data and downscaling techniques. However, the reliability of future 

flood-hazard mapping has not been thoroughly assessed, in part because no methodology to correct the bias present in the 

runoff output from GCMs has yet been established. Climate-projection data contain biases, and the direct use of climate-95 

projection data faces problems, including the inability to estimate the duration of inundation, which is important for 

estimating indirect damage (Taguchi et al., 2022). While bias-correction methods for precipitation and temperature have 
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been studied in detail (Watanabe et al., 2012, Hempel et al., 2013 and Lafond et al., 2014), such methods have not been 

established for runoff data for use as inputs to global flood models to construct large-domain future flood hazard maps. 

    At present, methods for constructing future flood-hazard maps have not been evaluated in detail. Therefore, this study 100 

investigated the following points to validate global flood-hazard maps under a future climate constructed using the global 

river model. We compared two representative methods for generating future flood-hazard maps that handle bias in GCM 

runoff, and investigated which method produces the most reasonable inundation-depth distribution. The causes of differences 

in the hazard maps constructed using the two methods were investigated, and the most appropriate method for creating 

future-hazard maps was assessed. In addition, we examined how much the estimated changes in future flood risk differed 105 

depending on whether bias correction was implemented and the method used for future-hazard mapping. 

    This paper is organized as follows. Section 2 describes the models and bias-correction methods used in this study and the 

method used to construct future flood-hazard maps. Section 3 explores several methods to construct hazard maps for a future 

climate, and the cause of differences among hazard maps constructed using various methods. In Section 4, we discuss which 

method is most appropriate for creating future-hazard maps and how much the estimates of future flood risk changes differed 110 

depending on whether bias correction was implemented and on the method used for future-hazard mapping. 

2 Methods 

2.1 Model and Data 

We used the Catchment-based Macro-scale Floodplain Model (CaMa-Flood; Yamazaki et al., 2011) ver. 4.01 (Yamazaki et 

al., 2021) for global river and inundation simulations. The major advantage of CaMa-Flood is its high computational 115 

efficiency. In CaMa-Flood, river channel flow and floodplain inundation can be calculated simultaneously using sub-grid 

topographic parameters. In this model, river flow simulation is conducted on the basis of the unit catchment element, and 

water level and flood extent are diagnosed from the water volume in each unit catchment using sub-grid topographic 

parameters. The local inertial equation (Yamazaki et al., 2013) is used as the basic flow equation. This equation can 

represent the backwater effect, which is important for accurate reproduction of inundated areas. A flow scheme for 120 

bifurcated channels is included in CaMa-Flood (Yamazaki et al., 2014). Although CaMa-Flood is a global model, it is unique 

inhas characteristics that it represents the physical processes necessary to reproduce floodplain inundation dynamics. 

    In this study, we simulated global river and inundation dynamics using three types of runoff data to construct flood-hazard 

maps. The three types of runoff data were: reanalysis-based runoff data obtained from past observations (Reanalysis_Runoff), 

GCM-output runoff without bias correction (GCM_Runoff_Ori), and GCM-output runoff with bias correction (GCM 125 

_Runoff_BC). The GCM-output runoff data were analyzed for two periods: historical (1980–2014) and future (2066–2100). 

The reanalysis runoff data used in this study were VIC-Bias-Corrected (Yang et al., 2021), which are the output of the 

Variable Infiltration Capacity (VIC) Land Surface Model (Liang et al., 1994, Liang et al., 1996) with bias correction using 

the Global Streamflow Characteristics Dataset (Beck et al., 2015) as reference data. Yang et al., 2021 compared discharge 



 

5 
 

data based on VIC-Bias-Corrected runoff with observations and found that the VIC-Bias-Corrected model has excellent 130 

ability to estimate discharge and high reproducibility of extreme values. For VIC-Bias-Corrected runoff data, the original 

spatial resolution (3-arcmin) was input to CaMa-Flood. For GCM-output runoff (GCM_ Runoff_Ori and GCM_Runoff_BC), 

we used nine GCMs: MIROC6, IPSL-CM6A-LR, GFDL-CM4, NorESM2-MM, ACCESS-CM2, INM-CM5-0, MPI-ESM1-

2-HR, MRI-ESM2-0, and EC-Earth3, similar to Hirabayashi et al., 2021. GCM-output runoff was converted from its original 

spatial resolution to 30-arcmin resolution through bi-linearbilinear interpolation. We also generated bias-corrected runoff, 135 

and the methods used for bias correction are described in detail in Section 2.3. The runoff products, resolutions, and periods 

assessed in this study are listed in Table 1. 

 
Table 1: Runoff products used in this study 

 140 
 

2.2 Reference Historical Flood-hazard map Generation  

Flood-hazard maps were generated through downscaling of river water levels simulated by CaMa-Flood (6-arcmin 

resolution) to the resolution of elevation data (3 arcsec). The general procedures used for simulation and data processing are 

summarized in Figure 1 (a). First, we conducted a long-term historical river hydrodynamics simulation with a daily time step 145 

using observation-based runoff data (Reanalysis_Runoff) as an input to CaMa-Flood. (time period: 1980-2014). The CaMa-

Flood model produces outputs as daily time series, including river discharge, river water level, and flood extent. In this study, 

the annual maximum river water level was calculated from daily river water level data and used for extreme-value analysis in 

the following step. 

    As the second step, river water levels at 6-arcmin resolution corresponding to the targeted return period were calculated. 150 

We fitted the Gumbel distribution (Zhou et al., 2021) to the time series of annual maximum river water levels using the L-

moments method (Hosking, 2015).) on each of the CaMa-Flood 6-arcmin grid. Due to the relatively small dataset, we used 

the Gumbel distribution, which provides more robust and stable results from small datasets than other distributions 
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(Hirabayashi et al., 2021, Dankers, 2008). Then, the river water levels corresponding to the targeted return period (RP) (e.g., 

100-year) for each grid pointcatchment were calculated from the Gumbel distribution. 155 

    We applied a simple post-processing method to the river water levels corresponding to the targeted RP estimated in the 

previous step to obtain a more reasonable spatial distribution of water levels. Through fitting of individual Gumbel 

distributions, the upstream water surface elevation can become lower than the downstream level, causing an unrealistic 

reverse water slope. To avoid this issue, if a reverse water slope was obtained in the water-level surface elevation 

distribution, we elevatedincreased the water levelssurface elevation of upstream gridscatchments to match those of 160 

downstream gridscatchments. This reverse-slope revision during the hazard-mapping process is a new method proposed in 

this paper. If reverse-slope revision is not conducted, the backwater effect is not considered, despite the occurrence of a 

reverse slope, produced by fitting the Gumbel distributions remains and the inundation-depth distribution may not be 

physically reasonable. For this reason, a novel reverse-slope revision method was applied in this study. in the purpose of 

revising the spatial inconstancy caused by distribution fitting at each unit-catchment scale (grid-scale). 165 

    The third step is projecting the water levels of the target RP (e.g., 100-year) onto a high-resolution elevation map. 

