Preprints
https://doi.org/10.5194/egusphere-2025-3585
https://doi.org/10.5194/egusphere-2025-3585
25 Aug 2025
 | 25 Aug 2025
Status: this preprint is open for discussion and under review for Geoscientific Model Development (GMD).

Operational numerical weather prediction with ICON on GPUs (version 2024.10)

Xavier Lapillonne, Daniel Hupp, Fabian Gessler, André Walser, Andreas Pauling, Annika Lauber, Benjamin Cumming, Carlos Osuna, Christoph Müller, Claire Merker, Daniel Leuenberger, David Leutwyler, Dmitry Alexeev, Gabriel Vollenweider, Guillaume Van Parys, Jonas Jucker, Lukas Jansing, Marco Arpagaus, Marco Induni, Marek Jacob, Matthias Kraushaar, Michael Jähn, Mikael Stellio, Oliver Fuhrer, Petra Baumann, Philippe Steiner, Pirmin Kaufmann, Remo Dietlicher, Ralf Müller, Sergey Kosukhin, Thomas C. Schulthess, Ulrich Schättler, Victoria Cherkas, and William Sawyer

Abstract. Numerical weather prediction and climate models require continuous adaptation to take advantage of advances in high-performance computing hardware. This paper presents the port of the ICON model to GPUs using OpenACC compiler directives for numerical weather prediction applications. In the context of an end-to-end operational forecast application, we adopted a full-port strategy: the entire workflow, from physical parameterizations to data assimilation, was analyzed and ported to GPUs as needed. Performance tuning and mixed-precision optimization yield a 5.6x speed-up compared to the CPU baseline in a socket-to-socket comparison. The ported ICON model meets strict requirements for time-to-solution and meteorological quality, in order for MeteoSwiss to be the first national weather service to run ICON operationally on GPUs with its ICON-CH1-EPS and ICON-CH2-EPS ensemble forecasting systems. We discuss key performance strategies, operational challenges, and the broader implications of transitioning community models to GPU-based platforms.

Competing interests: Author Dmitry Alexeev is employed by NVIDIA. The other authors have no competing interest

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Xavier Lapillonne, Daniel Hupp, Fabian Gessler, André Walser, Andreas Pauling, Annika Lauber, Benjamin Cumming, Carlos Osuna, Christoph Müller, Claire Merker, Daniel Leuenberger, David Leutwyler, Dmitry Alexeev, Gabriel Vollenweider, Guillaume Van Parys, Jonas Jucker, Lukas Jansing, Marco Arpagaus, Marco Induni, Marek Jacob, Matthias Kraushaar, Michael Jähn, Mikael Stellio, Oliver Fuhrer, Petra Baumann, Philippe Steiner, Pirmin Kaufmann, Remo Dietlicher, Ralf Müller, Sergey Kosukhin, Thomas C. Schulthess, Ulrich Schättler, Victoria Cherkas, and William Sawyer

Status: open (until 20 Oct 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Xavier Lapillonne, Daniel Hupp, Fabian Gessler, André Walser, Andreas Pauling, Annika Lauber, Benjamin Cumming, Carlos Osuna, Christoph Müller, Claire Merker, Daniel Leuenberger, David Leutwyler, Dmitry Alexeev, Gabriel Vollenweider, Guillaume Van Parys, Jonas Jucker, Lukas Jansing, Marco Arpagaus, Marco Induni, Marek Jacob, Matthias Kraushaar, Michael Jähn, Mikael Stellio, Oliver Fuhrer, Petra Baumann, Philippe Steiner, Pirmin Kaufmann, Remo Dietlicher, Ralf Müller, Sergey Kosukhin, Thomas C. Schulthess, Ulrich Schättler, Victoria Cherkas, and William Sawyer
Xavier Lapillonne, Daniel Hupp, Fabian Gessler, André Walser, Andreas Pauling, Annika Lauber, Benjamin Cumming, Carlos Osuna, Christoph Müller, Claire Merker, Daniel Leuenberger, David Leutwyler, Dmitry Alexeev, Gabriel Vollenweider, Guillaume Van Parys, Jonas Jucker, Lukas Jansing, Marco Arpagaus, Marco Induni, Marek Jacob, Matthias Kraushaar, Michael Jähn, Mikael Stellio, Oliver Fuhrer, Petra Baumann, Philippe Steiner, Pirmin Kaufmann, Remo Dietlicher, Ralf Müller, Sergey Kosukhin, Thomas C. Schulthess, Ulrich Schättler, Victoria Cherkas, and William Sawyer

Viewed

Total article views: 803 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
770 32 1 803 8 10
  • HTML: 770
  • PDF: 32
  • XML: 1
  • Total: 803
  • BibTeX: 8
  • EndNote: 10
Views and downloads (calculated since 25 Aug 2025)
Cumulative views and downloads (calculated since 25 Aug 2025)

Viewed (geographical distribution)

Total article views: 802 (including HTML, PDF, and XML) Thereof 802 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 14 Sep 2025
Download
Short summary
The ICON climate and numerical weather prediction model was fully ported to Graphical Processing Units (GPUs) using OpenACC compiler directives, covering all components required for operational weather prediction. The GPU port together with several performance optimizations led to a speed-up of 5.6× when comparing to traditional CPUs. Thanks to this adaptation effort, MeteoSwiss became the first national weather service to run the ICON model operationally on GPUs.
Share