Preprints
https://doi.org/10.5194/egusphere-2025-764
https://doi.org/10.5194/egusphere-2025-764
17 Mar 2025
 | 17 Mar 2025

The Antarctic Ice Sheet sliding law inferred from seismic observations

Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan

Abstract. The response of the Antarctic ice sheet to climate change and its contribution to sea level under different emission scenarios are subject to large uncertainties. A key uncertainty is the slipperiness at the ice sheet base and how it is parameterized in glaciological projections. Alternative formulations of the sliding law exist, but very limited access to the ice base makes it difficult to select among them. Here, we use satellite observations of ice flow, inverse methods, and a theory of acoustic propagation in granular material to relate the effective pressure, which is a key control of basal sliding, to seismic observations recovered from Antarctica. Together with independent estimates of grain diameter and porosity from sediment cores, this enables a comparison of basal sliding laws within a Bayesian framework. The presented direct link between seismic observations and sliding law parameters can be readily applied to any acoustic impedance data collected in a glacial environment. For rapidly sliding tributaries of Pine Island Glacier, these calculations provide support for a Coulomb-type sliding law and widespread low effective pressures.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Download
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise...
Share