Downscaling was performed under the assumption that the water surface elevation is uniform within each 6-min unit 

catchment, and thus the floodplain water depth is calculated when the terrain elevation of a 3-arcsec pixel is lower than the 

water surface elevation. The river network map of CaMa-Flood (6-arcmin resolution in this study) was constructed through 

upscaling of a high-resolution river topographic map (MERIT Hydro; Yamazaki et al., 2019). Through this procedure, 170 

correspondence between 3-sec resolution pixels and 6-min unit catchments was preserved, allowing the water level 

simulated at 6-min resolution to be downscaled to match topographic data with 3-sec resolution (for details of the upscaling 

method, see Yamazaki et al., 2011). 
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 175 

Figure 1: Simplified schematic diagrams of (a) flood-hazard map generation, (b) correction of bias of GCM runoff, and (c) RP 
value estimation via the lookup method. 

 

2.3 Future flood-depth estimation 

In this study, two methods of estimating future flood depth were compared. The two methods are summarized in Sections 180 

2.3.1 and 2.3.2. 
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2.3.1 Runoff-correction method  

The runoff-correction method used bias-corrected GCM runoff for future simulation and calculated future flood depths 

corresponding to specific return periods through direct application of extreme-value analysis to the simulated flood depth 

time series. We investigated whether realistic future-hazard maps could be generated through bias correction of input runoff 185 

data for CaMa-Flood. The procedure followed after CaMa-Flood simulation is the same as the reanalysis-based method 

described in Section 2.2. We generated historical hazard maps using bias-corrected runoff from the historical period to 

validate the reliability of the runoff-correction method. 

    Bias correction was applied using the trend-preserving method (Hempel et al., 2013) through additive correction of the 

monthly mean runoff with runoff from the reanalysis data., which is referred to Hempel et al., 2013. Figure 1(b) shows a 190 

simplified schematic diagram of the bias-correction process for input runoff data. Specifically, the long-term averages 35-

year (1980–2014) averages  of monthly runoff from the reanalysis data and GCM were calculated (Equation (1)), and a 

constant offset C, equal to the difference from the long-term average, was set for each month. 

 

𝐶! = (∑ 𝑅"!
#$%&%'()")$&*	($%,

"-).%,."&/	($%, − ∑ 𝑅"!0123456
"-5784 − ∑ 𝑅"!012

$&*	($%,
"-).%,."&/	($%, )/(𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑦𝑒𝑎𝑟𝑠)	                    (1) 195 

 

where 𝑅"!
#$%&%'()") indicates Reanalysis_Runoff and 𝑅"!012 indicates GCM_Runoff_Ori (i and j denote the year and month, 

respectively). This value was used for full time-series analysis of the GCM under a future climate (Equation (2)). 

 

𝑅9:0126 =𝐶! + 𝑅"!012                               (2) 200 

 

where 𝑅"!012 and 𝑅9:0126  are GCM_Runoff_Ori and GCM_Runoff_BC, respectively. 

 

The trend-preserving method has been used in many studies, including The Inter-Sectoral Impact Model Intercomparison 

Project (ISI-MIP) (Warszawski et al., 2014), which provides a framework for comparing climate impact projections among 205 

sectors and scales. Willner et al., 2018 used the same method to estimate future climate-related economic damage and 

showed that over the next 20 years, economic damage will increase by 17% globally, with China having the largest increase 

(82%). 

    Alternatives to the additive correction method include multiplicative correction method, which multiplies the ratio of 

GCM to the reanalysis data, and quantile-based mapping method (Panofsky and Brier 1968, Watanabe 2020), which obtains 210 

ordinal statistics from the reanalysis data and the GCM and creates an equation relating these statistics. In the future climate, 

the average monthly runoff may fluctuate significantly due to changes in the humid and arid zones and the timing of the wet 

and dry seasons caused by increasing temperatures. We selected the additive correction method because it is relatively 

insensitive to such fluctuations. 
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2.3.2 Lookup Method  215 

In the lookup method, we first calculate the change in flood probability between the historical and future periods using the 

original GCM runoff simulation (i.e., we estimate historical RP equivalent to the magnitude of the targeted future RP). Then, 

the flood depth of the future target RP is estimated based on the flood depth of a historical flood of equivalent magnitude 

from the reanalysis runoff simulation. Because we use a lookup table to describe the relationship between flood depth and 

RP in the reanalysis simulation, this method is designated the lookup method. The aim of the lookup method is to use the 220 

GCM-based simulation results to calculate the relative change in RP, relying on the higher accuracy of the reanalysis 

simulation for absolute flood depth. The calculation process is illustrated in Figure 1(c) and the detailed procedures are as 

follows. (1) The extreme-value analysis described above is applied to the river water levels obtained using 

Reanalysis_Runoff and a lookup table is calculated (river water levels corresponding to RPRPs of 2 to -1000 years) for each 

grid. (2) Extreme-value analysis is also applied to the river water levels obtained with GCM_Runoff_Ori under the historical 225 

climate and a lookup table is calculated for each grid. (3) Next, the target RP river water levels under the future climate are 

calculated by applying extreme-value analysis to the river water levels calculated from GCM_Runoff_Ori under the future 

climate. Then, with reference to the lookup table of river water levels created in step (2), the RP under the historical climate 

corresponding to the target RP water levels for the future climate is calculated. (4) Then, for each grid, the water level 

corresponding to the RP determined in (3) is obtained from the reanalysis lookup table of water levels created in step (1). (5) 230 

If a reverse slope is present in the water-level distribution created in (4), the reverse slope is revised, downscaling is 

conducted, and the result is used as the target RP hazard map for the future climate. 

    As noted above, the lookup method uses only the statistical frequency of flooding calculated using the GCMs and the 

value calculated from the reanalysis data is used to determine inundation depths corresponding to that frequency. As the 

lookup method does not use GCM_Runoff_BC and thus avoids the uncertainties associated with bias correction, including 235 

questionable results of bias correction for extreme events (Alfieri et al., 2017; Huang et al., 2014), several previous studies 

have employed this technique (Hirabayashi et al., 2013; Hirabayashi et al., 2021). Alfieri et al., 2017 used the lookup method 

to estimate future affected population and damage by flood using historical flood hazard maps coupled with frequency 

changes under future climate scenarios.  

3 Results 240 

The results obtained using the runoff-correction and lookup methods were compared from the following two perspectives. 

First, differences between the two methods were analyzed using a single GCM for runoff at the global scale, and the 

mechanisms underlying the observed differences were examined. Second, we compared the results obtained using multiple 

GCMs for runoff and assessed the uncertainty and robustness of the two methods. 
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3.1 Comparison of methods for generating future-hazard maps  245 

We created a global reference historical hazard map based on reanalysis runoff data and a future-hazard map using the 

runoff-correction and lookup methods. Figure 2 shows the flood depths at 6-arcmin resolution prior to downscaling for the 

purpose of visualization. Here, we present the results of the 100-year RP hazard map from IPSL-CM6A-LR, which is the 

Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016) GCM that showed the maximum bias relative 

to reanalysis data among nine GCMs tested. Figures 2(b)–(c) show that the direction of change from the reference historical 250 

hazard map was the same with both methods for many rivers. Notable differences were found in northern parts of the Sahara 

Desert, parts of North America (around the Mississippi and Missouri rivers) and around the Amazon River, where the two 

methods showed opposite change trends. Both the runoff-correction and lookup methods used the reanalysis data as 

reference data to handle errors in GCM-output runoff. Therefore, the change trends from the reference historical hazard map 

were expected to be in the same direction. The future-hazard maps produced through the two methods showed opposite 255 

trends in changes compared to the reference hazard map, implyingindicating that one of the methods may be unable to 

account properly for changes in future flood riskshazards when reanalysis data are used as the historical reference dataset. 

