
Reply to Comment by Anonymous Referee #1

May 24, 2023

We thank the anonymous reviewer for the very thorough and well put comment. We will start
by addressing the general comments for the larger issues, and afterwards address the particular
comments.

In the following, review comments will be styled in blue italics, our responses in black normal
text, and proposed changes in green.

1 General comments
1.1 ”Logic issue”
Logic: the Authors recommend dropping their most efficient bias-blind LAI DA option using
specious theoretical arguments.

The main novelty of our study is the impact of bias-aware DA methods for LAI DA and an
assessment under which circumstances this might be helpful. We therefore focused mainly on
pointing these out in the conclusions.

However, based on this and the other review comment we see that this can be easily misunder-
stood. We therefore propose to include the following sentence in the conclusion after l.549:

The bias-blind DA is most effective at reducing the disagreement in modelled and observed
LAI, and leads to the largest improvements in GPP and runoff. For many applications it is
therefore a suitable option, especially if large bias reductions are intended, even if bias-blind
Kalman filtering is suboptimal. A temporal interpolation of the observation data, or even a
direct insertion approach, could be even more efficient in this case. However, this approach does
not necessarily improve other variables, e.g. if the model simulates biased LAI in conjunction with
unbiased soil moisture. As alternative, we recommend to use observation rescaling techniques
for LAI DA with Noah-MP if there are strong biases and if

• ... (same as in original manuscript)

Additionally, we will reformulate the last paragraph of the conclusion as follows:

A drawback of the observation rescaling approaches is that they result in estimates in the model
climatology. If the observation-forecast bias is due to erroneous precipitation forcing or missing
irrigation input, joint updates of LAI and RZSM in a bias-blind system can be considered instead.
This might lead to large bias corrections while still retaining a stable model state even after large
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updates. However, if the bias is not only caused by bias in the precipitation/irrigation, this poses
the risk of seriously degrading the soil moisture estimates.

Alternatively, updates to model parameters, either via joint parameter and state update DA,
or via a priori model calibration can also lead to more stable and persistent updates and LAI
estimates in the observational climatology. This is especially desirable for research on the carbon
cycle, where absolute values of carbon fluxes are required. Parameters to consider for calibra-
tion are parameters related to model leaf growth, but potentially also photosynthesis or soil
parameters.

To gain the most benefit from LAI data assimilation into Noah-MP, further research and model
improvement of the coupling mechanisms between water and carbon cycle is necessary.

1.2 ”Scope issue”
Scope: both Abstract and Conclusion sections present results that are specific to the Noah-MP
model and DA framework as if they were valid for all models and DA tools. Much different
conclusions could have been obtained using other tools, and probably more logical conclusions.
The title is also too general.

We agree that different conclusions might have been obtained with different models or different
DA systems. We mentioned this in the discussion section (l. 462-465 or the more detailed
discussion of shortcomings of the Noah-MP vegetation model in subsection 4.4 of the manuscript).
In a revised version, we will provide a more detailed discussion of the Noah-MP model (see below).
This will make it easier to transfer our results to other models or datasets, because it makes the
underlying reasons in the model more transparent.

Additionally, we will adapt the title and the abstract as follows:

New title: Bias-blind and bias-aware LAI data assimilation over Europe with Noah-MP

In the abstract, we will modify l.12-15 as follows:

Furthermore, the bias-blind LAI DA produces a pronounced sawtooth pattern due to model drift
between update steps, because the update step pushes the Noah-MP leaf model to an unstable
state. This model drift also propagates to short-term estimates of GPP and ET, and to internal
DA diagnostics that indicate a suboptimal DA system performance.

1.3 Validation data quality
Basic hypotheses on the validation data used to perform the analysis of results are disputable,
especially over semi-arid areas around the Mediterranean where the model tends to overestimate
LAI. Over such areas, SIF is probably not proportional to GPP (the Authors assume that SIF
is proportional to GPP) and the ESA-CCI soil moisture (SM) product has shortcomings (not
mentioned in the current version of the paper).

We agree that SIF has some shortcomings as GPP proxy, especially under extremely dry condi-
tions. However, according to the study linked by the reviewer, this occurs during extreme events,
and not generally over semi-arid areas:

”While a linear GPP–SIF relationship is expected in most conditions and driven by NPQ changes
at the seasonal scale, under extreme stress a shift in energy allocation can occur” (Martini et al.
2022)
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We propose to change l. 220 as follows:

Under extreme conditions, the linear relationship of SIF and GPP can break down (Martini
et al. 2022). Therefore, similarly to FluxSat GPP, evaluations against SIF should be analysed
carefully. Since we do not explicitly model SIF but only use it as GPP proxy, we evaluated it
only in terms of R and Ranom.

Regarding ESA-CCI soil moisture, we do not agree with the reviewer. It is true that active
microwave-derived soil moisture has problems due to subsurface scattering in Spain, but this does
not affect passive soil moisture retrievals. Since the ESA-CCI soil moisture uses a probabilistic
merging approach, it takes the low reliability of the active SM retrievals in these areas into
account, and assigns a relatively large weight on the passive data (see Fig. 4 in Gruber et al.
2019).

Evaluations of the ESA-CCI soil moisture product against ERA5-Land also indicates good perfor-
mance in these regions: https://qa4sm.eu/ui/validation-result/6f4b382a-60bc-4296-9b58-d8802a1b12dd

1.4 Incomplete analysis
The main problem I see in the Noah-MP DA system is that a partial (incomplete) analysis of the
state variables of the soil-plant system is made. Root-zone soil moisture (RZSM) is not analyzed
from the assimilation of LAI. Like LAI, RZSM changes relatively slowly. This is why RZSM
needs to be analyzed together with LAI. Ignoring this tends to weaken the theoretical arguments
used to criticize the bias-blind approach. The “negative effects” of the bias-blind approach are due
to the incomplete use of the assimilated LAI data. Rescaling observations to the model range of
values is relevant when units are different or when background model-dependent parameters affect
the range of values. When model errors, model forcing errors, and model process uncertainties
are responsible for the bias, the incorporation of the ”true” observed values should improve the
model simulations. In this case, artificially removing the bias is counterproductive and reduces
the information content of the observations. This is particularly true for LAI. The exact value of
this variable governs the biological regulation of soil moisture. Model LAI and RZSM biases can
be due to model parameterization errors but also to biases in precipitation for example. ERA5 can
present marked seasonal precipitation biases. The same difficulty would occur in irrigated areas
since the Noah-MP model version used by the Authors does not represent irrigation. How can
DA compensate for the impact of these biases if their influence on LAI is artificially removed?
A solution is to analyze RZSM through the assimilation of the original LAI values. In the model
you use, does LAI depend on RZSM?

