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Abstract. Numerical weather prediction and climate models require continuous adaptation to take advantage of advances in

high-performance computing hardware. This paper presents the port of the ICON model to GPUs using OpenACC compiler

directives for numerical weather prediction applications. In the context of an end-to-end operational forecast application, we

adopted a full-port strategy: the entire workflow, from physical parameterizations to data assimilation, was analyzed and ported

to GPUs as needed. Performance tuning and mixed-precision optimization yield a 5.6x speed-up compared to the CPU baseline5

in a socket-to-socket comparison. The ported ICON model meets strict requirements for time-to-solution and meteorological

quality, in order for MeteoSwiss to be the first national weather service to run ICON operationally on GPUs with its ICON-

CH1-EPS and ICON-CH2-EPS ensemble forecasting systems. We discuss key performance strategies, operational challenges,

and the broader implications of transitioning community models to GPU-based platforms.

1 Introduction10

Numerical weather prediction (NWP) plays a critical role in our society, supporting applications ranging from renewable en-

ergy management to the protection of life and property during severe weather events. The growing demand for accurate weather

forecasts requires the use of advanced computational techniques to improve the performance of NWP models. With greater

computing power, models can run at higher resolutions, capturing finer-scale atmospheric processes and local weather phenom-

ena that coarser models cannot resolve (Palmer, 2014; Bauer et al., 2015). This could improve the accuracy of predictions for15
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severe weather events such as thunderstorms, hurricanes, and heavy rainfall. Furthermore, greater computational power allows

for more frequent updates and the execution of larger ensemble forecasts, thereby enhancing forecast reliability through quan-

tification of uncertainty. In recent years, graphics processing units (GPUs) have emerged as a cornerstone of high-performance

computing (HPC), offering high throughput and improved energy efficiency through massive parallelism. However, in order to

benefit from the latest advancements in HPC technology, weather and climate models must be adapted to operate effectively on20

this hardware. Furthermore in the context of emerging machine learning for weather forecasting having a GPU capable model

is of great interest since both the Machine Learning algorithms as well as the traditional NWP model can run on the same GPU

hardware allowing for synergies in terms of system investment.

Weather and climate models are typically large community codes comprising millions of lines of Fortran or C/C++ code.

Adapting such a large code base to GPUs requires significant effort. While many attempts have been made to port in-25

dividual components, only a handful of these models have been fully ported and are being used in production on GPU-

based or hybrid systems. Different groups have adopted various strategies. Some early work includes the Japanese ASUCA

model (Shimokawabe et al., 2011) which has been ported with a CUDA (Nickolls et al., 2008) rewrite. Another approach

is to use compiler directives such as OpenACC or OpenMP for accelerators. The advantage of this approach is that it can be

incrementally inserted into existing code and may be more easily accepted by the modeling community. The COSMO (Consor-30

tium for Small-scale Modeling) model was ported using a combination of a domain-specific language rewrite and OpenACC

directives, achieving substantial speed-ups on GPU systems with respect to the CPU baseline (Lapillonne and Fuhrer, 2014;

Fuhrer et al., 2014). It was also the first model used by a national weather service for operational numerical weather prediction

on GPUs. More recently, the MesoNH (non-hydrostatic mesoscale atmospheric) model was ported to GPUs using compiler

directives (Escobar et al., 2024), while the Energy Exascale Earth System (E3SM) was entirely rewritten using C++ and the35

Kokkos library (Donahue et al., 2024). These diverse efforts underscore the growing necessity of exploiting modern hardware

architectures, such as GPUs, to meet the increasing computational demands of weather and climate modeling.

