Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-1205
https://doi.org/10.5194/egusphere-2022-1205
30 Nov 2022
 | 30 Nov 2022

Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0

Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo

Abstract. Reactive transport processes in natural environments often involve many ionic species. The diffusivities of ionic species vary. Since assigning different diffusivities in the advection-diffusion equation leads to charge imbalance, a single diffusivity is usually used for all species. In this work, we apply the Nernst–Planck equation, which resolves unequal diffusivities of the species in an electroneutral manner, to model reactive transport. To demonstrate the advantages of the Nernst–Planck model, we compare the simulation results of transport under reaction-driven flow conditions using the Nernst–Planck model with those of the commonly used single-diffusivity model. All simulations are also compared to well-defined experiments. Our results show that the Nernst–Planck model is valid and particularly relevant for modeling reactive transport processes with an intricate interplay among diffusion, reaction, electromigration, and density-driven convection.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

24 Aug 2023
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023,https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert...
Share