Preprints
https://doi.org/10.5194/egusphere-2025-446
https://doi.org/10.5194/egusphere-2025-446
08 Apr 2025
 | 08 Apr 2025

Elemental composition, iron mineralogy and solubility of anthropogenic and natural mineral dust aerosols in Namibia: a case study analysis from the AEROCLO-sA campaign

Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh

Abstract. This paper presents the results of three weeks of aerosol sampling at the Henties Bay coastal site in Namibia during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) field campaign in August–September 2017. The campaign coincided with a transition period between two synoptic regimes and corresponded to a significant change in the aerosol composition measured at the site and in particular of that of mineral dust. During August, the dust was natural windblown from the southerly gravel plains with a composition consistent with that previously observed in Namibia. In September, the dust was fugitive from anthropogenic mining and possibly minor contribution of smelting emissions in northern Namibia or as far as the Copper Belt in Zambia, one of the regional hotspot of pollution.

Chemical analysis of filter samples highlights the difference in elemental composition, in particular heavy metals, such as As, Cu, Cd, Pb, and Zn, but also silicon, in the anthropogenic dust. The metal solubility of the natural dust was higher, including that of iron. In addition to the higher content of iron oxides and the larger size of particles in the anthropogenic dust, we found that the iron solubility, and, more in general, the metals’ solubility, correlated to the high concentrations of fluoride ion which are attributed to marine emissions from the Namibian shelf. These results highlight in a renewed manner the importance of ocean-atmosphere exchanges affecting both the atmospheric composition and the marine biogeochemistry in the Benguela region.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

19 Nov 2025
Elemental composition, iron mineralogy, and solubility of anthropogenic and natural mineral dust aerosols in Namibia: a case study analysis from the AEROCLO-sA campaign – Part 2
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
Atmos. Chem. Phys., 25, 16127–16145, https://doi.org/10.5194/acp-25-16127-2025,https://doi.org/10.5194/acp-25-16127-2025, 2025
Short summary
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-446', Anonymous Referee #1, 18 Apr 2025
  • RC2: 'Comment on egusphere-2025-446', Akinori Ito, 16 Jun 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-446', Anonymous Referee #1, 18 Apr 2025
  • RC2: 'Comment on egusphere-2025-446', Akinori Ito, 16 Jun 2025

Peer review completion

AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
AR by Paola Formenti on behalf of the Authors (11 Jul 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (15 Jul 2025) by Lea Hildebrandt Ruiz
AR by Paola Formenti on behalf of the Authors (16 Jul 2025)  Author's response   Author's tracked changes   Manuscript 
EF by Mario Ebel (17 Jul 2025)  Supplement 
ED: Publish as is (17 Jul 2025) by Lea Hildebrandt Ruiz
AR by Paola Formenti on behalf of the Authors (18 Jul 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

19 Nov 2025
Elemental composition, iron mineralogy, and solubility of anthropogenic and natural mineral dust aerosols in Namibia: a case study analysis from the AEROCLO-sA campaign – Part 2
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
Atmos. Chem. Phys., 25, 16127–16145, https://doi.org/10.5194/acp-25-16127-2025,https://doi.org/10.5194/acp-25-16127-2025, 2025
Short summary
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh

Viewed

Total article views: 1,333 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,183 119 31 1,333 54 43 46
  • HTML: 1,183
  • PDF: 119
  • XML: 31
  • Total: 1,333
  • Supplement: 54
  • BibTeX: 43
  • EndNote: 46
Views and downloads (calculated since 08 Apr 2025)
Cumulative views and downloads (calculated since 08 Apr 2025)

Viewed (geographical distribution)

Total article views: 1,292 (including HTML, PDF, and XML) Thereof 1,292 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Nov 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Share