    For detailed analysis, we created hazard maps that focused on several river basins and examined the validity of the two 

methods for constructing future-hazard maps. Prior to validating the future-hazard maps, we confirmed the validity of the 

historical hazard map through the runoff-correction method. The following two river basins were selected for detailed 260 

discussion in this paper: the Mekong River basin (specifically, the Chi-Mun River, a tributary of the Mekong River, Figure 

3), where the two methods showed the same trend under a future climate, and the Amazon River basin (upstream of Manaus, 

Figure 4), where the two methods showed opposite trends. In the runoff-correction process, the climatology of monthly 

average GCM runoff for each grid was corrected toward the climatology of the monthly average reanalysis runoff; this step 

reduced the absolute runoff errors in the GCM. Therefore, the historical hazard map constructed using the runoff-correction 265 

method was expected to be similar to the reference historical hazard map. As shown in Figure 3(a)–(c), the Chi-Mun River 

historical hazard map produced using the runoff-correction method was most similar to the reference hazard map. However, 

underestimation for the Amazon River relative to the reference hazard map remained after bias correction (Figure 4(a)–(c)). 

Bias-corrected reanalysis runoff using monthly climatology produced a significant difference in the hazard map compared to 

the map based on reanalysis runoff. 270 
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Figure 2: 100-year RP inundation depth distributions for (a) global reference historical hazard map, (b) future hazard changes 
obtained using the runoff-correction method (using IPSL-CM6A-LR) relative to (a), and (c) future hazard changes obtained with 
the lookup method (using IPSL-CM6A-LR) relative to (a). 275 
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Figure 3: 100-year RP hazard map for the Chi-Mun River basin (using the IPSL-CM6A-LR CMIP6 GCM). 

(a) Reference historical hazard map (based on reanalysis data), (b) hazard map constructed using the runoff-correction method 
(historical), (c) hazard map based on uncorrected GCM runoff (historical), (d) hazard map constructed using the lookup method, 280 
(e) hazard map constructed using the runoff-correction method (future), and (f) hazard map based on uncorrected GCM runoff 
(future). (g–h) Differences from the reference historical hazard map in (g) the hazard map obtained with the lookup method and 
(h) the hazard map obtained using the runoff-correction method (future), and (i) historical return period (RP) of river water level 
corresponding to the 100-year RP in the future.  Red boxes in (a)–(c) indicate the location of the GRDC Ubon station (104.8617°E, 
15.2217°N) 285 
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Figure 4: 100-year RP hazard map in Amazon River basin (using IPSL-CM6A-LR of CMIP6 GCM) 

(a) Reference historical hazard map (based on reanalysis data), (b) hazard map constructed using the runoff-correction method 
(historical), (c) hazard map based on uncorrected GCM runoff (historical), (d) hazard map constructed using the lookup method, 
(e) hazard map constructed using the runoff-correction method (future), and (f) hazard map based on uncorrected GCM runoff 290 
(future). (g–h) Differences from the reference historical hazard map in (g) the hazard map obtained with the lookup method and 
(h) the hazard map obtained using the runoff-correction method (future), and (i) historical return period (RP) of river water level 
corresponding to the 100-year RP in the future. Black boxes in (g)–(h) indicate the location of the GRDC Itapeua station. 
(63.0278°W, 4.0578°S). 

 295 

    The results for a future climate were assessed; as the historical climate was not corrected as expected, the future climate 

might have followed the same trend and failed to meet expectations. For both the Chi-Mun and Amazon rivers, using the 

GCM without bias correction, the shift from the historical (Figure 3(c), 4(c)) to future climate (Figure 3(f), 4(f)) 

impliedshowed that flood riskhazard would increase in the future. For the Chi-Mun River, as shown in Figure 3(g) and 3(h), 

the future-hazard maps constructed using the runoff-correction method and lookup method showed increases in the 300 
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inundation areas and depths compared to the reference historical hazard map (Figure 3(a)). In contrast, for the Amazon River, 

Figure 4(h) shows that the inundation depths on the hazard map obtained using the runoff-correction method were less than 

the depths on the reference historical hazard map, implying that the runoff-correction method may be unable to account for 

the increased riskhazard of future flooding predicted by the GCM. On the other hand, Figure 4(g) shows that inundation 

depths on the hazard map based on the lookup method were greater than those on the reference historical hazard map, 305 

implyingsuggesting that the lookup method was able to produce hazard maps that were consistent with the changes in flood 

riskhazard under a future climate projected by the GCMsCaMa-Flood simulations with GCM runoff input. In the subsequent 

sections, we explore why bias correction was less effective than expected for the Amazon River. 

    We investigated the reasons for the differences between the reference historical hazard map and the historical hazard map 

constructed using the runoff-correction method. Figures 5 and 6 show the monthly mean discharge climatology, exceedance 310 

probability curve and Gumbel distributions for the annual maximum river water levels based on CaMa-Flood simulation 

results using each runoff type as input values. For reference, we show the cumulative distribution function for annual 

maximum river water levels based on the lookup method in Figure 5(c)–(d) and Figure 6 (c)–(d). The comparison sites were 

Global Runoff Data Centre (GRDC) observation sites, specifically Ubon station (104.8617°E, 15.2217°N) in the Mekong 

River basin and Itapeua station (63.0278°W, 4.0578°S) in the Amazon River basin. The climatology of monthly average 315 

GCM runoff for each grid was corrected toward the climatology of the reanalysis dataset. Therefore, monthly average 

discharge data were expected to be similar to the reanalysis data. In addition, the annual maximum river water levels were 

corrected, which was necessary for application of extreme-value analysis of the annual maximum river water levels when 

constructing the hazard maps. For these reasons, we drew an exceedance probability curve and the Gumbel distribution for 

the annual maximum river water levels and checked whether the values were corrected to the same scale as the reanalysis 320 

data (Figure 5b). Prior to analysis of the Amazon River, where bias correction did not perform as expected, the Chi-Mun 

River was assessed. As shown in Figure 5(a)–(d), the uncorrected GCM (historical data; green dotted line) showed different 

behavior from the reanalysis data (black line), but the bias-corrected GCM (green line) data were similar to the reanalysis 

data, as expected. 

 325 
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Figure 5: Comparison of reanalysis data, uncorrected GCM, bias-corrected GCM and the lookup method at GRDC Ubon station. 
(104.8617°E, 15.2217°N). (a) Climatology of monthly mean discharge, (b) Exceedance probability curve of the annual maximum 
river water levels from 1980 to 2014, (c) Gumbel distribution of annual maximum river water levels, and (d) enlarged view of the 330 
orange square in (c). 
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Figure 6: Comparison of reanalysis data, uncorrected GCM, bias-corrected GCM and the lookup method at GRDC Itapeua 
station (63.0278°W, 4.0578°S). (a) Climatology of monthly mean discharge, (b) Exceedance probability curve of annual maximum 335 
river water levels from 1980 to 2014, (c) Gumbel distribution of annual maximum river water levels, and (d) enlarged view of the 
orange square in (c). 