To also take advantage of advances in hardware architectures, the ICON (Icosahedral Nonhydrostatic) model (Zängl et al.,

2015) – a state-of-the-art model for weather and climate simulations – was successfully ported to GPU architectures using

OpenACC compiler directives applied to the existing Fortran-based code. The initial effort targeted climate applications (Gior-40

getta et al., 2022), leaving components essential for NWP unported. Building on this foundation, we extend the GPU support to

weather applications by porting the missing components using OpenACC directives. Although several other configurations are

ported and supported on GPU, this work particularly focuses on the operational setup at the Swiss National Weather Service

MeteoSwiss. Our comprehensive approach spans the entire operational workflow, from initialization to output, while meeting

stringent time-to-solution requirements of various products such as forecasts for aviation or other NWP-specific applications.45

2 The ICON model

The ICON (Icosahedral Nonhydrostatic) model, by (Zängl et al., 2015), is a climate and numerical weather prediction system

developed through a partnership involving the German Weather Service (DWD), the Max Planck Institute for Meteorology

2

https://doi.org/10.5194/egusphere-2025-3585
Preprint. Discussion started: 25 August 2025
c© Author(s) 2025. CC BY 4.0 License.



(MPI-M), the German Climate Computing Center (DKRZ), the Karlsruhe Institute of Technology (KIT), and the Center for

Climate Systems Modeling (C2SM). Besides climate and research applications, ICON is used operationally by the DWD,50

MeteoSwiss and several national weather services of the COSMO consortium for numerical weather prediction. The model

employs an icosahedral grid structure, which divides the globe into triangular cells, providing quasi-uniform resolution and

eliminating the pole problem inherent to traditional latitude-longitude grids. This grid structure supports local refinement, en-

abling higher resolution in areas of interest without compromising global coverage. The model uses a finite-volume discretiza-

tion method on these triangular cells, ensuring mass conservation and accurate representation of atmospheric dynamics. The55

coupling between dynamics and physics in ICON follows a split-explicit strategy, where the fast dynamical core is sub-stepped

relative to the physics time step, allowing for stable integration while maintaining computational efficiency.

For parallelization, ICON adopts a horizontal domain decomposition strategy, where the computational domain is divided

into smaller subdomains distributed across multiple processors. This approach, combined with advanced data structures and

efficient communication protocols, ensures scalability and optimal performance on massively parallel super-computing archi-60

tectures. The vertical discretization in ICON is based on a terrain-following hybrid coordinate system which combines the

advantages of pressure-based and height-based coordinates. This system allows for a more accurate representation of the atmo-

spheric boundary layer and better resolution of vertical atmospheric processes, particularly in regions with complex topography

such as the Alps.

3 GPU port for NWP65

3.1 Overview

The GPU port of the ICON model is based on OpenACC compiler directives, which are added as comments to the original

Fortran source code; see Listing 1. The choice of a directive based approach was decided over a re-write in a GPU specific

language like CUDA or a DSL, mainly because of it’s broader acceptance by the ICON community, increasing the chance

to re-integrate the work in the main code. Further more the OpenACC directives were chosen over OpenMP for accelerator,70

because when starting this porting effort and evaluating available technologies the compilers supporting OpenMP were less

mature. The OpenACC directives guide the compiler in generating GPU code, reducing the need for manual intervention. One

of the key aspects of the port is to reduce data movement between the host CPU and the GPU memory while also maximizing

the utilization of the GPU’s computational resources.

Listing 1. Example of an OpenACC block from the microphysics component, with parallelization along nproma, jc loop, and nlev, jk

loop75
1: !$ACC PARALLEL DEFAULT(PRESENT) ASYNC( 1 )

2: !$ACC LOOP GANG VECTOR COLLAPSE ( 2 )

3: DO j k =1 , n l e v

4: DO j c = i _ s t a r t i d x , i _ e n d i d x

5: prm_diag%t t _ l h e a t ( j c , jk , j b ) = prm_diag%t t _ l h e a t ( j c , jk , j b ) − p _d i ag%temp ( jc , jk , j b )80
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6: ENDDO

7: ENDDO

8: !$ACC END PARALLEL

In atmospheric models, the arithmetic intensity, i.e., the ratio of computation (floating-point operations) to memory accesses,85

is generally low (Adamidis et al., 2025). As a result, only porting isolated kernels to the GPU yields little benefit. Instead, most

model components must be ported together, which we refer to as a full port strategy. Timing measurements confirm that

transferring all the variables from the CPU to the GPU memory takes approximately as long as performing one full time step

on the GPU. To achieve any performance gain using a GPU under these conditions, it is essential that such data transfers are

avoided at every time step. Instead, data transfers between CPU and GPU should be limited to infrequent operations, such as90

writing output to disk. Accordingly, the ICON GPU port is designed such that after the initialization phase on the CPU, all data

are copied to the GPU and during the time loop all components called at high temporal frequency are executed on the GPU

(Fig. 1). If any code needs to run on the CPU within the time loop, a data copy is added from GPU to CPU.