Thank you for this detailed and well thought out remark. We agree that a complete analysis
of the soil-plant system by jointly updating LAI and RZSM might also be another worthwhile
approach for handling some of the peculiarities of the current literature standard for LAI DA
into Noah-MP, where normally only LAI is updated (Kumar et al. 2019; Mocko et al. 2021;
Rahman et al. 2022a; Rahman et al. 2022b). The joint updates of LAI and RZSM would present
an alternative solution to the problem that we tried to solve with rescaling, especially in cases
where the large bias between OL and observations is caused by biases in the forcing data (e.g.
seasonal precipitation biases or lack of irrigation information). We briefly mention this in lines
460-464 in our discussion:

”[...] in strongly irrigated areas the change in soil moisture climatology leads to a decrease in
soil moisture, even though the ba model performance originates from an underestimation of soil
moisture due to the lack of an irrigation process in the model. Joint updates of LAI and root
zone soil moisture as done in LDAS-Monde (Albergel et al., 2017) could alleviate this problem
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caused by “missing” water to some extent but requires a good estimation of the coupling strength
of LAI and soil moisture.”

We agree that this does not give the topic the attention it deserves, so we propose the following
changes to the manuscript:

1. We will add an appendix section giving a more detailed overview of the Noah-MP vegetation
model, and make the description of the Noah-MP vegetation model in the main text more
detailed, with a focus on how parameters and RZSM can affect the equilibrium state.

2. We will add an analysis of equilibrium LAI for the Majadas pixel and the Nile delta pixel to
demonstrate how the different DA setups affect the stability of the model between update
steps.

In the following, we will give initial drafts for the proposed changes.

Firstly, we will add the following below line 101:

We give a more detailed overview of the dynamic leaf model in Noah-MP in Appendix B.

In the appendix, we will add the following short overview of the Noah-MP leaf model:

Appendix B: Noah-MP dynamic leaf model
This section gives a short overview of the Noah-MP vegetation model, focusing on the interaction
of LAI and soil moisture. For a more detailed description we refer to Niu et al. (2011).

Noah-MP calculates LAI from a prognostic leaf biomass Cl and a vegetation-type specific leaf
area per leaf mass (specific leaf area; SLA):

LAI = SLA · Cl

Leaf biomass is updated in each step via a mass balance equation:

dCl

dt = 1
SLA

dLAI

dt =(1 − FRAGR) · [fl(LAI) · GPP (LAI, β, Tc, F ) − Rm(LAI, β, Tc)]

− Dc(LAI, Tc) − Dd(LAI, β) − Tl(LAI) (1)

with FRAGR the fraction of GPP minus maintenance respiration invested in growth respiration,
Rm the maintenance respiration, Dc the death rate due to cold stress, Dd the death rate due
to drought stress, and Tl the turnover rate, F the atmospheric forcings, and Tc the canopy
temperature. fl is the fraction leaf carbon allocation, which governs how much of the total
assimilated carbon (GPP) is allocated to the leaf pool (the rest will be allocated to other carbon
pools) and is given by

fl(LAI) =
(

1 − LAI

10

)
· exp

(
0.01 · LAI

(
1 − e0.75·LAI

))
The dependence of vegetation growth on available soil moisture is controlled via the soil moisture
factor β, which represents the relative amount of plant available water in the root zone:
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β =
∑

i

∆zi

zroot
min

(
1,

θi − θwilt

θfc − θwilt

)
where θi is the volumetric soil moisture in layer i, θfc is the field capacity, and θwilt is the wilting
point.

The sink terms of Equation 1 are calculated the following way:

Rm(LAI, β, Tc) = 12 × 10−6 · R25 · FNF · 2
Tc−298.16

10 · β · LAI (2)

Dc(LAI, Tc) = 10−6 · LAI2

120 · SLA2 · cc exp (−0.3 max(0, Tc − Tc,min)) (3)

Dd(LAI, β) = 10−6 · LAI

SLA · cd · exp (−100β) (4)

Tl(LAI) = 5 × 10−7 · ct · LAI

SLA (5)

with land cover specific parameters R25, FNF, cc, Tc,min, cd, ct.

We will also add the following as subsection 2.6, moving the current subsection 2.6 to 2.7.

2.6 Analysis of Noah-MP equilibrium LAI
As we will see later, each update step in the bias-blind DA is followed by a strong drift of the
model LAI towards the OL values. This indicates that there is a stable equilibrium LAI to which
the model tries to return after being updated by the DA step. Calculating this equilibrium value
exactly is difficult, because it depends on the current forcing conditions, model state, and model
parameters, but it is possible to approximate it for typical conditions within a month.

Assuming that vegetation growth is not light limited (reasonable for the areas with large bias
in the southern half of the domain), GPP is proportional to LAI and to the relative amount of
plant available water β:

GPP (LAI) ≈ α(F ) · β · LAI (6)

The proportionality factor α depends on the set of forcings F , and therefore (i) varies in time and
(ii) an estimation of GPP requires knowledge of all forcings. Since the forcings, and therefore
also α have a strong seasonal component, we can simplify the analysis by making a climatological
approximation, i.e., approximating α(F ) with the typical conditions in a given calendar month
m. This is done by relating the model-simulated GPP with model-simulated LAI and β for the
calendar month m, and then solving for α by taking the mean of GPP/(LAI · β).

