Global VOC emissions quantified from inversion of TROPOMI spaceborne formaldehyde and glyoxal data
Abstract. Volatile organic compounds (VOCs) are key precursors of tropospheric ozone and secondary organic aerosols, a major component of PM2.5, and several aromatic VOCs are toxic. Glyoxal is a short-lived oxidation product of many VOCs, yet global models consistently underestimate its abundance, indicating a substantial missing source. Here, we derive improved estimates of global biogenic, pyrogenic, and anthropogenic VOC emissions and new constraints on the atmospheric glyoxal budget, based on the first joint inversion of TROPOMI formaldehyde and glyoxal columns using the adjoint of the MAGRITTEv1.2 chemical transport model. For 2021, the global NMVOC flux is estimated at 1070 Tg/yr, 19 % above bottom-up estimates, partitioned into 749 Tg from vegetation, 102 Tg from biomass burning, and 219 Tg from anthropogenic activity. Emissions of anthropogenic glyoxal precursors are 43 % higher globally when constrained by satellite data compared with inventory-based simulations, with large underestimations in India, China, and Africa. The total glyoxal source is estimated at 100 Tg/yr, of which 41 % originates from unidentified VOCs, predominantly biogenic and concentrated in the Tropics. Likely contributors include poorly represented formation pathway in isoprene oxidation under low-NOx conditions and an underestimated contribution of monoterpenes. Validation against Pandonia Global Network, in situ, and MAX-DOAS datasets confirms improved agreement of the satellite-constrained model relative to the model based on inventory data alone.