Preprints
https://doi.org/10.5194/egusphere-2025-5847
https://doi.org/10.5194/egusphere-2025-5847
03 Feb 2026
 | 03 Feb 2026
Status: this preprint is open for discussion and under review for Geoscientific Model Development (GMD).

Spectral Nudging Impacts on Precipitation Downscaling in the Conformal Cubic Atmospheric Model, version CCAM-2504: Insights from Summer 2011

Son C. H. Truong, Marcus J. Thatcher, Phuong Loan Nguyen, Lisa V. Alexander, and John L. McGregor

Abstract. This study evaluates the impacts of spectral nudging on rainfall when dynamically downscaling with the Conformal Cubic Atmospheric Model (CCAM). The study focuses on the extreme 2010 – 11 La Niña, in conjunction with the Madden – Julian Oscillation (MJO), across the CORDEX – Australasia domain at 12.5 km with CCAM nested in ERA-5 reanalysis. Sixteen simulations were performed, systematically varying nudging wavelength, vertical extent, frequency, and variable choice, and evaluated against GPM-IMERG precipitation and ERA5 reanalysis. Configurations at short nudging wavelengths (∼500 – 1500 km), with high-frequency updates (1 h), and including pressure, wind and temperature delivered the most robust performance. These setups reduced large-scale rainfall biases, improved spatial and temporal correlations, reproduced vertical structure and moisture convergence more realistically, and achieved the closest agreement with observed mean and extreme observed rainfall. In contrast, coarse-scale (3000 km), full-column constraints, or nudging limited to pressure or wind variables degraded performance, producing oversmoothed variability, misplaced convection, and unrealistic rainfall patterns. Overall, the results demonstrate that carefully tuned spectral nudging enhances the fidelity of both mean and extreme rainfall in CCAM, while preserving large-scale teleconnections associated with La Niña, MJO, and retaining mesoscale variability. This study strengthens confidence in CCAM downscaling for CORDEX – Australasia, with implications extending to other CORDEX domains and applications.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Son C. H. Truong, Marcus J. Thatcher, Phuong Loan Nguyen, Lisa V. Alexander, and John L. McGregor

Status: open (until 31 Mar 2026)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Son C. H. Truong, Marcus J. Thatcher, Phuong Loan Nguyen, Lisa V. Alexander, and John L. McGregor
Son C. H. Truong, Marcus J. Thatcher, Phuong Loan Nguyen, Lisa V. Alexander, and John L. McGregor
Metrics will be available soon.
Latest update: 03 Feb 2026
Download
Short summary
Understanding how rainfall may change in the future is vital for managing floods and water resources in Australia. We tested different ways of constraining a regional climate model so it better matched observed rainfall during the extreme 2010–11 La Niña wet event. The most effective settings produced much more realistic rainfall, increasing confidence in using the model to explore future rainfall patterns and extreme weather risks.
Share