We can then set the change in LAI in Equation 1 to zero and solve for the equilibrium LAI for
this month, LAIeq,m, by solving the following equation:

0 =βm · (1 − FRAGR) · [fl(LAIeq,m) · αm · LAIeq,m − Rm,w(LAIeq,m, Tc,m)]
− Dc(LAIeq,m, Tc,m) − Dd(LAIeq,m, β) − Tl(LAIeq,m) (7)
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where Tc,m is the mean canopy temperature and βm the mean plant available water for month
m, respectively. The solution can be obtained numerically with common root finding algorithms.

We will use this approximation method also to estimate how the equilibrium LAI would change,
if we would modify the model parameters or the RZSM in the model.

Based on this method section, we will also add a new figure to the results section, showing the
results of the equilibrium analysis:

3.6 Analysis of equilibrium LAI

Figure 1: Estimates of the Noah-MP LAI change (dLAI/dt) and equilibrium LAI for the
Majadas pixel in June (upper row), and the Nile delta pixel in July (lower row), as function of
relative amount of plant available water β (left column) and specific leaf area (SLA, right column).
Additionally, the mean conditions for the OL and the DA runs are shown as dots/crosses, and
the mean CGLS LAI for the respective month as line.

We additionally assessed the dependency of the equilibrium LAI value on the model root-zone
soil moisture (via the relative amount of plant available water β) and on model parameters (using
the specific leaf area SLA as example parameter) for the two example sites discussed above.

Figure 1 shows how the equilibrium LAI would change if we would change β or SLA while
keeping everything else constant. For both shown sites (Majadas, Nile delta) we chose the
month where the mean difference between OL and observations is largest (June for Majadas,
July for Nile delta). We approximated the GPP-LAI relationship for these sites and months
based on Equation 6 (see Supplement for plots showing quality of fit).

For all 4 considered cases, the mean OL conditions are close to the estimated equilibrium LAI,
giving confidence in the approximations performed in the derivation of the method.
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For Majadas, the mean June conditions of the seasonally scaled DA are very close to the OL,
while the bias-blind DA shows a strongly reduced LAI and an increased β, consistent with Figure
9. The CDF-matched DA is between OL and bias-blind DA. The latter are both further apart
from the estimated equilibrium LAI, i.e. they are not in a stable state. To obtain a stable state
but at the same time reduce the LAI towards the CGLS LAI observations, β would have to be
reduced to about 0.3, or alternatively SLA would have to be reduced to 30.

For the Nile delta pixel, both bias-aware DA runs are very close to the OL, while the bias-blind
DA shows a strongly reduced β, consistent with summer conditions in Figure 10. In this pixel,
the equilibrium LAI shows a much higher sensitivity on β; a small increase in β would already
lead to a large increase in LAI. Conversely, the sensitivity to SLA is low. To obtain a stable
state close to the observed LAI, β would have to be increased to 0.5, while SLA would have to
be increased to values larger than 150.

Based on these results, we propose to split 4.4 into 2 parts, one part discussing the potential of
updating RZSM or model parameters, the other discussing potential model structural changes.
Here, we will only show the new discussion section on updating RZSM or parameters, as the
other section will stay mostly the same.

4.5 Alternatives to rescaling of observations
The bias-aware DA uses observation rescaling methods to reduce the effects of biased updates like
drifts and sawtooth patterns, but leads to lower improvements than the bias-blind DA, because
it leads to LAI estimates in the model climatology.

To obtain LAI estimates within the range of the observational LAI climatology while still keeping
the model in a stable state, additional model state variables or parameters have to be updated or
calibrated, or an observation or forecast bias could be estimated separately (and removed from
the innovations) (G. J. M. De Lannoy et al. 2007b; G. J. M. De Lannoy et al. 2007a).

Calibration of model parameters is the best option if the bias is due to uncertainty in the model
parameters. It has been successful at improving vegetation models in previous studies MacBean
et al. (2015), MacBean et al. (2016), Scholze et al. (2019), Forkel et al. (2019), Kolassa et al.
(2020), and Mahmud et al. (2021). Updates of specific leaf area together with LAI have already
been used successfully by Xu et al. (2021) and He et al. (2022). Based on Equation 1, changes
in the leaf turnover coefficient or the respiration coefficient might lead to similar results.

The calibration can either be done prior to the DA simulations or can be incorporated into a joint
parameter and state update DA scheme. An EnKF (as used in this study) can in principle be
used for the joint updates by augmenting the control vector to contain both state variables and
parameters (Evensen 2009). If the model predictions’ dependency on the parameters is highly
nonlinear, particle methods might be more suitable (Frei et al. 2013; Leeuwen et al. 2019). Hybrid
methods that combine the EnKF with particle methods could be used to obtain a DA system
that performs well both for state updates and parameter updates (Frei et al. 2013; Leeuwen et al.
2019; G. J. De Lannoy et al. 2022).

Instead, if the (short-term) bias is caused by erroneous forcing data, e.g. a seasonal wet or dry
bias in water-limited areas, joint updates of LAI and RZSM are better suited to improve the
analysis. This is the approach chosen for LAI DA in LDAS-Monde (C. Albergel et al. 2017).
With an EnKF, joint updates are achieved via error cross-correlations between LAI and RZSM
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(obtained from the ensemble). This means that RZSM will only be updated in phases in which
model LAI and RZSM show a strong coupling.

In the Nile delta, a known source of bias is the missing irrigation input in the model. Additionally,
we found a very strong water limitation on vegetation growth, and a strong sensitivity of the
equilibrium LAI on changes in RZSM, implying a strong model coupling of LAI and RZSM.
Therefore, joint updates of LAI and RZSM are likely to improve the LAI DA results here,
because RZSM is temporarily adjusted, but changes to soil parameters might also be necessary
to sustain the increased moisture values.

At the Majadas site, the sensitivity of the equilibrium LAI to changes in RZSM is lower. Further-
more, Figure 9 indicates that in winter and spring, RZSM is largely dominated by soil parameters
and precipitation input. In these periods, changes in LAI do not lead to changes in RZSM, and
differences in RZSM between the OL and the bias-blind DA vanish quickly. Therefore, RZSM
updates are unlikely to sustainably decrease RZSM during spring, which would be required to
decrease LAI to a more stable state. This could make joint updates of LAI and RZSM even less
efficient than in the Nile delta. Parameter updates are likely most useful for improving the LAI
estimates at the Majadas site.