CPU

GPU
(Accelerator)

Initial
physics Dynamics Physics Infrastructure

(e.g. nesting)
Output

diagnostics

Time loop

ManagementInitialization

Data copy
of full state

Read
input

E.g. Data
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output

Selective data
transfer

Infrequently
called code

Figure 1. GPU port of the ICON model. After initialization on the GPU all the main components of the time loop are run on the GPU.

3.2 Strategy and performance consideration

ICON operates on a three-dimensional computational domain: in the horizontal grid cells are enumerated with a space-filling95

curve, which is split into nblocks blocks of user-defined block size nproma, while the vertical direction comprises nlev

levels. Most arrays in ICON follow the index ordering (nproma, nlev, nblocks), possibly with additional dimensions

of limited size. In the GPU port, nproma is set as large as possible, ideally such that all cell grid points of a computational

domain, including first and second-level halo points, fit into a single block, yielding nblocks=1. This design choice reduces

the complexity of the porting process: parallelization is required only along the nproma and nlev dimensions, while nblock100

loop can be omitted, since its value is either one or very small. This particularly reduces the call tree size inside a parallel region,

since many parameterizations are called inside the block loop. Loops over nproma are usually the innermost loops and rarely

contain additional subroutine calls. Although nblocks=1 should not be a requirement from the OpenACC standard point of

view, in practice many compiler issues and limitations were circumvented by avoiding calling nested subroutines in accelerated
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regions. The nproma dimension, with unit stride in memory, is the main direction of fine-grain parallelism and is associated105

with the OpenACC keyword vector to ensure coalesced memory access.

In our porting approach, all components in the time-stepping loop (with minor exceptions) run on the GPU, while compo-

nents in the initialization run on the CPU (cf. Fig. 1). A challenge arises from the fact that both initialization and time-stepping

invoke shared low-level routines. To distinguish between the execution context, an additional logical argument, lacc, is intro-

duced and used as a conditional guard on all parallel and data regions within the shared routines.110

The GPU implementation assumes one compute MPI task per GPU. The original communication library is ported to GPU

and supports GPU-to-GPU (G2G) communication, enabling efficient data exchange between GPUs during parallel execution.

This comprehensive approach to porting ICON to GPUs aims to maximize performance gains and reduce to the minimum data

transfer.

3.3 Basic Optimization115

Multiple general optimization strategies are considered for the initial GPU port of ICON. The first design choice is to apply

ACC LOOP VECTOR to the innermost loop to allow contiguous memory accesses. The inner nproma-loop can be collapsed

with the outer nlev loop when appropriate, potentially improving performance. Collapsing loops allows both the inner and

outer loops to be parallelized together, which is possible if there are no data dependencies across levels.

The second optimization is to merge multiple loops nested together into one large parallel region. This reduces the kernel120

launch overhead. However, a drawback of this approach is that it often prevents the use of the COLLAPSE clause and thus

reduces the available parallelism, as every parallel loop in the whole region needs to have the same bounds, which is not always

the case in the vertical direction. Nevertheless, for ICON, larger parallel regions generally yield better GPU performance. When

dependencies exist between the different loop nests inside a parallel region, the GANG(STATIC: 1) clause is required. This

clause ensures that the same GANG indices will be executed consecutively in each sub-loop, which is otherwise not guaranteed.125

Since the GANG(STATIC: 1) clause does not degrade performance noticeably, the clause is always added when multiple

loop nests are in a larger parallel region. This practice ensures robustness against future modifications by domain scientists

who may introduce inter-loop dependencies.