 

    Following analysis of the Chi-Mun River, a similar comparison was conducted for the Amazon River. Figure 6(a) shows 

that the climatology of monthly mean discharge of the bias-corrected GCM (historical) was similar to the reanalysis data, 340 

which was also as expected. On the other hand, the exceedance probability curve and Gumbel distribution of the annual 

maximum river water levels (Figure 6(b)–(d)) changed little with bias correction. The tail portion of the bias-corrected GCM 

(historical) was undervalued compared to the reanalysis data, implying that bias correction did not function as expected for 

extreme values associated with the hazard map, even under the historical climate. The runoff-correction method corrected for 

bias in GCM runoff data using monthly climatology based on reanalysis runoff values. However, as demonstrated by the 345 

Gumbel distributions in Figure 6(c), the bias of the GCM differed with the return period, indicating that the bias of extreme 
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values was not the same as that of the mean value. If the bias differs sharply among return periods, the runoff-correction 

method may not perform as expected for extreme values. The tail portion of the bias-corrected GCM (future) was also 

smaller than the tail for reanalysis data (Figure 6(d)), implyingindicating that the direction of the change in the future hazard 

obtained using the runoff-correction method relative to the reference reanalysis-based hazard map were inconsistent with the 350 

changeschange projected by the GCMs.CaMa-Flood simulations with GCM runoff input. On the other hand, as shown in 

Figure 6(c)–(d), the lookup method accounted for changes in flood riskhazard under the future climate projected by the 

GCMsCaMa-Flood simulations with GCM runoff input. As described in Section 2.3.2, the lookup method uses the relative 

change in RP among GCMs, and can modify extreme values accordingly. 

    We recognized that bias correction of runoff using monthly climatology based on reanalysis runoff data produced large 355 

differences in the hazard map compared to the map based on reanalysis runoff. These differences arose because the bias of 

extreme values differed from that of the mean value, implyingsuggesting that this bias correction procedure may not be 

suitable for extreme values on the hazard map. For extreme values of GCM runoff and river water levels, the results were not 

reliable even after bias correction, and such values may not be suitable for constructing hazard maps. 

3.2 Analysis of hazard maps generated with multiple GCM runoff datasets  360 

In this section, we compare the inundation areas of future-hazard maps constructed using two methods with nine GCMs of 

CMIP6. The target area was the Chao Phraya River basin and surrounding rivers (98°E to 103°E, 12°N to 18°N). As shown 

in Figure 2, the change direction of change from the reference historical hazard map was the same withfor both methods 

forin the Chao Phraya River basin and surrounding rivers when IPSL-CM6A-LR was used. In this section, we used other 

GCM models to test whether the two methods could produce hazard maps consistent with the future changes in flood 365 

riskshazards predicted using the uncorrected GCM. Here, we compare the inundation areas of the 100-year RP hazard map 

among nine CMIP6 GCMs (Figure 7). 
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Figure 7: Box plot of inundated area (km2) estimates near the Chao Phraya River obtained using the runoff-correction method 370 
and lookup method. Whiskers show minimum and maximum values, boxes show 25th and 75th percentile values, orange lines 
show the median (50th percentile) value and green triangles show the average value. 

 

    First, we examined whether the runoff-correction method for the historical period provided results similar to the reference 

reanalysis-based historical hazard map. The multi-model average inundated area for the nine models shown in Figure 7 375 

indicates that the inundated area for the historical period was corrected from 45,124 km2 to 45,508 km2 using the runoff-

correction method, and thus remained almost unchanged. Comparing the effects of bias correction for each model (Table S1 

and Figure S1), we observed that MPI-ESM1-2 became closer to the reference historical hazard map than the uncorrected 
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GCM by usingwhen the runoff-correction method was used, while MIROC6 and GFDL-CM were corrected away from the 

reference values. These results implysuggest that the inundation areas under the historical climate were not corrected as 380 

expected by the runoff-correction method for most GCMs. One reason for this finding is that, as noted above for the Amazon 

River (Figure 6), the bias-correction process did not properly correct for the Gumbel distribution of river water levels 

because the bias of extreme values was not the same as that of the mean values, and therefore bias correction did not address 

the extreme values on the hazard map. As shown in Figure 7 and Table S1, for the Chao Phraya River basin and surrounding 

rivers, the effect of bias correction was also small under the future climate in many models (using the runoff-correction 385 

method, the inundated areas for nine GCMs were corrected from 35,054–60,000 km2 to 40,085–59,320 km2). For example, 

as shown in Table S1, when using MPI-ESM1-2-HR, despite the increase in inundation area from the historical to future 

period for the uncorrected GCM, the inundation area of 40,085 km2 obtained with the runoff-correction method was smaller 

than the corresponding area on the reference historical hazard map (42,321 km2), implyingsuggesting that bias correction did 

not improve the GCM hazard map as expected. 390 

    The results of the lookup method were also examined. The lookup method is relatively unaffected by bias in the GCM, as 

the rate of change from the historical period to the future period is the key factor. If an inundated area increases from the 

historical climate to the future climate based on the uncorrected GCM, the inundated area should be larger on a hazard map 

produced using the lookup method than on the reference historical hazard map. Table S1 shows that the inundation areas 

obtained using the lookup method were consistent with the historical and future inundation changes of the uncorrected GCM. 395 

For example, using INM-CM5, the inundation area decreased between the historical and future periods based on the 

uncorrected GCM, implyingindicating a decrease in future flood riskhazard. As shown in Table S1 and Figure S2, the 

inundation area was smaller for INM-CM5 using the lookup method than on the reference historical hazard map, indicating 

that the changes in future riskflood hazard predicted by the GCMs were properly considered. 

    The results from multiple GCMs implied the following points of discussion. For most of the nine GCM models, the 400 

runoff-correction method did not correct the 100-year RP inundation areas under the historical climate as expected, and some 

GCMs were corrected away from the reanalysis data. Therefore, GCM-specific biases are unlikely to have been corrected on 

these hazard maps for the future climate. For example, the results from MPI-ESM1-2-HR impliedsuggested that the runoff-

correction method may not account for future climate riskflood hazard projected by theCaMa-Flood simulations with GCM 

runoff input in terms of the change direction of change from the reference historical hazard map. On the other hand, the 405 

lookup method did produce hazard maps consistent with the changes in flood riskhazard under the future climate projected 

by the GCMs.CaMa-Flood simulations with GCM runoff input. Regarding the uncertainties in future flood-riskhazard 

predictions, the divergence of the runoff-correction method includes the divergence of multiple GCMs in the future as well 

as the divergence associated with the bias of extreme values relative to that of the mean value in each model. The latter 

divergence reflects the model structure, specifically the systematic bias within each model. The lookup method removes this 410 

bias, and therefore it is expected to have smaller uncertainties than the runoff-correction method. 
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4 Discussions 

4.1 Which method is more convenientreasonable for generating future-hazard maps?  

In this study, we compared the runoff-correction and lookup methods, and investigated the causes of differences in hazard 

maps constructed using the two methods. Based on the results, we suggest using the lookup method with reanalysis data as a 415 

reference for the following three reasons. 