Is RZSM analyzed when you assimilate LAI? This is not clear in the present version of the
manuscript and should be made clear.

RZSM is not analyzed jointly with LAI in our DA setup, following earlier research on LAI DA
with Noah-MP, as detailed above. We apologize for not making this clear in the method section
and propose to add the following sentence after l. 135

Following prior work on LAI DA with Noah-MP (Kumar et al. 2019; Mocko et al. 2021; Rahman
et al. 2022a; Rahman et al. 2022b), we use the EnKF to update the model LAI, i.e., the state
vector consists only of LAI.

3 Particular comments
3.1
L. 80 (Noah-MP): More should be said here on the representation of phenology and LAI in the
version of Noah-MP used by the Authors. For example, is the day-to-day change in LAI impacted
by RZSM? If yes, RZSM could be analyzed through the assimilation of LAI. Is this done? If not,
conclusions are only valid for this model and DA system and have no universal significance.

As mentioned above, LAI is impacted by RZSM in Noah-MP. The detailed description is shown
in the subsection 1.4.

3.2
L. 120 (CGLS LAI): this product has several versions/options. Which one is used in this study?

We used product version 2 (1 km resolution). We will clarify this in the revised version of the
manuscript.

3.3
L. 130-135: “land surface state” is too vague. What are the analyzed variables? Is RZSM
analyzed? Please list the analyzed variables.

8



Only LAI is analyzed. We will clarify this in the revised version, as proposed above.

3.4
L. 223: I guess that another reason for not using RMSD is that you do not simulate SIF. Correct?
Please clarify.

Correct. We will clarify this in the revised version, as proposed above.

3.5
L. 231 (ESA-CCI SM): For which soil layer? Is it surface soil moisture? Please clarify.

We compare the ESA CCI SM product to the uppermost soil layer in Noah-MP (0-10cm).

3.6
L. 267 (temperature): Do you mean accumulated precipitation?

Yes, thanks you, this will be updated.

3.7
L. 283 (section 2.6): This is a bit obscure. Probably not that interesting for a majority of
potential readers. I suggest moving this part and the corresponding results to a Supplement.

We agree with the reviewer that this section is difficult to understand, and that we might not
have used the best way to explain and visualize our intention with this analysis.

The goal of this analysis is to show that the biased LAI updates, which are followed by an drift of
the model LAI back towards the original equilibrium LAI, lead to similar drifts in flux estimates
(GPP, ET). Furthermore, we want to demonstrate that these drifts are unphysical, i.e. they are
caused by model instability instead of forcing input.

We will revise this section to make our intentions and the analysis more clear, and similarly
adapt the related results section.

Section 2.6 will be revised as follows (as section 2.7)

2.7 Evaluation of short-term DA effects
To evaluate how biased updates affect the short-term model performance, we analyse day-to-
day differences of model states and fluxes. In the OL, the day-to-day differences are driven by
day-to-day variations in the forcing input. If averaged over larger areas or multiple years, this
corresponds mainly to the day-to-day differences of the mean seasonal cycle. For LAI, GPP,
and ET, which are high in summer and low in winter, we therefore expect positive day-to-day
differences in spring, corresponding to leaf growth and increase in GPP and ET, and negative
day-to-day differences in autumn, corresponding to leaf shedding and decrease in GPP and ET.

Large update steps in the bias-blind DA can induce model instabilities. In this case, the sub-
sequent day-to-day differences are strongly impacted by the unstable artificial response to the
update step, instead of reacting to the physical forcing input.

9



To detect if such model instabilities occur, and to what extent they propagate to flux estimates
of the model, we evaluated day-to-day differences of 2 days minus 1 day after the DA update, as
well as 1 day before minus 2 days before the DA update (the latter can also be interpreted as
approximately 9 days minus 8 days after the DA update). A comparison of these also gives an
indication of how long the DA induced effects remain.

For each pixel and month, we calculated the median of these day-to-day differences over the
years 2003-2019 and normalised it with the monthly standard deviation of the variable values
over the same multi-year time range (as a measure of the local within-month variation).

Additionally we will revise section 3.6 (new section 3.7) as follows

3.7 Evaluation of short-term DA effects

Figure 2: Normalised monthly median day-to-day forecast differences for (a) LAI, (b) GPP,
and (c) ET. The differences are computed as the forecast value at 2-day after DA (not applied
for OL) minus that of 1-day after DA (directly after DA, solid lines) and 1-day before DA minus
2-day before DA, corresponding to approximately 9-day after DA minus 8-day after DA (9-day
after DA, dashed lines) for the OL (black), the bias-blind DA (blue), the CDF-matched DA
(orange) and the seasonally scaled DA (green). The median was calculated from all grid cells at
which the relative LAI difference between OL and bias blind DA (see Figure 1) is below -25%.
For each grid cell and month, the median was normalised with the monthly standard deviation
of the variable for this grid cell. The graph shows the median results across 17 years (2003-2019).

Figure 2 shows the monthly median day-to-day forecast differences for all performed simulation
runs for LAI, GPP, and ET.

The OL shows a seasonal cycle with high values in spring and low values in summer, as expected
(corresponds to the derivative of seasonal cycle of variable values). The bias-aware DA runs
follow the OL seasonal cycle closely.

The bias-blind DA also shows the same seasonal cycle, but has an offset compared to the OL. For
LAI, this offset is of the same size as the magnitude of the mean seasonal cycle, so that the mean
day-to-day differences in the bias-blind DA in summer have the same magnitude as the day-to-
day differences in the OL in spring, even though physically a decrease in LAI is expected. In fact,
the day-to-day differences in LAI in the bias-blind DA are always positive, meaning that LAI is
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expected to increase in all seasons. This is caused by the large DA update steps in the bias-blind
DA, which pull the model to an unstable state. As a consequence, model instability instead of
physical forcing input governs the short-term temporal evolution of LAI in the model in between
update steps. Even 9 days after the DA update, right before the next update step, day-to-day
differences do not significantly change, indicating that the model instability can persist for long
time periods.

The instability effect also strongly affects GPP estimates throughout all seasons, and to a lesser
extent ET estimates in summer.