An alternative to COLLAPSE is the use of the TILE directive. TILE splits the iteration space into blocks of user-defined size.

This can improve cache-usage, especially in cases for neighbor accesses or for memory transposes. For instance, the execution130

time for this parallel region can be reduced from 19ms to 2.5ms by using the TILE directive instead of COLLAPSE(3),

see Listing 2. The choice of tile sizes is hardware-specific and has been selected to yield optimal performance on NVIDIA

GPUs, which is generally consistent across most NVIDIA architectures. In this case, it has also been demonstrated that even a

suboptimal tile size can outperform a plain loop collapse.

Listing 2. Example for the use of the OpenACC tile directive135
1: !$ACC PARALLEL DEFAULT(NONE) ASYNC( 1 )

2: !$ACC LOOP GANG VECTOR TILE ( 2 , 64 , 1 )

3: DO JLEV = 1 , KLEV

5
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4: ! c d i r u n r o l l =4

5: DO J I = 1 , JPGPT140

6: DO JLON = KIDIA , KFDIA

7: POD( J I , JLEV , JLON) = ZTAU( JLON , J I , JLEV )

8: ENDDO

9: ENDDO

10: ENDDO145

11: !$ACC END PARALLEL

Furthermore, advanced optimizations which are specific to different parts of the code are described in Sect. 6.2.

3.4 Dynamics

The Dynamics, or dynamical core of the model, solves the equations governing atmospheric flow. Most components of the150

dynamical core are shared between the climate and NWP configurations, so only a few additional components had to be ported

in addition to the initial work described in Giorgetta et al. (2022). Most loops are parallelized along the nproma and nlev

directions when there is no vertical dependency. The code has been GPU-optimized while preserving portability. Although

OpenACC directives support execution on both CPU and GPU targets, around ten instances in the code use architecture-specific

variants to achieve optimal performance on each platform. These conditional branches enable tailored implementations where155

the GPU and CPU exhibit substantially different performance characteristics.

3.5 Tracer Transport

The transport module is responsible for the large-scale redistribution of water substances, chemical constituents, or aerosols,

for example pollen, by solving the tracer mass continuity equation. The Tracer advection is divided into independent hori-

zontal and vertical advection using the Strang splitting approach see (Reinert, 2020). Both horizontal and vertical transport160

use semi-Lagrangian algorithms as described in (Reinert and Zängl, 2021). The computational structure of the transport rou-

tines resembles that of the dynamical core, involving access patterns from the current edge/cell to neighboring edges or cells.

This similarity allows for the adoption of a comparable GPU porting strategy. Different transport algorithms with different

computational cost/accuracy trade-offs can be chosen for different tracers. For example, cloud ice, cloud water, precipitation,

graupel are transported using the same scheme, while water vapor is treated with a higher-order horizontal advection method.165

This high-order scheme poses the greatest challenge for GPU porting using OpenACC, as it involves indirect addressing using

index lists. To address this, a tailored GPU implementation was developed to ensure efficient execution on GPUs.

3.6 Physics

The so-called physical parameterizations are additional components that describe physical processes not represented by the

equations of the dynamics, such as sub-grid scale turbulence, radiation or the physical processes associated to cloud formation170
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and precipitation. These parameterizations are computed on the three-dimensional model grid and are invoked frequently, some

at every time step, thus requiring GPU porting. Due to anisotropy in the atmosphere and the timescales of the physical processes

relative to atmospheric flow, horizontal interactions can be neglected for most parameterizations. As a result, they can be

formulated as column-independent computations. This makes them very attractive for parallelization, as the parameterizations

can be trivially parallelized along the horizontal direction, nproma in our case. Many parameterizations, however, do have175

vertical dependencies, e.g., when the vertical loop must be computed sequentially. This is true, for example, in the main

computations of the microphysics and the turbulence. All parameterizations required for the main NWP applications have been

ported to GPU.

