From Worst-Case Scenarios to Extreme Value Statistics: Local Counterfactuals in Flood Frequency Analysis
Abstract. Many aspects of flood risk management require flood frequency analysis (FFA) which is, however, often limited by short observational records – especially for flash floods in small basins. In order to address this issue, we propose to extend the underlying data by local counterfactual scenarios. To that end, heavy precipitation events (HPEs) from nearby, hydrologically similar catchments are used to simulate flood peaks which are then included in the FFA for the catchment of interest. In order to demonstrate the added value of this approach, we used 23 years of radar-based precipitation and a hydrological model, fitted the Generalized Extreme Value (GEV) distribution to three different datasets – observed peaks, counterfactual peaks, and their combination -, and evaluated the resulting three GEV fits by means of the quantile skill score (QSS). For a sample of more than 13,000 German headwater catchments, we could show that local counterfactuals improved quantile estimation, with the level of improvement increasing with return period. The improvement declines when the radius of the transposition domain is extended beyond 30 km. Overall, our results provide a tangible perspective to enhance traditional FFA, producing narrower confidence intervals and more robust estimates for design floods and risk assessments.