3.8
L. 331 (Figure 4): I had a hard time understanding Fig. 4. Why are CDF and seasonal sim-
ulations missing? In the caption of Figure 4 I suggest replacing: ”SIF and ”scaled OL” have
been rescaled to have the same maximum as ”bias-blind DA”” by ””scaled SIF” and ”scaled OL”
correspond to rescaled SIF observations and OL simulations presenting the same maximum as
”bias-blind DA”, respectively”.

Thank you for the suggestion of reformulating the captions, we will add it in a revised version.
We did not include CDF and seasonally scaled simulations here, because we did not want to
overload the plot with even more lines, since the climatologies of the CDF-scaled and seasonally
scaled DA are much closer to the OL.

3.9
L. 332 (deterioration of the agreement of SIF and GPP in regions with a large bias): I disagree.
Regions with large bias correspond to semi-arid areas commonly affected by droughts. SIF is not
linearly correlated to GPP in all conditions. In very dry conditions, this correlation disappears.
See Martini et al. (2021) for example https://doi.org/10.1111/nph.17920

See response in subsection 1.3.

3.10
L. 343 (sawtooth pattern): why should ”sawtooth pattern” be considered as a problem? This is a
sign that DA does its job of pulling the model closer to the observations, and that increasing the
number of observations would improve the simulation.

We agree that the abrupt changes of LAI at the time of an DA update is not problematic, and
simply a result of the filter algorithm doing its job. The problem is the large drift following an
update, which indicates that the filter pulls the model to an unstable state and DA updates do
not ”stick”.

As we tried to show with sections 2.6 and 3.6, this also leads to unphysical drifts/biases in flux
estimates. The revised sections (now 2.7 and 3.7) are shown above.

3.11
L. 349 (GLEAM ET): Can GLEAM ET be considered as a reference dataset? Why should it be
better than the simulations performed by the authors?

We included GLEAM ET for comparison due to the lack of in situ data in the areas most strongly
affected by the bias-blind DA. We agree that it does not provide direct flux observations, but
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(i) it is an ET product that is forced mostly with Earth observations of meteorology and land
surface states and thus as close as possible to an observation-based product, (ii) it has been
extensively evaluated against other products in various benchmarking activities (Greve et al.
2014; B. Martens et al. 2016; B. Martens et al. 2017; Brecht Martens et al. 2018), and (iii) it is
also commonly used for assessing DA systems (e.g., Clément Albergel et al. 2019; Bonan et al.
2020; Kumar et al. 2019; Rahman et al. 2022a; Rahman et al. 2022b).

We will add the following in l. 230:

GLEAM has been evaluated against other products in various benchmarking activities (Greve
et al. 2014; B. Martens et al. 2016; B. Martens et al. 2017; Brecht Martens et al. 2018), and
it is commonly used for assessing DA systems (e.g., Clément Albergel et al. 2019; Bonan et al.
2020; Kumar et al. 2019; Rahman et al. 2022a; Rahman et al. 2022b). However, since GLEAM
is partly model-based, comparisons against GLEAM should be analysed carefully, and GLEAM
should not be treated as a ground truth validation data set.

3.12
L. 361-362: These regions are also those for which microwave derived SM is more uncertain be-
cause of subsurface scattering in dry conditions (see Wagner et al. 2022, https://doi.org/10.1016/j.rse.2022.113025
)

See response in subsection 1.3.

3.13
L. 394 (Figure 9): CDF LAI is much larger than both OL and observations from January to
April. Seasonally rescaled LAI is much larger than both OL and observations from April to
July 2016. How is this possible? Rescaled LAI should be somewhere between the OL and the
observations. Correct?

We are unsure how to interpret this comment: Does the reviewer (i) wonder why the seasonally
rescaled LAI analysis (green line) is above both OL (black line) and original observations (blue
dots), or (ii) wonder why the seasonally rescaled LAI observations (green dots) is above both OL
(black line) and original observations (blue dots)?

In case (i), we want to point the reviewer to the seasonally rescaled observations (green dots),
which are the assimilated observations. The seasonally rescaled analysis (green line) is between
these observations and the OL, as expected. We will revise the figure caption to make the
different dots and lines more clear.

If the author wonders about case (ii): The rescaling tries to transform the original observations
in a way such that certain statistics of the OL are reproduced in the rescaled observations. In the
case of the seasonal rescaling, we try to match the mean seasonal cycle and the overall standard
deviation. It neither can nor intends to induce or conserve any ordering relationships with
respect to the OL. Instead, it conserves the ordering relationships in the original observations.
For example, if in the original observations April 2016 was the April with the highest LAI values
within the baseline period (2002-2019), April 2016 will also be the April with the highest LAI
values within this period in the rescaled observations, no matter what the OL values are.

3.14
L. 399: replace ”suppressing” by ”reducing”.
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Thank you, we will update the manuscript accordingly.

3.15
L. 401 (Figure 10): Why is the number of curves/dots in Fig. 10a different from Fig 9a? This
not logical.

In the rescaled DA runs not much is happening in this example. We therefore excluded the lines
to not overload the plot with irrelevant lines. We can also include the lines or add the complete
plot in the supplements, if required.

3.16
L. 404 (strongly decreases SM2): is this because RZSM is not analyzed?

The reason for this is that the increase in LAI also strongly increases transpiration, which in
turn decreases RZSM/SM2. Updating also RZSM in this case would mean adding water. If the
system is properly tuned and cross-correlations are estimated well, this might counterbalance
the increased water uptake. See subsection 1.4 (this document) for a more in depth discussion
of the question of joint RZSM+LAI updates.

3.17
L. 409 (section 3.6): Move this section to a Supplement.

We refer to previous comments on this issue.

3.18
L. 440-442: ... and possible seasonal biases in ERA5 precipitation

Thank you, we will add this in a revised section of the manuscript.

3.19
L. 494: For the sake of clarity, it should be written here that rescaling LAI observations has a
negative impact on DA efficiency.

We rephrased the conclusion to make this more clear.

3.20
L. 496: Are ”standard assumptions” valid in a context where key variables (such as RZSM in
this study) are not analyzed?