3.6.1 Treatment of the soil tiles

In ICON, subgrid heterogeneity of the land surface is represented using a so-called tile approach. For example, a given grid180

point may consist of 50% forest and 50% grass, and the tile composition may change dynamically over the simulation. The

ICON implementation is such that at each time step a list is created for each type of tile, which are then computed one after the

other. Executing each tile type sequentially on the GPU would lead to poor performance, since some tile types may contain too

few grid points on a given subdomain to fully utilize the GPU. To circumvent this issue, each tile type is run in an independent

queue, equivalent to a CUDA stream on NVIDIA GPUs, using the ASYNC(stream) construct. In combination with CUDA185

Graphs, an optimization further described in Sect. 6.2.5, this approach yields good performance for parameterization using

tiles.

3.6.2 Radiation

The radiation scheme ecRad (Hogan and Bozzo, 2016), developed at the European Centre for Medium-Range Weather Fore-

casts (ECMWF), is operationally used in ECMWF’s Integrated Forecasting System (IFS) and is also employed in ICON. The190

code structure and data layout of ecRad differ significantly from those in the rest of ICON. In addition, its memory consumption

is substantial, as it processes approximately 300 wavelengths per grid point.

Thus, a solution is needed to manage memory consumption, and the porting strategy had to be adapted to accommodate

the distinct data layout and code structure. To address the memory consumption, we introduced sub-blocking at the interface

between ecRad and ICON. The sub-blocking divides the grid points on the reduced grid into nproma_sub-sized batches,195

which are computed sequentially. This approach ensures that only one radiation sub-block must be held in memory at any

given time (see Figure 2). While this method effectively controls memory usage, it reduces the available parallelism in ecRad.

In practice, this trade-off between memory usage and parallelism must be carefully balanced to ensure the computation fits

within the available GPU memory while still achieving high hardware utilization.

The data layout in ecRad differs from that used elsewhere in ICON (see Sect. 3.2). ecRad operates on a three-dimensional200

domain: the horizontal dimension is the same as for the other part of ICON but is further split into subblocks nblcks_sub

of the size nproma_sub, see Fig. 2; the vertical levels from the other dimension of size nlev are the same as in ICON;

additionally, a third dimension spans the wavelengths ng. The index order is (ng, nlev, nproma_sub). This layout

7
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1.. nproma

1.. nproma_sub

1.. nproma

1.. nproma_sub

Copy input, compute, copy result back

Copy input, compute, copy result back

ICON array

ICON array

ecRad datastructure

ecRad datastructure

Figure 2. Example of two radiation subblocks that are used in the ecRad interface to compute each subblock sequentially.

presents a challenge in using the parallelism. The wavelength dimension offers limited parallelism – on the order of hundreds

of wavelengths – insufficient to saturate the GPU using GANG VECTOR parallelism. Conversely, the horizontal dimension can205

be tuned to ensure sufficient parallelism for GANG VECTOR parallelism, but results in non-coalesced memory accesses.

To evaluate alternatives, two strategies were tested in standalone versions of ecRad solvers. The first reorders the loops

so that the horizontal dimension is innermost, enabling efficient GANG VECTOR parallelism. The second strategy retains the

original layout and applies vector parallelism to the wavelength dimension and gang parallelism to the horizontal dimension.

Both strategies performed equally well in our benchmarks. Therefore, we selected the second approach, as it requires fewer210

code modifications.

Listing 3. Example of an OpenACC block from the radiation component, with parallelization along nproma, jc loop, and ng, jg loop

1: !$ACC PARALLEL DEFAULT(NONE) ASYNC( 1 ) &

2: !$ACC NUM_GANGS( i e n d c o l − i s t a r t c o l +1) &

3: !$ACC NUM_WORKERS( ( c o n f i g%n_g_sw − 1 ) / 3 2 + 1 ) VECTOR_LENGTH( 3 2 )215

4: !$ACC LOOP GANG PRIVATE ( . . . )

5: do j c o l = i s t a r t c o l , i e n d c o l

6: . . .

