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Abstract. This study evaluates the impacts of spectral nudging on rainfall when dynamically downscaling with the 10 

Conformal Cubic Atmospheric Model (CCAM). The study focuses on the extreme 2010 – 11 La Niña, in conjunction with 

the Madden – Julian Oscillation (MJO), across the CORDEX – Australasia domain at 12.5 km with CCAM nested in ERA-5 

reanalysis. Sixteen simulations were performed, systematically varying nudging wavelength, vertical extent, frequency, and 

variable choice, and evaluated against GPM-IMERG precipitation and ERA5 reanalysis. Configurations at short nudging 

wavelengths (∼500 – 1500 km), with high-frequency updates (1h), and including pressure, wind and temperature delivered 15 

the most robust performance. These setups reduced large-scale rainfall biases, improved spatial and temporal correlations, 

reproduced vertical structure and moisture convergence more realistically, and achieved the closest agreement with observed 

mean and extreme observed rainfall. In contrast, coarse-scale (3000 km), full-column constraints, or nudging limited to 

pressure or wind variables degraded performance, producing oversmoothed variability, misplaced convection, and unrealistic 

rainfall patterns. Overall, the results demonstrate that carefully tuned spectral nudging enhances the fidelity of both mean 20 

and extreme rainfall in CCAM, while preserving large-scale teleconnections associated with La Niña, MJO, and retaining 

mesoscale variability. This study strengthens confidence in CCAM downscaling for CORDEX – Australasia, with 

implications extending to other CORDEX domains and applications. 

1 Introduction 

The accurate assessment of regional climate variability and extremes is essential for supporting climate change adaptation 25 

and risk management efforts (IPCC, 2021). While general circulation models (GCMs) provide valuable insights into large-

scale climate dynamics, their coarse resolution and simplified representation of regional processes limit their ability to 

capture local climate features, particularly extremes such as heavy rainfall events (Giorgi and Mearns, 1999; Nguyen et al., 

2024). To overcome this limitation, regional climate models (RCMs) offer higher spatial resolution and a more detailed 

representation of topography and regional processes (Giorgi, 2019). Numerous studies have evaluated RCM performance 30 
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over Australasia, demonstrating skill in reproducing regional climate features (Chapman et al., 2024; Schroeter et al., 2024; 

Sugata et al., 2025). 

A central challenge for RCMs efficiently assimilates the relevant large-scale atmospheric circulation from the coarse-

resolution model (e.g., forcing from host GCMs) to the RCMs (von Storch et al., 2000; Feser et al., 2012). Without 

constraints, model biases can grow within the regional domain, resulting in considerable discrepancies from the large-scale 35 

circulations (Miguez-Macho et al., 2004). To address this, a scale-selective technique (e.g., spectral nudging) was introduced 

to constrain the state of the regional atmosphere at large length scales in spectral space (Von Storch et al., 2000; Kanamaru 

and Kanamitsu 2007; Thatcher and McGregor, 2008). This approach allows RCMs to develop small‐scale features 

superimposed on the large‐scale atmospheric conditions from GCMs. Studies have shown that spectral nudging improves 

mean and extreme precipitation (Wang and Kotamarthi, 2013; Omrani et al., 2015), tropical cyclone statistics (Choi and Lee, 40 

2015; Jin et al., 2016) and low-level wind circulation (Tang et al., 2017). Spectral nudging has also been shown to 

outperform other techniques, such as grid nudging, particularly in simulating extreme rainfall and low-level circulation (Liu 

et al., 2012; Yang et al., 2019).  

The effectiveness of spectral nudging depends critically on configuration choices such as wavelengths, update frequency, 

vertical level, and the variables being constrained (Alexandru et al., 2009; Omrani et al., 2015). These parameters regulate 45 

the interplay between large-scale constraint from GCMs and internal RCMs adjustment that can pose a substantial impact of 

the simulated circulation and precipitation. Gómez and Miguez-Macho (2017) demonstrated that nudging with wavelengths 

around 1000 km yields optimal results as shorter wavelengths tend to suppress fine-scale variability whereas larger 

wavelengths may distort synoptic conditions (Spero et al., 2018). The update frequency influences the tracks and 

intensification of tropical cyclone (Feser and Barcikowska., 2012; Cha et al., 2011). Moisture nudging is a debated 50 

technique. Some research cautions against it due to thermodynamic inconsistencies where temperature, moisture, and 

dynamical fields are no longer physically aligned when the RCM is nudged toward the host GCM (Heikkila et al., 2010; Otte 

et al., 2012; Menut et al., 2024), while other studies suggest it can enhance precipitation simulation (Spero et al., 2014). The 

selection of vertical level at which RCMs are being nudged, or nudging profile, is primarily empirical, as different 

formulations can lead to various outcomes (von Storch et al., 2000; Miguez-Macho et al., 2005; Hong and Chang, 2012; 55 

Tang et al., 2017). While RCM performance has been evaluated in Australasia (Liu et al., 2024; Ma et al., 2025; Truong and 

Thatcher, 2025), to the best of our knowledge, no studies have systematically examined the sensitivity of spectral nudging 

configurations, in contrast to more extensive investigations over East Asia (Tang et al., 2009; Yhang and Hong, 2011), 

Europe (Feser, 2012), and North America (Castro et al., 2005). 