Even in such a scenario, the diagnostics based on these assumptions can be used to assess if
the Kalman filter update sequence has the intended statistical properties, i.e. if the standard
assumptions are valid.

3.21
L. 521: Do you mean that RZSM has no impact on the simulated LAI? This is far from the state
of the art. Is there a more advanced version of Noah-MP able to correctly simulate LAI?

13



RZSM impacts LAI in Noah-MP, as elaborated in more detail above. Only the phenology index
(growing season vs. no growing season) does not take into account water-driven phenology.

3.22
L. 550: I completely disagree with this recommendation. I would instead recommend paying
attention to the consistency between LAI and RZSM in the LSM, and to the “fitness for purpose”
of the Noah-MP LSM.

See comment in subsection 1.4.
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Reply to Comment by Anonymous Referee #2

May 24, 2023

We thank the anonymous reviewer for the helpful and detailed comment.

In the following, review comments will be styled in blue italics, our responses in black normal
text, and proposed changes in green.

1.1
I think both the abstract and conclusion do not fairly reflect the results and discussion sections.
Benefits and pitfalls have been discussed for both bias-blind and bias-aware approach and the bias-
blind approach leads to greater improvements for most of the variables and most of the metrics.
However, the abstract/conclusion leads to the recommendation of the bias-aware approach, which
is partly inconsistent with the message sent from the result and discussion section. I would
recommend the authors to reconsider making the key points that can better and fairly reflect the
content.

In our conclusion we tried to point out the specific circumstances under which the bias-aware
DA might have benefits over the current literature standard of bias-blind DA. Based on your
and the other reviewers feedback we agree that this can give a false impression of disregarding
the bias-blind DA. We will therefore add the following paragraph after l.549:

The bias-blind DA is most effective at reducing the disagreement in modelled and observed
LAI, and leads to the largest improvements in GPP and runoff. For many applications it is
therefore a suitable option, especially if large bias reductions are intended, even if bias-blind
Kalman filtering is suboptimal. A temporal interpolation of the observation data, or even a
direct insertion approach, could be even more efficient in this case. However, this approach does
not necessarily improve other variables, e.g. if the model simulates biased LAI in conjunction with
unbiased soil moisture. As alternative, we recommend to use observation rescaling techniques
for LAI DA with Noah-MP if there are strong biases and if

• ... (same as in original manuscript)

Additionally, we will reformulate the last paragraph of the conclusion as follows:

A drawback of the observation rescaling approaches is that they result in estimates in the model
climatology. If the observation-forecast bias is due to erroneous precipitation forcing or missing
irrigation input, joint updates of LAI and RZSM in a bias-blind system can be considered instead.
This might lead to large bias corrections while still retaining a stable model state even after large
updates. However, if the bias is not only caused by bias in the precipitation/irrigation, this poses
the risk of seriously degrading the soil moisture estimates.
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Alternatively, updates to model parameters, either via joint parameter and state update DA,
or via a priori model calibration can also lead to more stable and persistent updates and LAI
estimates in the observational climatology. This is especially desirable for research on the carbon
cycle, where absolute values of carbon fluxes are required. Parameters to consider for calibra-
tion are parameters related to model leaf growth, but potentially also photosynthesis or soil
parameters.

To gain the most benefit from LAI data assimilation into Noah-MP, further research and model
improvement of the coupling mechanisms between water and carbon cycle is necessary.

1.2
L48-49: ”It is possible that other processes (e.g., transpiration) are only represented well for a
biased model climatology”. If that turns out to be true, isn’t it right for the wrong reason? I
think such side effect should be fixed by improving the model physics instead of regarding as the
weakness in the ”bias-blind” DA approach.

We agree that the best way to fix such effects would be by improving the model physics. However,
this is out of scope of this study, where we only consider updates to the LAI state in the model.
We discuss parameter update DA or model calibration as alternatives to updating only the LAI
state, which might achieve the same effect as improving the model physics.

1.3
The spatial resolution of the simulation is coarse while there are evaluation reference datasets from
in situ observations. The scale mismatch is not well considered in the metrics and comparisons in
this paper, which may provide biased assessments. Would it be possible to conduct the simulation
at a finer spatial resolution if most of the input datasets and the LAI observations are available
at finer scale?

We used the ERA-5 reanalysis as forcing data, which are not available with a finer spatial resolu-
tion. We therefore do not believe that a simulation at a finer spatial resolution will significantly
improve the model results, at least in terms of anomaly-based metrics, while it would at the
same time strongly increase our computational demands.

Due to the scale mismatch, we limit the comparisons of in situ soil moisture data to anomaly-
based comparisons, as mentioned in l. 249-250 in the original manuscript:

”Since soil moisture climatology and absolute values strongly depend on sub-grid scale factors
like slope and soil texture, we only compared the in situ values in terms of anomaly correlation
Ranom.”

Additionally, we mentioned in our discussion that the scale mismatch hampers our assessment, l.
467-470: ”This can be due to assumptions and errors in the underlying satellite data and retrieval
algorithms in the case of satellite-based data, or due to different spatial support in the case of
in situ data. Hence, whether the bias-blind DA leads to estimates closer to the “truth” remains
uncertain, and evaluations with different reference products might come to different conclusions”

To increase the reliability of the comparisons, we propose to restrict the evaluation to ISMN sta-
tions that have been shown to be representative at the coarse scale in a triple collocation analysis
including ISMN, ERA5-Land volumetric soil moisture layer 1, and ESA CCI soil moisture.
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1.4
L102 - 105: What is the spatial resolution of these input datasets as well as the ERA5 forcing
datasets? Please clarify in the text.

The parameter datasets are available on a 0.01° regular grid. The ERA5 forcing dataset has
an original resolution of 31 km and has been rescaled to a 0.25° regular grid. We will add the
following sentence in l. 114:

The soil texture and land cover maps are available on a 0.01° regular grid and have been upscaled
to a 0.25° grid using the largest fraction within a model grid cell. The ERA5 forcings are have
an original resolution of 31 km and have been rescaled to a 0.25° regular grid.