7: !$ACC LOOP SEQ

8: do j l e v = 1 , n l e v220
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9: . . .

10: !$ACC LOOP WORKER VECTOR PRIVATE ( . . . )

11: do j g = 1 , ng

12: od_cloud_new ( j g ) = o d _ s c a l i n g ( jg , j l e v ) &

13: & * od_c loud ( c o n f i g%i _ b a n d _ f r o m _ r e o r d e r e d _ g _ s w ( j g ) , j l e v , j c o l )225

14: . . .

15: end do

16: end do

17: end do

18: !$ACC END PARALLEL230

Note that the jg loop uses WORKER VECTOR parallelism instead of a standard VECTOR loop. This configuration has shown

better performance with the OpenACC compiler used in our implementation.

3.7 Pollen

Pollen forecasts play a critical role in public health by enabling individuals with allergic conditions—such as hay fever and235

asthma—to anticipate high-exposure days, plan outdoor activities, and initiate preventive measures like early medication use.

The modeling of pollen species in ICON is coupled with the aerosol module ART (Aerosol and Reactive Trace gases, (Rieger

et al., 2015), (Schröter et al., 2018)) developed at the Karlsruhe Institute of Technology (KIT). In general, ART enables

modeling a variety of trace gases and aerosols and their associated chemical processes. However, in the context of NWP

production at MeteoSwiss, ART is used exclusively to simulate emissions, transport (see subsection 3.5), sedimentation, and240

washout processes of five pollen species during their blooming season, namely hazel, alder, birch, grasses, and ambrosia.

For production purposes, only the necessary ART subroutines required for modeling the above-mentioned pollen species are

ported to GPUs. These porting efforts follow the same strategy as used for the ICON model (see subsection 3.2).

3.8 Data Assimilation

Data assimilation combines observational data with model output to generate the best possible estimate of the atmospheric245

state. This estimate, known as the "analysis", serves as the initial condition for subsequent numerical weather prediction

(NWP) forecasts. Accurate and timely analyses are essential for high-quality short-range forecasts, particularly in data-rich

regions like Europe.

Here we consider the so-called KENDA (Kilometer-scale Ensemble Data Assimilation) system (Schraff et al., 2016) used

within ICON. It employs an ensemble Kalman filter, specifically the Local Ensemble Transform Kalman Filter (LETKF)250

by (Hunt et al., 2007), to assimilate a wide range of observational data. This includes conventional data from radiosondes,

aircraft, wind radars and wind Light Detection and Ranging (LIDAR) instruments, and surface stations. Additionally, radar-

derived surface precipitation rates are assimilated through a technique known as latent heat nudging.

9
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Figure 3. Diagram illustrating the GPU-CPU hybrid implementation of the ensemble KENDA assimilation cycle followed by a forecast.

The assimilation cycle consists of several stages, which can be seen in Figure 3. First, a one-hour ICON ensemble forecast

is run starting from the previous ensemble analysis time t-1, providing the so-called first guess. During this forecast, obser-255

vation operators are applied to transform model variables (e.g., temperature, pressure, humidity) into the observational space

and written to disk. The resulting innovations (observation-minus-forecast differences) are passed to the LETKF software to

generate the new ensemble analysis at time t. This new analysis then provides the initial condition for the next forecast cy-

cle. Observation operators pose unique challenges for GPU acceleration. In contrast to the structured grid-based computations

found in most of ICON, these operators work in the observational space, which is often sparse and irregular. This makes them260

poorly suited for execution on GPUs, which require high arithmetic intensity and regular memory access patterns for optimal

performance. A detailed analysis of the computational patterns and data flow shows that for most operational configurations

these operators are only called at very low frequency and only need a subset of the model state. Based on this, the following

hybrid strategy is adopted: the first guess ICON run is executed on the GPU but the data assimilation observation operators are

kept on the CPU, and the required data are transferred from GPU to CPU during the run. The only exception is the so-called265

latent heat nudging of radar precipitation, which needs to be called at higher frequency and is therefore ported to GPU. The

LETKF analysis step itself remains on the CPU.