    First, using a hazard map based on reanalysis runoff data as reference is convenientreasonable. Reanalysis runoff values 

are based on historical weather observations, and thus a hazard map created using reanalysis runoff is expected to show good 

consistency with actual flood riskhazard. The performance of global river model simulations using reanalysis runoff values 

has been evaluated through comparison with observed data (e.g., time series of discharge, water level, and inundation extent; 420 

Yamazaki et al., 2011, 2014). Hazard maps generated through global river model simulations with reanalysis runoff have 

been validated in numerous studies. Bernhofen et al., 2018 validated several global flood models, including CaMa-Flood, 

which was used in this study. The accuracy of hazard maps produced using global flood models has been validated through 

comparisons with existing flood-hazard maps (e.g., CaMa-Flood results in Japan were validated by Kita et al., 2022, and 

GloFAS model results were validated in Europe and the Mediterranean by Dottori et al., 2022).  425 

    Second, the lookup method can produce hazard maps that are consistent with projected changes in future flood riskhazard 

based on GCMsCaMa-Flood simulations with GCM runoff input, as demonstrated by the results of this study, discussed in 

Section 3. On the other hand, the direction of the change in future hazard (increase or decrease) obtained using the runoff-

correction method relative to the reference reanalysis-based hazard map may be inconsistent with the changes projected by 

the GCMsCaMa-Flood simulations using GCM runoff input, as described for the Amazon River in Section 3. This result 430 

suggests that simple bias-correction techniques of GCM data, i.e., additive correction to monthly mean runoff, may not be 

suitable for use in flood hazard estimation and that various other bias-correction techniques that focus on extreme values 

should be tested. The lookup method also has the advantage of facilitatingfacilitates research on the efficient construction of 

future climate hazard maps, as because historical hazard maps can be prepared separately from the estimation of future 

frequency change. This is beneficial for two aspects: 1) it allows for improvement of the reanalysis hazard map by upgrading 435 

the model, and the estimated changes due to climate change can be considered separately; 2) it allows for use of multiple 

reference hazard maps by using different reanalysis-based simulations. 

    Third, the use of GCM historical climate simulations as reference data introduces problems. As noted in Section 3.2, for 

most of the nine GCM models, the runoff-correction method did not correct the 100-year RP inundation area as expected 

based on the historical climate, and some GCMs were corrected away from the reanalysis data, indicating that the accuracy 440 

of bias-corrected GCM historical climate data is poor. In addition to evaluating the future climate hazard map itself, many 

situations require the future-hazard map to be considered in comparison with a historical climate hazard map (Hirabayashi et 

al., 2021 and Taguchi et al., 2022). Using reanalysis data to construct the hazard map for the historical climate makes such 

analyses easier. However, when GCMs are used for the historical climate, the inundation area of historical climate is 
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calculated individually for each GCM; in such cases, multiple results are referenced, which complicates mapping and 445 

comparison. 

For these reasons, we consider that the lookup method with reanalysis data as reference data is the most reasonable method 

of creating future-hazard maps for flood risk assessment. 

4.2 Validity of reverse slope revision  

As noted in Section 2.2, we revised the reverse slope during the process of hazard- map generation in this study. For actual 450 

physical processes, if slope reversal occurs, the backwater effect causes the downstream water level to propagate upstream 

(backflow), which increases the flood riskhazard. A reverse slope is a technical problem in extreme-value analysis. In the 

process of calculating the water levels for the targeted return period, we fitted a Gumbel distribution toon each of CaMa-

Flood 6-arcmin grid, allowing the upstream water surface elevation to be lower than the downstream elevation, resulting in 

an unrealistic reverse water slope. If such a reverse slope is not revised and the backwater effect is not considered, the 455 

inundation depth distribution may not be physically reasonable and flood riskhazard may be underestimated. 

    Therefore, we analyzed the effect of revising the reverse slope and present our findings in this section (reverse-slope 

revision is referred to as Backwater_Modification in this section). Prior to analysis of the Backwater_Modification effect, the 

occurrence of slope reversal was checked using the water surface elevation distributions from the reanalysis data (without 

Backwater_Modification) and the lookup method (without Backwater_Modification). The water surface elevation 460 

distribution obtained through application of extreme-value analysis to each grid water level showed that many reverse slopes 

occurred, although the majority were small (with 6-arcmin global resolution, 30,000 grids for the reanalysis data and 37,000 

grids for the lookup method). Reverse-slope grids occurred frequently at confluences, where the backwater effect can occur, 

and thus reverse slope revision is physically reasonable. 

    We applied Backwater_Modification to the water surface elevation and assessed the impact of this modification. The area 465 

of 83.5°E to 86°E and 25°N to 26.5°N, where many reverse slopes are shown in Figure S3(b), was the target area for this 

process. The water surface distribution was created by adding elevation to the 100-year RP inundation depth distribution. As 

shown in Figure 8(a)–(b), the reverse slope was eliminated by Backwater_Modification. In addition to checking the water 

surface distribution, we drew the water surface on a cross-section of the river and a section from upstream to downstream 

(red and green lines in Figure 8) to check whether the water surface was smoothly revised. Figure 8(d) shows that the water 470 

surface in the cross-section of the river tended to change significantly at the boundary of the unit catchment without 

Backwater_Modification; however, with Backwater_Modification the water surface distribution was smooth. In addition, as 

shown in Figure 8(e), for the water surface section from upstream to downstream, the reverse-slope condition was resolved, 

leading to a water surface distribution that was physically reasonable.  

    Please note that it is possible that it would be overestimated by applying Backwater_Modification because it performs 475 

corrections at all reverse slope occurrence points. Reversed water surface slopes can occur in conventional flood hazard 

maps, given that these maps are not always constructed by a single flood event simulation. Therefore, we conducted 
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additional validation to investigate whether Backwater_Modification should be applied. As shown in Text S1, additional 

validation of Backwater_Modification was conducted. Specifically, we compared the CaMa-Flood-hazard maps obtained 

using Backwater_Modification with hazard maps published in Japan containing information about inundation depths. The 480 

comparison results (Table S2 and Figure S4) showed that the inundation area was more realistic with 

Backwater_Modification than without it. As noted above, if a reverse slope is present in the water surface level, revision 

using the method proposed in this study (Backwater_Modification) would be appropriate. 