1.5
L106-108: I didn’t quite understand why the model interprets the evergreen broadleaf forests as
tropical rainforests. And what land cover type does the UMD data assign to for these locations?
Are there any references that can justify the substitution of UMD data is more realistic?

The Noah-MP vegetation model allocates GPP to leafs according to a parametric allocation
function. This function makes a distinction between evergreen broadleaf forests (EBF) and all
other land cover types such that the maximum LAI is approximately 8 for EBF and approximately
6 for all other land cover types (see Figure 1 in this document). This is done to account for the
much higher productivity of tropical rain forests than other land cover types. However, we found
that for the pixels in Europe assigned to EBF this approach produced even more strongly biased
LAI estimates than we showed in our manuscript. Replacing the land cover of these pixels with
UMD as fallback option reduced this bias.

Figure 1: Allocation of total photosynthesis (GPP) to leaf mass balance

1.6
L116: Is there a specific reason to use a spatial resolution of 0.25 degree? Why not bring it to a
finer resolution since your CGLS LAI product is at such a fine resolution.

As mentioned above, a simulation on a much finer scale would be a lot more computationally
demanding, while at the same time the benefit is questionable, since the forcing data is only
available on a coarse resolution.

3



1.7
L125: Is there a particular reason not using the temporal interpolation method? If this can better
deal with the sawtooth issue, why not apply it?

We do believe that the interpolation technique might be a viable solution for some of the issues
associated with the bias-blind approach, but for this study we had 3 particular reasons not to
perform interpolation:

• Interpolation can only be reasonably used if the assimilated LAI product is smooth enough,
so that we can assume that the pseudo-observations introduced by the interpolation are
close to the true observations. This is the case for the CGLS LAI product, but not for
other products. By not interpolating the data, we firstly stay closer to how the data is
provided, and secondly we also obtain more insights into how observation frequency (and
possibly changes therein) affect the data assimilation. This could be especially useful if
microwave vegetation optical depth is used as LAI proxy, similar to Mucia et al. (2021).

• Interpolation of data will introduce a strong auto-correlation of observation errors. How-
ever, our data assimilation framework assumes that observation errors are uncorrelated.

• The main effect that interpolation has is to pull the model closer to the observations and
hide the drifts between DA updates better. If this is the intended goal, a direct insertion
technique might be even more suitable than a Kalman filter.

To make our reasoning more transparent, we will modify l.125 as follows:

In contrast to Kumar et al. (2019b), we did not interpolate the LAI to daily values. This way we
(i) do not introduce observation error auto-correlations, (ii) allow our results to be generalizable
to LAI data sets (or proxy data sets as used in S. V. Kumar et al. (2020) and Mucia et al. (2021))
with less frequent observations or changes in observation frequency, and (iii) can investigate if
the filter efficiently interpolates and operates as intended (or assumed). We assimilated the
aggregated data every 10 days at 0:00 UTC, where and when they are available.

Additionally, we will add the following paragraph in the discussion, after l. 485:

The sawtooth pattern can be reduced by interpolating the observations or applying time series
smoothing methods to obtain pseudo-observations at a daily frequency. This will keep the anal-
ysis closer to the observations and prevent model drift over multiple days. However, in this case
direct insertion approaches or using observed LAI directly as model parameter could achieve
even better results than an EnKF.

1.8
L163: For the seasonal scaling approach, how does the phase of seasonality look like between
the LAI observation and the model simulation for the study domain? For instance, what does
the spatial map of the peak month in LAI observation compared to the OL simulation? The
vegetation scheme in Noah-MP has weakness even in reasonably estimating the magnitude and
phase of the seasonal cycle of vegetation growth. It may introduce additional bias if rescaling
observation based on the modelled climatology. Any comments on this?

The bias-aware LAI DA will lead to LAI estimates in the model climatology, so in fact any biases
in magnitude and phase of the seasonal cycle in the model will, by design, still be present in the
analysis. We agree that estimates in the observation climatology, as obtained with the bias-blind
approach, might be more suitable for some applications, but this comes with the drawbacks
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presented in our study (model drift, biased flux estimates, large side effects). As discussed in the
manuscript, a better calibration of model parameters might combine the respective advantages
of the two approaches. In the revised section, we will also add a discussion of joint LAI and
RZSM updates as further alternative, which could also help to obtain stable estimates in the
observation climatology.

1.9
L247: Considering the coarse spatial resolution of the model set up, the scale mismatch much be
an outstanding issue when comparing the gridded soil moisture value to the in-situ observations.
A simple nearest neighbor matching between ISMN stations and model grid might be troublesome.
Have the authors considered the representativeness of the ISMN data for a model grid? Please
comment on it and potentially discuss the uncertainties. I think simulation performed on a much
finer scale might be better if one were to directly compare the in-situ observation to simulated
values for a model grid.

Comparisons to in situ soil moisture are commonly done also for coarse model simulations, Sujay
V. Kumar et al. (e.g., 2014), Sujay V Kumar et al. (2019), Albergel et al. (2020), Rahman et al.
(2022a), Rahman et al. (2022b), and Heyvaert et al. (2023). To account for bias due to the
different spatial support/representativeness, e.g. due to different soil texture we only compare
soil moisture anomalies.

Additionally, as mentioned above, we propose to restrict our analysis to ISMN stations considered
representative at a coarse scale.

1.10
L260 -262: Why not use the dam and irrigation specific datasets to mask out the basins that are
heavily affected by these factors? I think directly masking out the basins based on the correlation
threshold of 0.4 is biased because it is impossible to justify that such low correlation is surely
due to the unmodeled processes. Such selective results may mislead audience in terms of the DA
performance. I would recommend the authors reconsider the approach.

This threshold removes only very few outlier stations, while most other stations have correlation
values larger than 0.6. For reference, we provide the original correlations of all considered stations
in Figure 2 (this document).

1.11
L308 & L402 -403: I wonder if the case of Nile delta may not simply because of the lack of
irrigation representation in the model. How does the LAI time series look like for the full study
period compared to the time series of precipitation? Did you see consistently low LAI regardless
of dry and wet years? I wonder if the representation of vegetation in response to water stress
factor or the mismatch of soil types may play a role in the dynamic vegetation model that limits
the growth of vegetation for this area? There are multiple reasons that the model may under-
estimate/overestimate vegetation growth just as the author discussed in section 4.4, I strongly
recommend the authors take a closer look at the data and elaborate more on the discussion in
terms of the factors at play. The analysis presented here does not justify that the lack of irrigation
forcing is the main reason.