This study evaluates the impacts of different spectral nudging configurations on rainfall when dynamically downscaling with 60 

the Conformal Cubic Atmospheric Model (CCAM) during the extreme 2010 – 11 La Niña, in conjunction with the Madden–

Julian Oscillation (MJO) and the Australian monsoon (Cai and van Rensch, 2012; Evans and Boyer-Souchet, 2012; 

Lisonbee and Ribbe 2021), across the CORDEX – Australasia domain. This 2010 – 11 La Niña season serves as a stringent 

test of CCAM’s performance, as it was among the strongest La Niña events in Australia’s meteorological record, rivalling 
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historical extremes (BoM, 2012) led to widespread flooding in many regions over Australia including Queensland, Victoria, 65 

New South Wales, and Western Australia (Ummenhofer et al. 2015). The season was also marked by increased tropical 

cyclone activity, notably severe tropical cyclone Carlos over Darwin (367.6 mm/day) and Yasi over Queensland (471 

mm/day). In this study, we aim to: 

1. Evaluate the ability of CCAM to reproduce regional rainfall and large-scale circulation during the extreme 2010 – 

11 La Niña; 70 

2. Quantify the influence of nudging parameter choices on the representation of mean and extreme rainfall; and 

3. Identify parameter combinations that improve the fidelity of regional rainfall simulations over Australasia. 

The paper is organized as follows: Section 2 outlines the data and methods; Section 3 describes study results; and Section 4 

discusses the findings and conclusions. 

2 Data and methods 75 

2.1 ERA5 reanalysis 

The ERA5 reanalysis, produced by the European Center for Medium-Range Weather Forecasts (ECMWF), is based on the 

global Numerical Weather Prediction (NWP) model Integrated Forecast System (IFS) version CY41R2 (Hersbach et al., 

2020). The model provides hourly estimates of atmospheric variables, at a horizontal resolution of 31 km and 137 vertical 

levels from the surface to 0.01 hPa. The data is available on both surface (e.g., total precipitation) and 37 pressure levels 80 

(e.g., vertical winds). The variables used in this study are wind speed, temperature, specific humidity, and mean sea level 

pressure. 

2.2 Observations 

In this study, we evaluate simulated precipitation using the Integrated Multi-satellite Retrievals for the Global Precipitation 

Measurement IMERG Final Run product (Version 07; Huffman et al., 2019), distributed by NASA GES DISC. The level-3 85 

IMERG fields provide 0.1° x 0.1° coverage from 60°S-60°N and merge estimates from a constellation of passive-microwave 

and infrared sensors, intercalibrated to monthly rain-gauge analyses; we use the daily accumulation (mm day⁻¹). To 

benchmark observational uncertainty, particularly pronounced over the equatorial and data sparse regions (Alexander et al. 

2025; Nguyen et al., 2022), we include two additional daily products: the Global Precipitation Climatology Project (GPCP) 

daily CDR v3.2 (Huffman et al., 2023) and the Climate Prediction Center morphing method (CMORPH) v1.0 CRT (Joyce et 90 

al., 2004; Xie et al., 2017). The GPCP v3.2 provides globally complete 0.5° x 0.5° analyses from June 2000 to present, 

blending low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, sounder-based estimates, and 

surface rain gauge observations. The CMORPH v1.0 CRT provides bias-corrected, reprocessed estimates on a 0.25° grid 

with native 30-min resolution aggregated to daily for 1998-2023. As a high-quality continental reference over Australia, we 

also use AGCD v1.0.0 daily rainfall, a 0.05° x 0.05° gridded gauge-based analysis derived from quality-controlled station 95 
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data across mainland Australia and Tasmania (Jones et al., 2009). These datasets are selected for their demonstrated 

consistency in representing daily precipitation (Imran and Eván 2025) and extremes (Alexander et al., 2020; Nguyen et al., 

2020). 

2.3 Model description 

The climate model used for the study is Conformal Cubic Atmospheric Model (CCAM) (McGregor and Dix, 2008), 100 

developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CCAM is an open-source global 

stretched-grid non-hydrostatic numerical model, which has been extensively used for regional climate studies (Gibson et al., 

2024, Liu et al., 2024; Sugata et al., 2025). CCAM can be operated with either a stretched grid or with a global quasi-

uniform grid (Truong et al., 2025), driven by sea-surface temperatures (SSTs) and sea ice concentrations (Hoffmann et al., 

2016). This makes CCAM useful for regional climate simulations where errors arising from lateral boundary conditions can 105 

be avoided, although physical parameterisations must operate successfully over a range of spatial scales. The amount of 

stretching is described by a Schmidt factor where 1 indicates a quasi-uniform grid and values greater than 1 imply an 

increasing amount of grid stretching. CCAM includes parameterisations for radiation (Freidenreich and Ramaswamy, 1999; 

Schwarzkopf and Ramaswamy, 1999), convection (McGregor, 2003), gravity wave drags (Chouinard et al., 1986), and 

boundary layer turbulent mixing (Hurley, 2007). CCAM also includes the CABLE land-surface scheme (Kowalczyk et al., 110 

2006), the UCLEM urban parameterisation (Thatcher and Hurley, 2011) and a cloud microphysics scheme based on 

Rotstayn (1997). Thatcher and McGregor (2008) introduced a scale-selective filtering approach (e.g., spectral nudging), 

based on convolution-based scheme, for CCAM that constrains only the large length scales while allowing regional 

atmosphere at small length scales to evolve freely.  