 

 485 
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Figure 8: (a) Water surface distribution obtained using the lookup method without Backwater_Modification; (b) water surface 
distribution obtained using the lookup method with Backwater_Modification; (c) the difference in water surface level between (a) 490 
and (b); (d) water surface profiles along the red transects (river cross-section of the river); and (e) water surface profiles along the 
green transects (section along the flow direction (from upstream to downstream)) 

 

4.3 Future changes in inundation area and the population affected within the inundation area 

We analyzed the extent of differences in the estimates of future flood risk changes, specifically inundation area and the 495 

affected population within the inundation area depending on the implementation of bias correction or 

Backwater_Modification and the method used to construct the hazard map. The flood-exposed population was estimated 
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based on the inundation map and the 2020 population density map (Gridded Population of the World; CIESIN, 2018). This 

map has 30-arcsec resolution, and therefore the 3-arcsec inundation map was aggregated to 30-arcsec resolution. Here, as in 

Section 3, we present the results from the 100-year RP hazard map of IPSL-CM6A-LR, which is one of the nine CMIP6 500 

GCM models. Based on the inundation area in Table 2, we found that the 100-year RP inundation area was 14.018.4 

million km2 based on reanalysis runoff and 20.3 million km2 based on uncorrected GCM runoff (future), indicating an 

increase of approximately 4510% compared to the historical climate. On the other hand, the 100-year RP inundation area 

reached 20.5 million km2 using the runoff-correction method (relative to historical climate: +4611%) and 19.17 million km2 

using the lookup method (relative to historical climate: +377%); thus, the difference in future flood risk estimates was up to 505 

94%, depending on whether bias correction was applied and the construction method. Inundation areas with particularly high 

risk of inundation depths of 5 m or greater covered 1.32.2 km2 in the historical reference period and ranged from 3.04–4.2 

km2 under the future climate (relative to historical climate: +124%–21657%–92%) for various methods, indicating a 

difference in future flood-risk estimates of up to 9235%, especially in high-risk areas. The 

    To evaluate the sensitivity of the inundation area and the affected population with and without the 510 

Backwater_Modification, we examined the effects of Backwater_Modification were then analyzed.. As shown in Table 2 

shows that, it increased the inundation area from 18.9819.49 million km2 to 19.1367 million km2 for the lookup method, an 

increase of about 0.1518 million km2. Focusing on high-risk areas, the inundation area based on the lookup method increased 

from 2.853.23 million km2 to 2.983.43 million km2 with Backwater_Modification, an increase of approximately 0.1520 

million km2 in high-risk areas. Notably, withoutBased on these results, applying Backwater_Modification, led to the overall 515 

inundated area was underestimated by about 0.15 million km2creation of a physically reasonable hazard map as shown in 

section 4.2, and thecorrected high-risk area was also underestimated by about 0.15 million km2. Table 2 showsareas. We 

conclude that Backwater_Modification is a necessary revision. 

    As discussed by Zhou et al., 2021, the spatial resolution of a flood hazard map is a particularly important determinant of 

its value for impact assessment. Smith et al. (2019) evaluated the affected population tended to be similarexposure to a 1-in-520 

100 year flood in 18 developing countries, and found that decreasing the spatial resolution of the flood hazard map from 90 

to 900 m increased the exposure by 51-94 % for different population of the inundated area.products. Although there is 

uncertainty involved in the choice of the spatial resolution of the flood hazard map, we selected 30-arcsec instead of 3-arcsec 

resolution to compare future flood hazard map construction methods on a global scale. 

 525 

 
Table 2: Inundation area of the 100-year RP hazard maps and affected population from the 100-year RP hazard maps constructed 
using various methods; "_no_modification" indicates a map constructed without Backwater_Modification. These results were 
obtained using IPSL-CM6A-LR. 
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 530 

  

 

    An alternative method for risk assessment under a future climate in areas where future-hazard maps have not been created 

is the use of hazard maps for historical climates to estimate future damage. We considered a method of future risk 

assessment that does not use future-hazard maps, i.e., the use of hazard maps created for historical climates and calculation 535 

of the exposed population based solely on future frequency changes. As shown in Table 2, the areas inundated by a 100-year 

RP flood in the future climate will differ from those inundated under the historical climate. Therefore, properly assessing 

flood risk under a future climate is not possible if the hazard map is fixed and only changes in frequency are considered. 

Table 2 indicates the total population living in the inundation areas modeled for the reference historical hazard map to be 

around 1.2763 billion. Using the fixed hazard map method, the affected population in the future climate would also be 540 

1.2763 billion. However, population estimates of 1.80 billion with the runoff-correction method and 1.7886 billion with the 

lookup method were obtained in this study, implying that an affected population of around 0.52 billion may be overlooked if 

the hazard map is fixed and only changes in frequency are considered. As a specific example, we identified the affected 

population in the Chao Phraya River and Mekong River area, and Figure 9 shows the affected population in that area based 

on the 100-year RP hazard map. In that area, the total affected population based on the reference historical hazard map is 545 

6375 million and the population obtained for the future-hazard map using the lookup method is 7982 million, indicating 

underestimation by approximately 167 million if the hazard map is fixed and only frequency change is considered (Figure 

9(c)). 
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Figure 9: Affected population in the Chao Phraya River and Mekong River area based on the 100-year RP hazard map (obtained 
using IPSL-CM6A-LR). (a) Reference historical hazard map; (b) future-hazard map constructed using the lookup method; and (c) 
difference of (b)−(a), representing the population not currently affected by flooding that may be affected under the future climate. 555 

 

5 Conclusions 

In this study, weWe explored several methods for constructing hazard maps under a future climate, including bias correction, 

and investigated which of these methods could produce a reasonable inundation depth distribution. The results implysuggest 
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that bias correction of runoff using monthly climatological data based on reanalysis runoff values produced a significant 560 

difference in the hazard map compared to the map based directly on reanalysis runoff values, as the bias of extreme values 

was not the same as that of the mean value. In addition, we found that the direction of the change in future hazard (increase 

or decrease) obtained using the runoff-correction method relative to the reference reanalysis-based hazard map may be 

inconsistent with the changes projected by the GCMs.CaMa-Flood simulations with GCM runoff input. This result suggests 

that simple bias-correction of GCM data using the additive correction method to correct monthly mean runoff may be 565 

unsuitable for flood hazard estimation, and that alternative bias-correction techniques should be tested (i.e. more focused on 

extreme values). On the other hand, we confirmed that the lookup method, which uses the statistical frequency of flooding 

calculated by the GCMs and the reanalysis data for inundation depths corresponding to that frequency, could 

produceproduced hazard maps that were consistent with the flood hazard changes in flood risk projected by the 

GCMsCaMa-Flood simulations with GCM runoff input, indicating the possibility of obtaining a reasonable inundation area 570 

distribution. Thus, combining accurate historical hazard maps with information on future flood frequency changes may be 

optimal in general for generating future hazard maps. Please note that the historical flood hazard maps are not required to 

apply reanalysis-based simulations using global flood model; the proposed method is also applicable to gauge-based or 

machine-learning based historical hazard map. 

    In addition, we discussed which method is most convenientmore reasonable for generating future-hazard maps in terms of 575 

ease of use. When using the GCM historical climate with bias correction based on the climatology of average monthly runoff, 

the inundation areas were calculated separately for each GCM. For the Chao Phraya River, as described in Section 3, the 

100-year RP inundation area under the historical climate varied widely, from 34,475 to 54,121 km2, making it difficultIt is 

reasonable to use in practice. In contrast, the lookup method defines the historical climate a hazard map as having a value of 

one, making analysis simpler. Therefore, the lookup method is superior in terms of ease of comparison with based on 580 

reanalysis runoff data as a reference. Reanalysis runoff values are based on historical weather observations; therefore, a 

hazard map created using reanalysis runoff data is expected to show good consistency with actual flood hazard distribution. 