OL LAI is consistently lower than the observations, but shows strong interannual variability
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Figure 2: Correlation of GRDC runoff with OL.

related to water availability. An additional analysis of the sensitivity of the model equilibrium
LAI on RZSM showed that in the Nile delta LAI is highly sensitive to RZSM.

We will add the following paragraph in the discussion:

In the Nile delta, a known source of bias is the missing irrigation input in the model. Additionally,
we found a very strong water limitation on vegetation growth, and a strong sensitivity of the
equilibrium LAI on changes in RZSM, implying a strong model coupling of LAI and RZSM.
Therefore, joint updates of LAI and RZSM are likely to improve the LAI DA results here,
because RZSM is temporarily adjusted, but changes to soil parameters might also be necessary
to sustain the increased moisture values.

1.12
L315 - 317: This explains places where bias-blind DA leads to LAI decrease and soil moisture
increase. I wonder how would the authors interpret places where bias-blind DA indicates an LAI
increase, while there is no soil moisture decrease?

The areas where the bias-blind DA increases growing-season LAI but does not decrease soil
moisture are high-altitude regions in the Alps and Norway. These areas have some specific
attributes that limit the impact of LAI change on soil moisture:

• Precipitation is frequent and keeps the soil moisture high. Any decrease in soil moisture
would quickly be refilled. The same happens during the rainy season at the Majadas pixel,
see Figure 9 in the manuscript.

• These mountaineous areas have steep slopes, the surface water balance is therefore domi-
nated by runoff and ET has a relatively lower role.
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• The areas are cold and therefore feature a low atmospheric water demand. ET therefore is
also low, especially compared to runoff.

We will add the following in l. 319:

In areas where growing-season LAI is decreased by the bias-blind DA the response differs. In
the Nile delta, the increase in LAI leads to a reduction in soil moisture via transpiration. In
the Alps and Scandinavia, soil moisture is not affected systematically, since the water balance is
dominated by runoff, and transpiration changes therefore have a relatively lower impact.

1.13
L324-325: The anomaly correlation of GPP improves a lot for places where LAI bias is large.
Isn’t it persuasive that the raw LAI observation plays an essential role in constraining the inter-
annual changes in vegetation growth? The bias-aware approach may limit such benefit.

Agreed. As indicated above, we will reformulate our conclusions to point this out.

1.14
L334: It is not clear to me what area has been covered in the ”southern part of the domain”.
I would suggest mark it out in Figure 3 or simply provide a mask map along with Figure 4 to
highlight area of analysis.

This refers to ”the high-bias regions in the southern part of the domain”, which we define as ”all
model grid cells south of 42° where the relative LAI difference is lower than -30%” (see caption
to Figure 4 in the manuscript). We can add a figure marking these areas in a supplement.

1.15
ET comparison: Considering large uncertainty in ET products, would it be valuable to include a
few other ET datasets for comparison besides GLEAM ET?

We agree that more reference data sets are always better, but (i) we did not want to extend the
already quite long manuscript, and (ii) the amount of information that can be obtained from
the comparisons to satellite or model derived ET datasets is limited, especially if we want to
evaluate the effects of bias, since the bias of all of these with respect to the truth is unknown.
Since changes in ET are lower than in GPP, we decided to do a more detailed evaluation with
GPP instead. If deemed useful by the editor, we can include a more detailed comparison.

1.16
Figure 9: The seasonal cycle of the LAI observation would be very different if scaled by CDF or
seasonal factors. I highly doubt whether such scaling reduces the value of using LAI observation
to constrain the model performance. Scaling the observation to a model climatology that is further
away from the truth is another form of bias. This might explain partly that the two bias-aware
DA does not lead to better improvements for GPP as compared to the bias-blind DA.

We fully agree with these sentiments, and will adapt the discussion & conclusion as detailed
above.
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1.17
L387: About the Majadas site: I’d suggest informing where the site is located in Figure 5.

We will update Figure 5 with locations of the Majadas site and the selected Nile delta example
pixel.

1.18
L375-378: Repeated sentence. And I think such sawtooth pattern could be taken care of if enables
the temporal interpolation to the observations.

The temporal interpolation would at least visually remove the sawtooth pattern with daily out-
put, but effects like the unphysical short-term dynamics of LAI and GPP would still be at play.
However, we will also mention this in the revised discussion giving more space to the bias-blind
DA.

1.19
Section 3.4: Again I have concerns in the scale mismatch in the modeling space vs. the observa-
tion. Without consider such effect, the conclusion may be biased. Would it be possible to conduct
a sensitivity analysis regarding the spatial resolution of the model? Alternatively, is it possible
to collect more in situ observation sites that can better jointly represent the condition for a 0.25
degree grid cell?

Unfortunately we do not have more in situ observation available, but we will instead restrict the
analysis to stations that are deemed representative at the coarse scale.

1.20
L405-408: Good point! How does the other two bias-aware DA perform in this case?

We did not add the bias-aware DA results in these plots because they are very similar to the
OL. If requested, we can add them here or in a supplement.

1.21
L426-427: True but the seasonal scaling may introduce additional bias to the scaled observations
if the modelled climatology is further away from the ground truth. I think this is probably a
larger flaw as compared to the bias-blind DA approach because at least the later remains the true
temporal variation of what has been observed.

We agree that there is a trade-off between staying close to the observations and having a well-
behaved filter algorithm with a stable model. We discuss this in more detail in the proposed
revisions above.

1.22
Section 4.2 - 4.3: I agree that if large bias exists then the bias-blind DA may lead to misuse of
Kalman filter; but I also think that the rescaling of observation based on a biased model is a big
issue, it may create even bigger problem if the seasonality is deteriorated. I think the benefit and
pitfalls for both approaches should be elaborated and discussed in a more comprehensive manner
before it gets to section 4.4.
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We again refer to the changes to the discussion and conclusion mentioned above.
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