Exploiting airborne far-infrared measurements to optimise an ice cloud retrieval
Abstract. Studies have indicated that far-infrared radiances hold significant information about the microphysics of ice clouds, particularly the ice crystal habit. In support of the European Space Agency's Far-Infrared Outgoing Radiation Understanding and Monitoring mission, we perform the first retrieval on an observation of coincident upwelling far- and mid-infrared radiances taken from an aircraft above a cirrus cloud layer. Four retrievals are performed: with and without the far-infrared, and assuming two different habit mixes. Results are compared to in-situ measurements of the cloud optical thickness, cloud top height, cloud effective radius, and habit distributions. We find that despite the known limitations of ice cloud optical property models, all the retrievals show agreement within the in-situ measurements of the cloud optical thickness, cloud top height, and cloud effective radius. However, the inclusion of the far-infrared enables a distinction between two different habits that is not possible using only mid-infrared channels. Furthermore, in this case study, the uncertainty in the retrieval of cloud top height and cloud optical thickness halves with the inclusion of the far infrared. As with other studies, we also see an additional degree of freedom for the temperature and water vapour retrievals. Our study highlights the need for the improvement of current ice cloud optical models, with the radiance residuals from the converged retrievals still exceeding the instrument uncertainty within the far-infrared. However, it provides observational support for the theoretical improvement that far-infrared observations could bring to retrievals of ice cloud properties.