Glacier surge activity over Svalbard from 1992 to 2025 interpreted using heritage satellite radar missions and Sentinel-1
Abstract. Based on massive processing of heritage radar data from the satellite missions ERS-1/2, JERS-1, ENVISAT ASAR, ALOS PALSAR and Radarsat-2, and in combination with data from the current Sentinel-1 and ALOS-2 PALSAR-2 missions, we compiled a ~30-year time series of radar backscatter over Svalbard. We exploited this data to detect glacier surges by using changes in backscatter as an indicator of increased or decreased surge-related crevassing. In this way, we reconstructed an as consistent as possible time series of surge activity on Svalbard for 1992 to 2025. We recorded 24 surge-type events during the pre Sentinel-1 period 1992–2014 (23 years) and 34 surge-type events during the post Sentinel-1 period 2015–2025 (11 years). This time series shows an approximately threefold increase in surges since 2015, from an average of about one surge per year to more than three surges per year. We show that this increase is unlikely to be explained alone by the better resolution, coverage and quality of the Sentinel-1 data compared to the data from the earlier SAR heritage missions. Simulation results indicate that the observed increase is extremely unlikely to be attributed to random perturbations in surge cyclicity, and instead suggest the influence of an external forcing mechanism. The number of surges during the recent decade seems high, but due to uncertainties in historical records, it remains unclear whether this frequency is exceptional or if earlier decades were unusually quiet. The cause of the observed threefold increase in surge activity also remains uncertain, given our incomplete understanding of surge initiation in relation to climate variability and non-climatic surge controls.