2.4 Model configuration 115 

To assess the impacts of spectral nudging on precipitation, a total of 16 simulations were conducted using CCAM arranged 

into seven groups (Table 1). “Ctrl” group includes no nudging. “P_var” group comprised three simulations 

(P_3000_1h_L0.85, P_1500_1h_L0.85, and P_0500_1h_L0.85) in which only surface pressure was spectrally nudged above 

the planetary boundary layer (PBL) at wavelengths of 500, 1500, and 3000 km, with a relaxation interval of 1h. In “PUV” 

group, both surface pressure and horizontal wind components were nudged at the same wavelengths and interval. 120 

“PUVT_1h” group extended nudging variables to include surface pressure, horizontal wind, and temperature, while 

“PUVT_3h” group used identical variables and wavelengths but a weaker nudging strength, with the relaxation interval 

increased to 3h. “PUVT_L” group tested the sensitivity to vertical level at which nudging is applied, including (i) full-

column (L1, surface to top of the atmosphere), and (ii) half column (L0.5, mid to top of the atmosphere). Finally, “PUVTQ” 

simulation nudged surface pressure, horizontal wind, temperature, and specific humidity with a wavelength of 3000 km. The 125 

simulations are initialised using ERA5 reanalysis at 00 UTC on November 1, 2010, and run for a period of 5 months at 12 
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km horizontal resolution and 54 vertical level. A 1-month spin-up period is used to stabilise the model. The SST evolution is 

driven from ERA5 reanalysis. 

Table 1 Summary of the 16 simulations conducted in this study. Each simulation differs based on four key nudging 

options: variables (pressure [p], zonal and meridional wind components [u] and [v], temperature [t], and specific 130 

humidity [q]), horizontal wavelength (in km), update frequency (in hours), and vertical level. Simulation names follow the 

format: [VARs]_[Wavelength]_[Frequency]_[Level], where “VARs” represents the nudged variables (e.g., PUVTQ), 

“Wavelength” is the horizontal nudging wavelength (e.g., 3000 km), “Frequency” is the update interval (e.g., 1h), and 

“Level” indicates the vertical level at which the model being nudged to the top of the atmosphere (e.g., 0.85 for 0.85 sigma 

level). The simulations are grouped by nudging configuration to facilitate comparison. 135 

EXP. group EXP.  EXP. name Nudging 

variables 

Wavelength 

(km) 

Update 

frequency 

Level 

CTL 1 Ctrl - - - - 

P_var   2 P_3000_1h_L0.85 p 3000 1h 0.85 

 3 P_1500_1h_L0.85  1500 1h 0.85 

 4 P_0500_1h_L0.85  500 1h 0.85 

PUV 5 PUV_3000_1h_L0.85 p, u, v 3000 1h 0.85 

 6 PUV_1500_1h_L0.85  1500 1h 0.85 

 7 PUV_0500_1h_L0.85  500 1h 0.85 

PUVT_1h 8 PUVT_3000_1h_L0.85 p, u, v, t 3000 1h 0.85 

 9 PUVT_1500_1h_L0.85  1500 1h 0.85 

 10 PUVT_0500_1h_L0.85  500 1h 0.85 

PUVT_3h 11 PUVT_3000_3h_L0.85 p, u, v, t 3000 3h 0.85 

 12 PUVT_1500_3h_L0.85  1500 3h 0.85 

 13 PUVT_0500_3h_L0.85  500 3h 0.85 

PUVT_L 14 PUVT_3000_1h_L0.5 p, u, v, t 3000 1h 0.5 

 15 PUVT_3000_1h_L1 p, u, v, t 3000 1h 1 

PUVTQ 16 PUVTQ_3000_1h_L0.85 p, u, v, t,q 3000 1h 0.85 

Isphording et al. (2024) introduce a set of minimum standard metrics benchmarking regional climate model in estimating 

four fundamental characteristics (intensity, spatial distribution, seasonal cycle and changes over time) of rainfall over 

Australia. Here, we adopted the mean absolute percentage error (MAPE) and the spatial correlation coefficient (Scor) as 

other two metrics not being relevant given the short simulation that we are performing. The MAPE is defined following Eq. 

(1) 140 

MAPE =
1

n
∑

|modeli−obsi|

obsi

n
i=1            (1)  

, where n is the number of grid cells in the spatial domain. Scor quantifies pattern alignment, ranging from 0 (no match) to 1 

(perfect match). In addition to precipitation-based metrics, we also examined the large-scale moisture transport by 

calculating the divergence of water vapor flux at 700 hPa. The water vapor flux divergence is defined following Eq. (2) 
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∇(Vq) =  
∂

∂x
(uq) +

∂

∂y
(vq)           (2) 145 

where q denotes the specific humidity, and u and v are the zonal and meridional wind components, respectively.  

3 Results  

3.1 Mean precipitation 

3.1.1 Spatial variability of precipitation 

 150 

Figure 1 CCAM simulation domain with grid resolution ranging from 12 to 25 km, shown in contour colours. The study 

domain is divided into six subregions, labelled R1 to R6, representing the Maritime Continent, northwest Australia, 

southwestern pacific, northeast Australia, southeast Australia, and the whole simulated domain (50°S – 10°N, 90°E – 

150°W), respectively. 