3.9 Diagnostics and output

For operational NWP applications, a wide range of diagnostics must be computed to meet the needs of various clients and

users. These include, for example, wind gust statistics, lightning indices, and other derived meteorological products. Many270

of these diagnostics are evaluated at high temporal frequency, often every model time step, which makes GPU acceleration

essential for performance. To minimize data transfer overhead, most high-frequency diagnostics have been ported to the GPU.

This ensures that intermediate results remain on the GPU memory during the time-stepping loop, avoiding costly CPU-GPU

transfers. At designated output intervals, the required diagnostic and model data are transferred from the GPU to the CPU.

Output-related operations such as file I/O are then performed on the CPU, which is more suitable for these latency-tolerant and275

system-dependent tasks. Pre-processing steps for output—such as interpolations to pressure levels, standard height levels, or
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user-defined layers—are also ported to the GPU and executed before the data transfer. This further reduces CPU workload and

ensures that only the final, ready-to-write fields are transferred from GPU memory.

4 Validation and acceptance

4.1 Probabilistic testing280

To ensure the correctness of the GPU port of ICON, a probabilistic testing framework, probtest (Probtest, 2023), was devel-

oped. This framework is designed to validate scientific consistency between the GPU and CPU versions of the code while

accounting for expected differences due to rounding errors and non-bit-reproducible floating-point behavior. Such differences

commonly arise from hardware- and compiler-specific implementations of intrinsic mathematical functions or from numerical

optimizations such as fused multiply-add (FMA) operations, which are applied aggressively on GPUs.285

The key idea of probtest is to approximate the effect of rounding errors by constructing a CPU-based ensemble in which

small perturbations are introduced into selected input fields—typically in the least significant digits. This generates a reference

ensemble that captures the natural variability due to rounding effects in the CPU computation.

A short and computationally inexpensive configuration is used to run the perturbed ensemble and determine the expected

spread of each variable. Based on this ensemble spread, variable-specific statistical tolerances are derived. The GPU simulation290

is then compared against this CPU-based ensemble, and the test passes if the GPU result falls within the ensemble spread for

all diagnosed fields.

This probabilistic test is integrated into the automatic continuous integration (CI) pipeline, and is set up for the set of

configurations which are supported on GPU using a reduced domain size. Every change to the model must pass this validation

step to be accepted. In case of physical changes to the model that affect results beyond numerical noise, a new ensemble295

reference is generated to update the tolerance baseline.

4.2 Validation against observation

Due to the complexity of the model and to the fact that many conditional statements are data-driven, for example a cloud-no-

cloud situation, it is not possible to have full code coverage with the above-mentioned automatic testing. In order to ensure

the quality of the weather forecast, for every new version of a model that shall be used for production by a weather prediction300

center, an extensive validation, or so called verification, is required. To this end, the new version of the model is compared

against observation for an extended period of time using different metrics such as Mean Error or Root Mean Square Error.

Typically, the period of time can be a few weeks for the four seasons for past periods. Such verification has been carried out

over multiple seasons for the MeteoSwiss configurations and is described in more details in Sect. 5.2. Such a verification should

be repeated in case the model would be used for weather prediction using a different configuration.305
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4.3 Challenges of porting large community code

Ensuring the correctness of a GPU port for a large community is a critical step in integrating the port into the main code base.

However, there is also a human aspect that should not be underestimated when integrating a major code extension that spans a

broad range of components in a community-driven code like ICON.

Many ICON components, such as those described in Sect. 3.4 to 3.8, are developed and maintained by individual domain310

scientists (DSs), who are responsible for the scientific integrity and evolution of their respective modules. In contract, a re-

search software engineer (RSE) ports a model to GPU by working across multiple code components without affecting the

scientific value of the implemented equations. As a result, establishing trust between DSs and RSEs is essential, enabling DSs

to understand the modifications required for the GPU port and maintain their ability to maintain and develop the ported code

independently.315

To facilitate this collaboration, we employ two strategies. First, ported code components are merged incrementally into the

main code base. Second, DSs are trained in the basics of the GPU port, OpenACC, and tools for GPU verification, such as

tolerance validation with probtest. In parallel, the RSEs gain familiarity with the scientific context of the code they work on,

facilitating the interactions.