Regarding the uncertainties in future trends, as described in Section 3.2, the lookup method removed the systematic bias in 

the distribution of annual maximum water levels within each model, and therefore is expected to have smaller uncertainties 

than the runoff-correction method. The lookup method also has the advantage of facilitating efficient construction of future 585 

climate hazard maps, as it allows for separate consideration of reanalysis hazard map improvement through upgrading of the 

model and estimation of changes associated with climate change. Our results implyindicate that hazard maps could be made 

more realistic by applying the proposed method to revise water slope reversal. Based on these findings, we suggest use of the 

lookup method with reanalysis data as a reference. 

    In addition, this study examined the extent to which estimates of future flood risk changes differed depending on whether 590 

bias correction was implemented and the method used for future-hazard mapping. Our assessment of inundation areas and 

the future population affected by flooding showed that the variation in future flood high-risk areas estimates due to bias 

correction and the method of model construction was up to 935%. Using the lookup method, the total population living in the 



 

28 
 

modeled inundation areas where the flood magnitude exceeded the 100-year RP under a future climate was estimated to be 

around 1.886 billion. In addition, our risk assessment under a future climate showed underestimation of around 0.52 billion 595 

for the affected population when the historical hazard map was used as an alternative to future-hazard maps and only the 

change in frequency was considered. These results implysuggest that global flood risk studies require future-hazard maps, 

i.e., inundation depth distributions at high resolution, for proper estimation of climate-change risk, and that discussing only 

changes in the frequency of a given flood intensity is insufficient. 

Code availability 600 

The global hydrodynamic model CaMa-Flood (v4.01) is available from (https://doi.org/10.5281/zenodo.4659583) 

(Yamazaki et al,. 2021). 

Data availability 

The topography data MERIT are available from http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/index.html (last 

access: 17 October 2022) (Yamazaki et al., 2019). VIC-Bias-Corrected runoff are available from 605 

https://www.reachhydro.org/home/records/grfr (Yang et al., 2021). The CMIP6 data are available from the Earth System 

Grid Federation (ESGF) data platform (https://esgf-node.llnl.gov/search/cmip6/, accessed on 17 October 2022). 

Author contribution 

Yuki Kimura, Yukiko Hirabayashi and Dai Yamazaki conceived the study and contributed to the development and design of 

the methodology. Yuki Kimura performed simulation and analysis. Xudong Zhou developed a code for extreme value 610 

analysis. Yuki Kimura and Dai Yamazaki prepared the manuscript with re-view from Yukiko Hirabayashi, Xudong Zhou, 

Yuki Kita. 

Acknowledgements 

This research was supported by LaRC-Flood Project co-funded by MS&AD and NEDO (JP21500379) 

 615 

  



 

29 
 

References 

Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser K, and Feyen, L.: Global projections of 

river flood risk in a warmer world. Earth's Future, 5(2), 171-182. https://doi.org/10.1002/2016EF000485, 2017. 

Aqueduct Floods Hazard Maps, https://www.wri.org/aqueduct/data, last access: 25 October 2022. 620 

Bates, P. D., Savage, J., Wing, O., Quinn, N., Sampson, C., Neal, J., and Smith, A.: A climate-conditioned catastrophe risk 

model for UK flooding, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-829, 2022. 

Beck, H. E., De Roo, A., and van Dijk, A. I.: Global maps of streamflow characteristics based on observations from several 

thousand catchments. Journal of Hydrometeorology, 16.4, 1478-1501, https://doi.org/10.1175/JHM-D-14-0155.1, 2015. 

Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M., Sampson, C. C., Yamazaki, D., Ward, J. P. and 625 

Winsemius, H. C.: A first collective validation of global fluvial flood models for major floods in Nigeria and Mozambique. 

Environmental Research Letters, 13.10, 104007, https://iopscience.iop.org/article/10.1088/1748-9326/aae014/meta, 2018. 

Center for International Earth Science Information Network (CIESIN), Columbia University: Documentation for the Gridded 

Population of the World, Version 4 (GPWv4), Revision 11 Data Sets, NASA Socioeconomic Data and Applications Center 

(SEDAC), Palisades, NY, https://doi.org/10.7927/H45Q4T5F, 2018. 630 

Dankers, R., and Feyen, L.: Climate change impact on flood hazard in Europe: An assessment based on high‐resolution 

climate simulations. Journal of Geophysical Research: Atmospheres, 113.D19, https://doi.org/10.1029/2007JD009719, 2008. 

De Moel, H. D., J. Van Alphen, and J. C. J. H. Aerts.: Flood maps in Europe–methods, availability and use. Natural hazards 

and earth system sciences 9.2, 289-301, https://doi.org/10.5194/nhess-9-289-2009, 2009. 

Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts R, 635 

A. and Feyen., L.: Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate 

Change, 8.9, 781-786, https://doi.org/10.1038/s41558-018-0257-z, 2018. 

Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: A new dataset of river flood hazard maps for Europe and the 

Mediterranean Basin, Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, 2022. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 640 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 

9.5, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. 

Federal Emergency Management Agency (FEMA) Flood Maps and Zones Explained: https://www.fema.gov/blog/fema-

flood-maps-and-zones-explained, 2018,  last update 17 March 2021, last access: 16 October 2022. 

Global Assessment Report 2015 (GAR 2015), Global Risk Data Platform, https://preview.grid.unep.ch/, last access 16 645 

October 2022. 

Global Runoff Data Centre (GRDC): https://www.bafg.de/GRDC/EN/Home/homepage_node.html, last access: 11 October 

2022. 



 

30 
 

Hempel, S., Frieler, K., Warszawski, L., Schewe, J. and Piontek, F: A trend- preserving bias correction – the ISI-MIP 

approach. Earth System Dynamics, 4.2, 219-236, https://doi.org/10.5194/esd-4-219-2013, 2013. 650 

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. and Kanae, S.: Global 

flood risk under climate change. Nature climate change, 3.9, 816-821, https://doi.org/10.1038/NCLIMATE19, 2013. 

Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X., and Yamazaki, D.: Global exposure to flooding from the new CMIP6 

climate model projections. Scientific reports, 11.1, 1-7, https://doi.org/10.1038/s41598-021-83279-w, 2021. 

Hirabayashi, Y., Yamada, K., Yamazaki, D., Ishikawa, Y., Arai, M., Inuzuka, T., Hisamatsu, R. and Ogawada, D.: 655 

Comparative Evaluation of Global Flood Hazard Maps and Recommendations for Corporate Practice. Journal of Japan 

Society of Hydrology & Water Resources. Vol. 35, No.3 175-191, https://doi.org/10.3178/jjshwr.35.175, 2022. 

Hosking, J. R. M.: L-Moments, in: Wiley StatsRef: Statistics Reference Online, John Wiley & Sons, Ltd., Hoboken, USA, 

1–8, https://doi.org/10.1002/9781118445112.stat00570.pub2, 2015. 

Huang, S., Krysanova, V., and Hattermann, F. F.: Does bias correction increase reliability of flood projections under climate 660 

change? A case study of large rivers in Germany. International Journal of Climatology, 34.14, 3780-3800, 

https://doi.org/10.1002/joc.3945, 2014. 