To facilitate our regional analysis, the CORDEX–Australasia domain is partitioned into three subregions (R2, R4, and R5), 155 

which represent distinct climatic and synoptic regimes: R2 (northwestern Australia), R4 (northeastern Australia), and R5 

(southeastern Australia) (Fig. 1). We also include the Maritime Continent (MC) and the southwestern pacific as R1 and R3 

to examine the mean and extreme precipitation over these regions albeit the R1 and R3 belong to the CORDEX – SEA 

domain. Finally, R6 is defined as the entire domain. This subregional framework provides a consistent basis for examining 
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precipitation processes across a broad spectrum of climatic drivers, including tropical–extratropical interactions, the 160 

Madden–Julian Oscillation (MJO), El Niño–Southern Oscillation (ENSO) teleconnections, and the austral-summer monsoon 

during the anomalously wet spring and summer of 2010 – 11.  
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Figure 2 (a) The averaged precipitation from December 2010 to March 2011 over the study domain (mm day-1) for 

IMERG; and (b)–(q) the bias between 16 simulations described in Table 1. 165 

The averaged IMERG precipitation exceeded 25 mm day⁻¹ over the MC and the western Pacific, with enhanced across 

northern and northeastern Australia (Fig. 2a). In contrast, central and southern Australia received less than 5 mm day⁻¹. In 

general, IMERG, GPCP, and CMORPH exhibit similar spatial distributions (Fig. S1) and timeseries (Fig. S2), capturing the 

broad rainfall patterns during the extreme 2010 – 11 La Niña. The only notable difference is that IMERG tends to have 

slightly more intense precipitation, particularly in the tropical region (R1) and over the Gulf of Carpentaria (R4) compared to 170 

GPCP and CMORPH.  

In the CCAM simulations, the Ctrl displays substantial regional biases relative to IMERG (Fig. 2b). A wet bias (green 

shading) dominates the equatorial western Pacific, suggesting an excessive convective activity north of Papua New Guinea, 

while a dry bias (red shading) prevails across northern and eastern Australia, the MC, indicating a systematic 

underestimation of tropical convection activities. Over Australia, the Ctrl shows strong dry biases (>5 mm day⁻¹) in the north 175 

and similar, though less pronounced, bias in the southeast, underscoring the challenges in reproducing observed precipitation 

(Fig. 2b). The time series of spatially averaged daily rainfall for IMERG and AGCD over Australia shows strong agreement 

(r = 0.94), with similar timing and intensity of rainfall events throughout the study period (Fig. S3), although IMERG is 

almost always wetter than AGCD, which may slightly reduce the dry bias. 

Most nudged simulations reduce these continental biases, with biases over Australia generally constrained within ±2 mm 180 

day⁻¹ (Fig. 2c-q). Improvements are most pronounced in the eastern and southern subregions, where large dry biases in the 

Ctrl are substantially diminished. However, model performance remains limited in specific regions, such as the wet bias 

observed in the high-elevation areas of Papua New Guinea and the dry bias over the Gulf of Carpentaria. These biases 

coincide with significant observational uncertainties (Alexander et al., 2020), as the three precipitation products differ 

markedly in their representation of precipitation in region R3 and R4 (Fig. S1). These results suggest that while spectral 185 

nudging substantially improves rainfall representation over continental Australia, it is less effective in correcting tropical 

precipitation biases, which may be linked to convective parameterization and/or the impacts of horizontal resolution.  
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Figure 3 Taylor diagrams of daily precipitation averaged from December 2010 to March 2011 for six subregions (R1–190 

R6), comparing 16 CCAM simulations with IMERG. Radial axis (distance from origin) represents standard deviation of 

the simulated precipitation (normalized by the observed standard deviation, IMERG). Angular axis (angle from x-axis) 

represents correlation coefficient between models and IMERG. Solid gray concentric arcs represent the cantered root-

mean-square error (RMSE) between model and IMERG [a distance from the reference point on x-axis at (1,0)]. Coloured 

markers denote simulation groups (legend). 195 

We used a Taylor diagram of mean precipitation distribution across six subregions (Fig. 3) to quantify spatial skill in terms 

of correlation (R), normalized standard deviation (nSD), and root-mean-square error (RMSE). The Ctrl shows very low 

correlations (R = 0.05 – 0.25), strongly underestimated variance across all domains (nSD ~ 0.2 – 0.4), and RMSE 
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consistently largest across all regions, underscoring its inability to reproduce the spatial-organized precipitation. In contrast, 

most nudged simulations achieved substantially higher skill, with R values of 0.80 – 0.95, nSD between 0.5 and 0.9, and 200 

markedly reduced RMSE. Improvements were most pronounced over Australian continent (R2, R4, and R5), where several 

configurations reached R ≥ 0.9 and nSD close to 1, while performance was weaker in convective (R1) and orographic (R3) 

regions, where R remained somewhat lower (~0.75 – 0.85) and RMSE larger. It is also worth mentioning that observational 

uncertainties are significant in estimating both mean precipitation and extremes in R1 and R3 (Nguyen et al., 2020; 

Alexander et al., 2020), which could explain the “weaker performance” observed in simulations over these regions. 205 

Examining further into each nudged simulations indicate that P_var groups yields modest improvements over Australia. 

Furthermore, correlations remain weak in convective and orographic regions (e.g., R1, R3), rarely exceeding R = 0.6 and 

with relatively large RMSE. PUV groups performs better, especially in R4 and R5 where correlations approach 0.9 and 

RMSE is reduced, though tropical biases persist. The PUVT_1h and PUVT_3h groups produce the most balanced results, 

with R consistently ≥ 0.8 – 0.9, nSD less than 1, and lowest RMSE across regions, particularly for shorter wavelength, 1-h 210 

updates (500 – 1500 km, L0.85). By contrast, simulations with adding moisture (PUVTQ) or vertical levels (PUVT_L) 

exhibit inconsistent performance across regions, sometimes improving correlation but often at the cost of reduced variance. 

Collectively, these results align with previous discussion that shorter wavelength, frequent, multi-variable nudging (PUVT) 

offers better spatial representation of precipitation, whereas vertical nudging of either from surface or mid- to the top of the 

atmosphere lead to regionally biased outcomes. Our analysis of the Taylor diagram comparing CCAM simulations to GPCP 215 

produced results similar to those obtained with IMERG, reinforcing our previous conclusion without altering the overall 

findings (Fig. S4). 
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Figure 4 Frequency of daily precipitation intensity for IMERG observation and 16 CCAM simulations averaged over 220 

each region from December 2010 to March 2011.  

