Referee’s report on the paper

Validating the Nernst-Planck transport model under reaction-driven flow conditions using RetroPy v1.0

Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo

The authors study the transport with electrodiffusion in continuous media, in the two-dimensional case, $2D$. They start with the continuity equations

$$\frac{\partial C_i}{\partial t} + \nabla \cdot J_i = 0, \quad i = 1, \ldots, N - 1,$$

(1)

where C_i mean concentrations and the fluxes J_i are composed of three parts: Fick’s part, Nernst-Planck’s part an Darken’s part as follows

$$J_i = -D_i \nabla C_i + \frac{z_i C_i D_i F}{RT} E + C_i u, \quad i = 1, \ldots, N - 1.$$

(2)

Darken’s velocity u fulfills Darcy’s law

$$u = -\frac{k}{\eta} (\nabla p - \rho g)$$

(3)

and the incompressibility condition holds

$$\nabla \cdot (\rho u) = 0.$$

(4)

Under the electroneutral condition

$$\sum_{i=1}^{N-1} z_i C_i = 0,$$

(5)

the system (1) leads to the stationary equation

$$-\nabla \cdot \left(\sum_{i=1}^{N-1} \frac{D_i C_i (z_i F)^2}{RT} E - \sum_{i=1}^{N-1} D_i z_i F \nabla C_i \right) = 0.$$

(6)

The authors postulate, by the paper due to Tabrizinejadas et al., 2021, that the electric field has the form

$$E = \frac{RT \sum_{i=1}^{N-1} d_i z_i \nabla C_i}{F \sum_{i=1}^{N-1} (z_i)^2 D_i C_i}.$$

(7)

Here is a very big mistake! The formula (7) is true in the 1D case only, if for example $\sum_{i=1}^{N-1} z_i J_i = 0$ on the boundary of a domain. Then (7) is implied by (6) - see the paper:

Tabrizinejadas et al., 2021 study the 1D, 2D and 3D models and they refer to the paper 1., so they are right in 1D only. I understand that the authors get some pictures, but mathematics has its laws.
In 2D and 3D we can for example assume that \(E \) is an irrotational vector field, \(\nabla \times E = 0 \), and then \(E \) is a potential field

\[
E = -\nabla \varphi. \tag{8}
\]

This equation together with (6) imply the Poisson equation on \(\varphi \) of the form

\[
\nabla \cdot \left(\sum_{i=1}^{N-1} \frac{D_i C_i (z_i F)^2}{RT} \nabla \varphi + \sum_{i=1}^{N-1} D_i z_i F \nabla C_i \right) = 0. \tag{9}
\]

I refer the authors to the papers in which a similar situation appears, but with the drift \(u \) instead of the electric field \(E \):

The paper has an engineering and numerical nature, and is interesting. But the error I mentioned above must be reliably described and explained, even if the authors are currently unable to do calculations in 2D and 3D with the equation (9). I suggest to start with experiments and calculations in 1D. Moreover, the jump operator \(\bullet \) should be defined and it would be better to write \(c_i \) instead of \(C_i \). Domain dimension in experiments and calculations should be written in Abstract.

CONCLUSION

The paper need a major revision.