Japan Institute of Country-ology and Engineering 39th report: https://www.jice.or.jp/tech/reports/detail/16/43, 2021, last 

access on 16th October 2022. 

Joint Research Centre (JRC) 2022: River Flood Hazard Maps at European and Global Scale, 665 

https://data.jrc.ec.europa.eu/collection/id-0054, last access 16 October 2022. 

Kita, Y. and Yamazaki, D.: Verification of the Usability of Global River Inundation Model Output for Hazard Maps in Japan.  

Journal of Japan Society of Hydrology and Water Resources. Vol. 35, No.4 267-278, https://doi.org/10.3178/jjshwr.35.1743, 

2022. 

LaFond, K. M., Griffis, V. W., & Spellman, P.: Forcing hydrologic models with GCM output: Bias correction vs. the" delta 670 

change" method. In World Environmental and Water Resources Congress 2014, 2146-2155,  

https://ascelibrary.org/doi/10.1061/9780784413548.214, 2014. 

Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in annual extremes of daily temperature and 

precipitation in CMIP6 models. Journal of Climate, 34.9, 3441-3460, https://doi.org/10.1175/JCLI-D-19-1013.1, 2021. 

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J.: A simple hydrologically based model of land surface water and 675 

energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99.D7, 14415-14428,  

https://doi.org/10.1029/94JD00483, 1994. 

Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and 

modification. Global and Planetary Change, 13(1-4), 195-206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996. 

Lu, J., Carbone, G. J., and Crego, J.M.: Uncertainty and hotspots in 21st century projections of agricultural drought from 680 

CMIP5 models. Scientific Reports, 9.1, 4922, https://doi.org/10.1038/s41598-019-41196-z, 2019. 



 

31 
 

Panofsky HA, Brier GW. 1968. Some applications of statistics to meteorology: The Pennsylvania State University Press. 

224pp. 

Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E.: A high‐resolution global flood hazard 

model. Water resources research, 51.9, 7358-7381, https://doi.org/10.1002/2015WR016954, 2015. 685 

Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, 

S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S.M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in 

a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. 

Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. 690 

Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, pp. 1513–1766, doi:10.1017/9781009157896.013, 2021. 

Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., and Neal, J.: New estimates of flood exposure in developing 

countries using high-resolution population data, Nat. Commun., 10, 1–7, https://doi.org/10.1038/s41467-019-09282-y, 2019. 

Taguchi, R., Tanoue, M., Yamazaki, D., and Hirabayashi, Y.: Global-Scale Assessment of Economic Losses Caused by 695 

Flood-Related Business Interruption. Water, 14.6, 967. https://doi.org/10.3390/w14060967, 2022. 

Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson, C. C., Yamazaki, D., Hirabayashi, Y., 

Pappenberger, F., Dutra, E., Ward, P. J., Winsemius, H.C., Salamon, P., Dottori, F., Rudari, R., Kappes, M. S., Simpson, 

A.L., Hadzilacos, G and Fewtrell, T. J.: The credibility challenge for global fluvial flood risk analysis. Environmental 

Research Letters, 11.9, 094014. https://doi.org/10.1088/1748-9326/11/9/094014, 2016. 700 

United Nations Office for Disaster Risk Reduction (UNISDR): Sendai Framework for Disaster Risk Reduction 2015– 2030, 

United Nations, www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf, 2015. 

Watanabe, S., Kanae, S., Seto, S., Yeh, P. J. F., Hirabayashi, Y., and Oki, T.: Intercomparison of bias‐correction methods for 

monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research: Atmospheres, 

117.D23, https://doi.org/10.1029/2012JD018192, 2012. 705 

Watanabe, S.: Bias correction of climate model output values (1) Organizing feature-based methods. Journal of Japan 

Society of Hydrology & Water Resources. Vol. 33, No.6 243-262, https://doi.org/10.3178/jjshwr.33.243. 2020. 

Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F. P., Bouwman, A., Moel, H. D. E., Luo, T.: Aqueduct floods 

methodology. World Resources Institute, 1– 28. www.wri.org/publication/aqueduct-floods-methodology, 20202020a. 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The inter-sectoral impact model 710 

intercomparison project (ISI–MIP): project framework. Proceedings of the National Academy of Sciences, 111.9, 3228-3232, 

https://doi.org/10.1073/pnas.1312330110, 2014. 

Willner, S. N., Otto, C., and Levermann, A.: Global economic response to river floods. Nature Climate Change, 8.7, 594-598, 

https://www.nature.com/articles/s41558-018-0173-2, 2018. 



 

32 
 

Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., 715 

Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, 

H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, 

https://doi.org/10.5194/nhess-20-1069-2020, 2020b. 

Wing, O. E., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C, Porter, J. R, and Kousky, C.: 

Inequitable patterns of US flood risk in the Anthropocene. Nature Climate Change, 12(2), 156-162, 720 

https://doi.org/10.1038/s41558-021-01265-6. 2022. 

Yamazaki, D., Kanae, S., Kim, H., & Oki, T.: A physically based description of floodplain inundation dynamics in a global 

river routing model. Water Resources Research, 47.4, https://doi.org/10.1029/2010WR009726, 2011. 

Yamazaki, D., de Almeida, G. A., and Bates, P. D.: Improving computational efficiency in global river models by 

implementing the local inertial flow equation and a vector‐based river network map. Water Resources Research, 49.11, 725 

7221-7235, https://doi.org/10.1002/wrcr.20552, 2013. 

Yamazaki, D., Sato, T., Kanae, S., Hirabayashi, Y., and Bates, P. D.: Regional flood dynamics in a bifurcating mega delta 

simulated in a global river model. Geophysical Research Letters, 41.9, 3127-3135, https://doi.org/10.1002/2014GL059744, 

2014. 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.:  MERIT Hydro: A high‐resolution 730 

global hydrography map based on latest topography dataset. Water Resources Research, 55.6, 5053-5073, 

https://doi.org/10.1029/2019WR024873, 2019. 

Yamazaki, D., Revel, M., Hanazaki, R., Zhou, X., and Nitta, T.: global-hydrodynamics/CaMa-Flood_v4: CaMa-Flood 

(v4.01). Zenodo. https://doi.org/10.5281/zenodo.4659583, 2021. 

Yang, Y., Pan, M., Lin, P., Beck, H. E., Zeng, Z., Yamazaki, D., David, C.H., Lu, H. Yang, K., Hong, Yang. And Wood, E, 735 

F.: Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019). Bulletin of the American Meteorological Society, 

102.11, E2086-E2105, https://doi.org/10.1175/BAMS-D-20-0057.1, 2021. 

Zhou, X., Ma, W., Echizenya, W., and Yamazaki, D.: The uncertainty of flood frequency analyses in hydrodynamic model 

simulations. Natural Hazards and Earth System Sciences, 21(3), 1071-1085, https://doi.org/10.5194/nhess-21-1071-2021, 

2021. 740 
 

The English in this document has been checked by at least two professional editors, both native speakers of English. For a 

certificate, please see: http://www.textcheck.com/certificate/nCVZ4G 

77qmXu 