We examined the frequency distributions of daily precipitation across six subregions (Fig. 4) to evaluate model fidelity 

relative to IMERG. All simulations overestimate light precipitation (5 – 15 mm day⁻¹) and underestimate moderate events 

(15 – 30 mm day⁻¹), with the largest discrepancies in R1 and R3 (Figs. 4a and c). R5 is the only region where light-rainfall 

biases are minimal. The frequency of extremes (>40 mm day⁻¹) is reasonably reproduced across all simulations. 225 

Improvements from nudging are most evident in R2 and R4 in all nudged simulations. In contrast, light rain excess remains 

persistent in R1 and R3, underscoring the difficulty of correcting convective and orographic rainfall biases even under 

optimized nudging configurations. 
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3.1.2 Temporal variance of precipitation 

 230 

Figure 5 Time series of spatially averaged daily rainfall (mm day-1) for IMERG and 16 CCAM simulations over six from 

December 2010 to March 2011. 

Across all regions, the Ctrl simulation persistently underestimates rainfall (e.g., ~10 mm day⁻¹ deficit in R4 on 25 December 

2010) while occasionally exaggerating daily peaks (e.g., >12 mm in R2 on 1 March 2011) (Fig. 5). It often fails to reproduce 

the timing of major events such as severe tropical cyclone Carlos over Darwin (15 February 2011, in Fig. 5b) and Yasi over 235 

Queensland (02 February 2011, in Fig. 5d). Nudged simulations substantially improve both timing and magnitude, reducing 

errors to ~1 – 5 mm day⁻¹. Depending on nudging configurations, some runs (e.g., P_1500_1h_L0.85) slightly underestimate 

peak intensities by 1 – 2 mm day⁻¹. The largest improvements occur in R1 and R4, where Ctrl underestimates of ~10 mm 

day⁻¹ are reduced to <1.5 mm day⁻¹ in the best-performing PUVT runs, consistent with Taylor diagrams (Fig. 3) showing 
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correlations rising from ~0.5 in the Ctrl to >0.9 with nudging. The persistent underestimation in R1 through the entire 240 

timeseries may partly reflect its lower horizontal resolution (e.g., > 20 km, Fig. 1) relative to IMERG. 

The best overall performance is delivered by the PUVT_1h group at 500 – 1500 km with short update intervals (1h, L0.85), 

which closely track the IMERG time series in R1 – R4, correcting peak errors of 10 mm day⁻¹ to <1.5 mm day⁻¹ while 

maintaining realistic phase alignment of major synoptic events. Moderate skill is achieved by the PUVT_3h group and PUV 

runs, which improve timing and magnitude in some regions but degrade performance in others. In contrast, adding moisture 245 

or applying mid- or full-column nudging does not provide clear benefits, and in some cases degrades performance. The 

poorest outcomes are seen in the Ctrl and P_var groups, which either sustain exaggerated peaks (>15 mm day⁻¹) or distort 

the temporal structure.  
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Figure 6 Hovmöller diagram of zonally averaged daily precipitation (mm day⁻¹) from the IMERG dataset for the period 1 

December 2010 to 31 March 2011, averaged over 90°E to 170°E.  

The Hovmöller diagram of zonally averaged daily precipitation (Fig. 6) highlights the dominant influence of the MJO on 

rainfall variability during December 2010 – March 2011. IMERG indicates persistent convective maxima within ~15°S – 

15°N, punctuated by two strong episodes in mid-January and early February 2011 with daily zonal means exceeding 25 mm 255 

day⁻¹ (Fig. 6a). These surges coincide with active MJO phases over the MC and western Pacific (RMM phases 4 – 7) (Fig. 

S5), consistent with the enhanced precipitation in the regional time series (Fig. 5) for R1–R4. However, the Ctrl fails to 

reproduce the intensity and spatial coherence of these convective maxima (Fig. 6b). Precipitation within 15°S–15°N is 

markedly weaker, with zonal means rarely exceeding 10 mm day⁻¹, and both major MJO surges are substantially 

underestimated. Convective regions appear fragmented and displaced, indicating the model’s inability to capture the 260 

organized eastward propagation of MJO. South of 20°S, rainfall is sporadic and lacks the intensity and persistence evident in 

IMERG, consistent with the dry biases in the regional time series (Fig. 5). Collectively, these deficiencies demonstrate the 

Ctrl’s limited skill in representing tropical intraseasonal variability and its teleconnections across the MC and Australasian 

domain. 

Nudged simulations markedly improve the zonal-mean representation of tropical precipitation compared to the Ctrl (Fig. 6c-265 

q). Across most configurations, convective maxima within 15°S – 15°N are intensified and better aligned with the MJO-

related surges in mid-January and early February 2011, reducing the dry bias evident in the Ctrl. The PUVT_1h group at 

short wavelengths (e.g., 500 – 1500 km, Fig. 6) perform best, capturing both the magnitude and spatial coherence of the 

convective regions and closely tracking the eastward propagation of MJO. PUV and PUVT_3h runs also provide noticeable 

improvements in timing and magnitude, though their maxima are somewhat weaker than observed. Furthermore, 270 

configurations with mid-column nudging degrades model performance to represent MJO (Fig. 6o) whereas nudging from the 

surface to the top of the atmosphere does not add further benefit compared to other PUVT nudged simulations (Fig. 6p). The 

inclusion of specific humidity exaggerates light rainfall while failing to represent the organized MJO surges (Fig. 6q).  

