Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2025-640
https://doi.org/10.5194/egusphere-2025-640
03 Apr 2025
 | 03 Apr 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Building-resolving simulations of anthropogenic and biospheric CO2 in the city of Zurich with GRAMM/GRAL

Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger

Abstract. Urban areas are significant contributors to global CO2 emissions, requiring detailed monitoring to support climate neutrality goals. This study presents a high-resolution modeling framework using GRAMM/GRAL, adapted for simulating atmospheric CO2 concentrations from anthropogenic and biospheric sources and sinks in Zurich, Switzerland. The framework resolves atmospheric concentrations at the building scale, and it employs a detailed inventory of anthropogenic emissions as well as biospheric fluxes, which were calculated using the Vegetation Photosynthesis and Respiration Model (VPRM). Instead of simulating the full dynamics of meteorology and atmospheric transport, the dispersion of CO2 is precomputed for more than 1000 static weather situations, from which the best match is selected for any point in time based on the simulated and measured meteorology in and around the city. In this way, time series over multiple years can be produced with minimal computational cost. Measurements from a dense network of mid-cost CO2 sensors are used to validate the model, demonstrating its capability to capture spatial and temporal CO2 variability. Applications to other cities are discussed, emphasizing the need for high-quality input data and tailored solutions for diverse urban environments. The work contributes to advancing urban CO2 monitoring strategies and their integration with policy frameworks.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
In order to support the city of Zurich in tracking its path to net-zero greenhouse gas emissions...
Share