Preprints
https://doi.org/10.5194/egusphere-2022-1137
https://doi.org/10.5194/egusphere-2022-1137
20 Dec 2022
 | 20 Dec 2022

Effects of a biased LAI data assimilation system on hydrological variables and carbon uptake over Europe

Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo

Abstract. Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e.\ without correcting for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of large biases in either observations or simulations, or both. We perform bias-blind and bias-aware DA of the Copernicus Global Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–019 period, and evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET), runoff, and soil moisture.

In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. Bias-blind LAI DA can also lead to unrealistic shifts in soil moisture climatologies, for example when the assimilated LAI data in irrigated areas are much higher than those simulated without any irrigation activated. Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift between update steps. This model drift also propagates to short-term estimates of GPP and ET, and to internal DA diagnostics that indicate a suboptimal DA system performance.

The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative effects of the bias-blind assimilation. They retain the improvements of GPP anomalies from the bias-blind DA, but forego improvements in the root mean square deviation (RMSD) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine bias reduction with optimal DA system performance.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

14 Nov 2023
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo

Interactive discussion

Status: closed

Comment types: AC ā€“ author | RC ā€“ referee | CC ā€“ community | EC ā€“ editor | CEC ā€“ chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1137', Anonymous Referee #1, 23 Feb 2023
  • RC2: 'Comment on egusphere-2022-1137', Anonymous Referee #2, 07 Mar 2023

Interactive discussion

Status: closed

Comment types: AC ā€“ author | RC ā€“ referee | CC ā€“ community | EC ā€“ editor | CEC ā€“ chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1137', Anonymous Referee #1, 23 Feb 2023
  • RC2: 'Comment on egusphere-2022-1137', Anonymous Referee #2, 07 Mar 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (12 Apr 2023) by Mariano Moreno de las Heras
AR by Samuel Scherrer on behalf of the Authors (24 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (30 May 2023) by Mariano Moreno de las Heras
RR by Anonymous Referee #1 (23 Jun 2023)
RR by Anonymous Referee #2 (30 Jun 2023)
ED: Publish subject to revisions (further review by editor and referees) (14 Jul 2023) by Mariano Moreno de las Heras
AR by Samuel Scherrer on behalf of the Authors (23 Aug 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (04 Sep 2023) by Mariano Moreno de las Heras
RR by Anonymous Referee #2 (01 Oct 2023)
ED: Publish as is (02 Oct 2023) by Mariano Moreno de las Heras
AR by Samuel Scherrer on behalf of the Authors (03 Oct 2023)  Manuscript 

Journal article(s) based on this preprint

14 Nov 2023
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Samuel Scherrer, Gabriƫlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo

Viewed

Total article views: 610 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
367 219 24 610 14 13
  • HTML: 367
  • PDF: 219
  • XML: 24
  • Total: 610
  • BibTeX: 14
  • EndNote: 13
Views and downloads (calculated since 20 Dec 2022)
Cumulative views and downloads (calculated since 20 Dec 2022)

Viewed (geographical distribution)

Total article views: 594 (including HTML, PDF, and XML) Thereof 594 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 04 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We explored different options for data assimilation (DA) of remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates, and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches, which were successful at overcoming these problems, and explore alternative solutions.