3.1.3 Low-level circulation and vertical correlation 

The analysis of moisture flux divergence from ERA5 data (Fig. 7) reveals distinct spatial patterns during the 2010 – 2011 La 275 

Niña event. A prominent convergence zone (blue shading) is observed over northern and northwest Australia (Fig. 7a), 

closely aligned with the low-pressure system in this region (Fig. S6). Subtropical divergence (red shading) south of 

approximately 30°S reflects subsidence, associated with a high-pressure system to the south (Fig. S6), which likely 

contributes to suppressed rainfall over southern Australia, consistent with the observed decrease in precipitation shown in 

Fig. 1a. Low-level wind patterns indicate monsoonal winds from the tropics, driving moisture towards the Australian 280 

continent, a feature consistent with the active Australian monsoon during this period (e.g., BoM, 2012; Giles, 2012; 

Lisonbee and Ribbe 2021). The convergence regions identified in Fig. 7a qualitatively correspond to high-precipitation 

areas, particularly over the Gulf of Carpentaria, west of Sumatra, New Guinea, the MC, and New Zealand (Fig. 1a). In 
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contrast, the Ctrl exhibits a weaker and displaced low-pressure system over northwest Australia, resulting in diminished 

moisture convergence and an underestimation of precipitation in those regions such as the Gulf of Carpentaria, as seen in 285 

Fig. 1a. These discrepancies highlight the limitations of the Ctrl in accurately capturing monsoonal dynamics. In contrast, 

the nudged simulations significantly improve both the spatial structure and magnitude of moisture convergence, as well as 

the low-level circulation. The inclusion of pressure nudging (Fig. 7c-e) enhances the representation of low- and high-

pressure systems over Australia, with the low-pressure system over northwest Australia becoming more defined and 

accurately positioned relative to the Ctrl. The inclusion of u and v wind nudging in PUV (Fig. 7f-h) and PUVT (Fig. 7i-n) 290 

simulations greatly enhance monsoonal wind flow towards Australia, improving moisture convergence in regions such as the 

Gulf of Carpentaria and New Guinea, and aligning moisture flux divergence more closely with observed precipitation 

patterns, especially at shorter wavelengths (e.g., PUVT_0500_1h_L0.85 and PUVT_1500_1h_L0.85). Quantitatively, the 

location and magnitude of convergence regions over northern Australia improve by ~30 – 40% compared to the Ctrl. It is 

important to note that nudging is not applied below 850 hPa, except for in the PUVT_3000_1h_L1 case; however, similar 295 

improvements in moisture transport and convergence are observed at 875 hPa. There is minimal difference in moisture 

transport and convergence between cases where nudging is applied from 500 hPa (mid-troposphere to top of the atmosphere) 

and from the surface to the top of the atmosphere. However, when moisture nudging is included, additional convergence 

regions emerge, particularly over northern and western Australia, which corresponds to the overestimated rainfall observed 

in Fig. 5f and 6q. 300 
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Figure 7 The averaged wind fields (vectors) and water vapor flux divergence (color shades; unit) from ERA5 at 875 hPa 

from December 2010 to March 2011 over study domain; (a) ERA5 and (b)–(q) the corresponding plot for the 16 CCAM 

simulations. 

https://doi.org/10.5194/egusphere-2025-5847
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

18 

 

 

 

  305 

https://doi.org/10.5194/egusphere-2025-5847
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

19 

 

 

 

Figure 8 Vertical profiles of the correlation coefficient for the spatial pattern of Temperature, U wind component, V wind 

component, specific humidity from top to bottom 16 CCAM simulations against ERA from December 2010 to March 2011 

over 6 regions R1 to R6 from left to right.  

Figure 8 presents vertical correlations of temperature (t), zonal wind (u), meridional wind (v), and specific humidity (q) 

between 16 CCAM simulations and ERA5 across the six subregions (R1 – R6). The Ctrl run exhibits the weakest skill, with 310 

correlations frequently below 0.4 in the mid- to upper troposphere (400–200 hPa). Nudged simulations markedly improve 

vertical coherence, although the magnitude of improvement varies by configurations. For temperature, the PUVT_1h group, 

particularly, PUVT_0500_1h_L0.85 and PUVT_1500_1h_L0.85 simulations achieve correlations exceeding 0.8, whereas 

mid-column nudging (PUVT_3000_1h_L0.5)  degrades the simulated temperature skill and full-column nudging 

(PUVT_3000_1h_L1) offers no additional benefit, reinforcing the concept of constraining above the boundary layer while 315 

allowing near-surface fields to evolve freely. For winds, correlations in the Ctrl remain weak (<0.5) throughout much of the 

troposphere, consistent with its poor representation of monsoon inflow and subtropical divergence (Fig. 7b). Nudged 

simulations, particularly PUV and PUVT at 500 – 1500 km, raise correlations to 0.7 – 0.9 across most levels, although values 

remain lower in the upper troposphere over R1 and R3. Specific humidity shows the greatest variability. In the Ctrl, 

correlations drop largely above 700 hPa (<0.2 in R1–R3), while PUVT_0500_1h_L0.85 and PUVT_1500_1h_L0.85 improve 320 

to 0.6 – 0.8 in the mid-troposphere. Although nudging moisture (PUVTQ_3000_1h_L0.85) enhances the simulated specific 

humidity, the correlation does not differ significantly from other nudged simulations that do not include moisture nudging 

(Fig. 8). 

Regionally, R1 and R3 remain problematic even with nudging, as the vertical correlations for temperature and specific 

humidity in near the surface and aloft remain weaker, consistent with persistent rainfall biases (Fig. 2, 4). By contrast, R4 325 

and R5 show the largest improvement across all four variables (Fig. 8), aligning with improved magnitude and event timing 

of precipitation in Figs. 5–6. Domain-wide vertical correlation (R6, rightmost in Fig. 8) further suggests that nudged runs 

consistently outperforming the Ctrl across all variables. 
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3.2 Extreme precipitation 330 

 

Figure 9 Quantile–quantile plots of regionally averaged daily precipitation (mm day⁻¹) against IMERG for six 

subregions. Coloured symbols denote different CCAM simulations (see legend). The dashed 1:1 line represents perfect 

agreement with observations. The numbers indicate the area formed by the 1:1 and model line. Numbers on the top right 

of each panel indicate the area between IMERG and CCAM in which the larger the number the larger difference 335 

between the two.  

Figure 8 shows quantile – quantile (QQ) plots of daily regionally averaged precipitation against IMERG for the six 

subregions. The Ctrl shows the largest departures from the 1:1 line, systematically underestimating rainfall beyond the 

median (50th percentile) and failing to capture heavy rainfall above the 99th percentile in most regions, particularly R1, R2, 

R4, and whole domain, R6, consistent with its dry biases observed in Figs. 2 and 6. Nudged simulations substantially 340 

improves the precipitation distribution, with the best agreement achieved by PUVT_1h group (orange marker in Fig. 9). 
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These configurations reduce mean biases to < 1 mm/day across all regions and closely follows IMERG up to the 90 th 

percentile, while also reproducing the upper tail of the distribution (99th) more realistically, including the balance of 

extremes in R2-R5. It also stands out to be the best configuration for R1 region despite the coarse horizontal resolution. 

PUVT_3h group performs nearly as well, though with slightly scatter beyond the 90th percentile. It is interesting to note that 345 

the shorter wavelength (e.g., 500 and 1500 km) runs reduce biases substantially and follow IMERG closely through the 90 th 

percentile, remaining stable without under- or overshooting. In contrast, longer-wavelength configurations (e.g., 3000 km) 

remain acceptable up to the 90th percentile but tend to under- or overshoot high-quantile rainfall thereafter, particularly in 

R3, R4, and R5, with normalized biases of ~3 – 5 mm/day. In contrast, moisture nudging (PUVTQ_3000_1h_L0.85) shows 

the largest biases, significantly increases rainfall above all percentiles (Fig. 9f). This is consistent with its degraded 350 

frequency distributions (Fig. 4f) and overestimation of zonally averaged daily precipitation (Fig. 6q). A persistent limitation 

across all simulations is the underestimation of the very highest extremes (above the 99.9 th percentile) in R1 and R3, even in 

the best PUVT runs, reflecting unresolved convective and orographic processes. Overall, these diagnostics confirm that low-

level, high-frequency PUVT nudging at intermediate wavelengths (500 – 1500 km, L0.85) provides the most balanced 

performance, reducing systematic biases across the distribution, from the median through the 90 th percentile, while 355 

preserving realistic variability at higher quantiles whereas weaker (e.g., only pressure nudging) or over-constrained 

configurations (e.g., adding moisture) either fail to correct or exacerbate extremes. 
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Figure 10. Bias of monthly maximum 1-day precipitation (Rx1day; mm day⁻¹) from December 2010 to March 2011 

relative to IMERG. Each panel shows one CCAM spectral nudging simulation (see labels), with shading indicating 360 

spatial bias across the CORDEX–Australasia domain. Statistics included in each panel are the spatial correlation (SCor), 

mean absolute percentage error (MAPE), and domain-averaged bias.  

Figure 10 illustrates the bias of monthly maximum 1-day precipitation (Rx1day) from December 2010 to March 2011, 

comparing 16 CCAM simulations to IMERG. Although the study period is relatively short, it is considered representative 
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due to the extreme wet conditions associated with the 2010–2011 La Niña event. It is noteworthy that Alexander et al., 365 

(2025) used a combination of in situ, satellite, and reanalysis data to evaluate precipitation extremes (Rx1day) over land 

from 2001 to 2015 and found significant variability among the products in estimating regional annual wettest days. For 

instance, IMERG over land tends to be wetter than the Asian Precipitation -Highly Resolved Observational Data Integration 

Towards Evaluation of Water Resources (APHRODITE; Yatagai et al., 2012) over Monsoon Asia. Nevertheless, IMERG is 

used as the "reference" to evaluate the Rx1day from CCAM simulations in our analysis. 370 

Figure 10 presents panels (a) to (p) arranged from the wettest to the driest simulations, where negative values (red) indicate 

dry biases (underestimation), and positive values (green) denote wet biases (overestimation) of extreme rainfall. The results 

reveal substantial variations in simulation performance. The Ctrl and P_var consistently fail to capture extreme rainfall, with 

Scor values ≤0.46, MAPEs ≥0.57, and significant underestimations (-7 to -9 mm day⁻¹). PUV and PUVT group at longer 

wavelength (e.g., 3000 km), demonstrate reasonable skill but still suffer from large dry biases (>-6 mm day⁻¹). In contrast, 375 

configurations at shorter wavelengths (e.g., PUVT_0500_1h_L0.85 with Scor = 0.62, MAPE = 0.60, Bias = −0.84) perform 

better, minimizing the dry bias over the sea of MC. However, they overestimate precipitation over land regions such as 

Borneo, Papua New Guinea, and northern Australia.  

The overestimation over northern Australia is plausible, as IMERG tends to be drier than AGCD over the Australian 

continent (Alexander et al., 2025, Figs. 6 and S25). In contrast, the land regions of the MC require further validation against 380 

reliable in situ observations. Overall, these rankings reinforce that short-wavelength (500 – 1500 km), low-level nudging of 

pressure, winds and temperature provides the most reliable representation of extremes. 

4 Discussion and Conclusion 

This study evaluated the sensitivity of Conformal Cubic Atmospheric Model (CCAM) regional climate simulations to 

different spectral nudging (SN) configurations during the extreme 2010 – 11 La Niña event. The assessment aimed to 385 

examine the model’s ability to reproduce large-scale circulation and regional precipitation patterns, quantify the impact of 

nudging settings on mean and extreme rainfall, and identify optimal configurations to enhance simulation fidelity. 

Our evaluation demonstrates that spectral nudging has a decisive influence on the model’s ability to reproduce both mean 

and extreme precipitation across Australasia. However, the effectiveness of nudging varies depending on the set of variables 

used, the selected wavelength, and the nudging update frequency. We found that shorter wavelength, high-frequency 390 

nudging of pressure, winds, and temperature, provides the best balance between maintaining large-scale fidelity and allowing 

for regional variability. This configuration consistently minimized rainfall biases (Figs. 2–4) and best captured the timing 

and intensity of major extreme precipitation events, such as severe tropical cyclone Cat 5 – Carlos over Darwin and Yasi 

over Queensland, while also reproducing the MJO phase (Fig. 5). It further reproduced realistic moisture convergence into 

northern Australia and wind flow consistent with the monsoon (Fig. 6). Additionally, it aligned well with ERA5 vertical 395 

structures (Fig. 7) and produced accurate quantile distributions of extreme rainfall (Figs. 8–9). This result is consistent with 
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previous studies (e.g., Thatcher and McGregor, 2008; Tang et al., 2017; Spero et al., 2018), which have highlighted the 

effectiveness of scale-selective nudging in constraining large-scale circulation while preserving mesoscale variability and 

extreme events. 

The wavelength of the nudging plays a crucial role in determining model performance. By selecting a cut-off wavelength 400 

around 500 – 1500 km, we effectively nudged the synoptic scale of the model solution while still allowing for the 

development of finer-scale features. This range aligns with the findings of Gómez and Miguez-Macho (2017), who identified 

1000 km as an optimal wavelength for nudging in their study. Additionally, the update frequency of 1 hour for nudging 

aligns with previous studies (Liu et al., 2012; Otte et al., 2012), ensuring a high degree of consistency between the nudged 

model and the large-scale atmospheric fields. The vertical level at which nudging is applied also influences model skill. In 405 

this study, the best performance was achieved with nudging applied above 850 hPa, consistent with findings by Wang and 

Kotamarthi (2013) and von Storch et al. (2000). We found that adding moisture nudging degrades the model’s representation 

of mean and extreme precipitation, consistent with previous studies that caution against its use due to potential 

thermodynamic inconsistencies (Heikkila et al., 2010; Liu et al., 2012), although some studies have reported improvements 

in rainfall statistics (Omrani et al., 2015). Configurations with longer wavelengths (e.g., 3000 km) or infrequent nudging 410 

updates (e.g., 3h) led to smoother rainfall fields, weaker extremes, and misaligned convergence zones (Fig. 3–6). This 

sensitivity mirrors previous studies that show overly strong or infrequent nudging degrades model performance by 

weakening large-scale forcing and impacting regional variability (Alexandru et al., 2009; Omrani et al., 2015). In summary, 

our study demonstrates that applying spectral nudging on large-scale fields above the planetary boundary layer can 

significantly improve the simulation of mean and extremes in CCAM over Australasia. We recommend using configurations 415 

with moderate nudging wavelengths (~500 – 1500 km), short relaxation times (~1h), and including pressure, wind, and 

temperature nudging for the most accurate simulations of mean and extreme rainfall. In our study, the 

“PUVT_0500_1h_L0.85” configuration achieved the highest skill across multiple diagnostics, successfully preserving large-

scale circulation fidelity while allowing mesoscale processes to evolve. 

While the application of spectral nudging in this study has significantly improved the simulation of large-scale circulation 420 

and extreme precipitation events, several limitations remain. Firstly, despite the improved performance of the nudged model, 

biases persist, particularly over tropical convective and mountainous regions, where the model underestimates extreme 

precipitation at the 99th percentile. These persistent biases indicate that, although spectral nudging improves model accuracy, 

missing or inadequately represented regional physical processes limit the simulation of extreme precipitation, especially in 

complex orographically influenced regions. It is important to note, however, that observational products also exhibit 425 

deficiencies in these areas, which adds uncertainty to our model performance assessment. The study’s 12 km horizontal 

resolution, while suitable for capturing mesoscale processes, may still miss finer-scale features like localized convection that 

influence extreme rainfall, and higher resolutions could provide a more accurate representation of these processes. 

Additionally, the 4-month simulation period during the extreme wet summer of 2010 – 11 offers valuable insights, but the 

results are limited to this event. The model’s performance over different climate periods, particularly drier or less extreme 430 
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seasons, may differ, suggesting that future research could expand the time frame of simulations to assess variability and 

robustness across various climate conditions. The impact of GCM biases, which can propagate into the RCM simulation (Liu 

et al., 2024; Liang et al., 2008), remains another area for future research, particularly in integrating bias correction 

techniques or multi-model ensembles to enhance the fidelity of RCM projections. Our study contributes to the growing body 

of work on spectral nudging and its potential for enhancing regional climate simulations, particularly for applications in 435 

climate risk assessment and adaptation planning. 
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