Incremental porting of the code ensures that the ported code remains up-to-date with the latest scientific advancements,320

simplifies testing and debugging, and allows DSs to continue working on their components immediately. Also, keeping the

partially ported code in a working state enables early integration of GPU tests and probtest into the general ICON CI testing

pipeline. Early GPU testing helps to avoid regression when a DS extends an already ported code component. To give a magni-

tude of the porting effort and the importance of an incremental approach, the source code is about 2 millions line of code, to

which about 15 000 OpenACC statement have been added.325

The GPU training provided for DSs and other RSEs working on ICON was well received by the ICON developer community,

which comprises many scientists without a formal computer science background. The training was tailored specifically to ICON

and the use of OpenACC within it. It was offered in live sessions and is also available for self-study, with many supporting

documents, guidelines, and hands-on tutorials published and available to ICON developers.

While no formal evaluation was conducted, feedback from participants indicates that the training was perceived as helpful330

and played a positive role in promoting the acceptance of the GPU port and OpenACC-based development within the ICON

community.

5 Operational NWP configuration at MeteoSwiss

MeteoSwiss currently runs two regional NWP ensemble systems, ICON-CH1-EPS and ICON-CH2-EPS, operationally. The

ICON-CH1-EPS configuration has a horizontal grid spacing equivalent to 1 km and 80 vertical levels, with a time step of 10 s.335

It is run eight times per day, producing 33-hour forecasts for 11 members. The 03 UTC run is additionally extended to 45 hours

to fully cover the next day. ICON-CH2-EPS uses a coarser grid spacing of approximately 2.1 km , with the same 80 levels

and a 20 s time step. It runs four times per day providing 5-day forecasts for 21 members, offering a broader temporal range
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while maintaining high spatial resolution for medium-range weather forecasting. In order to capture key weather phenomena for

Switzerland, the regional configurations are running on a simulation domain that includes the entire Alpine region as illustrated340

in Fig. 4 such that ICON-CH1-EPS and ICON-CH2-EPS have, respectively, 1147980 and 283876 horizontal grid points. The

initial conditions are provided by the KENDA-CH1 system, which combines a wide range of observations into the model

grid and physical equation. KENDA-CH1 has the same computational grid as ICON-CH1-EPS and is run for 41 members.

Lateral boundary conditions for these systems are supplied by ECMWF’s IFS ENS system, which supplies high-quality global

atmospheric data.345

Figure 4. ICON-CH1-EPS and ICON-CH2-EPS domain covering the Alpine Region

5.1 Operational GPU System at CSCS

The MeteoSwiss computing infrastructure is part of the larger Alps Supercomputer at the Swiss National Supercomputing Cen-

tre CSCS (Alps, 2025) and is implemented as a so-called versatile cluster, vCluster (Martinasso et al., 2024), deployed across

multiple geographical sites for increased operational resilience. The production vCluster named Tasna is hosted in Lausanne

(western Switzerland), while the fail-over and R&D vCluster Balfrin is located in Lugano (southern Switzerland). vCluster350

technology enables flexible configuration of the software environment and allocation of compute resources. Operational fore-

casting uses 42 GPU compute nodes, each equipped with one AMD 64-core EPYC CPU and four NVIDIA A100 96 GB GPUs.

These nodes are connected by a Slingshot-11 interconnect. The R&D size is of 42 compute nodes or larger depending on the

needs and in coordination with CSCS.

5.2 Verification of the MeteoSwiss configuration355

After successfully ensuring the consistency of the GPU port against the CPU execution with automated testing (see Sect. 4),

an extended verification of the ICON model was conducted. Before introducing it into operations, the forecast quality of

the new system was thoroughly assessed and compared to the previous operational system that was based on the COSMO
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model (Steppeler et al., 2003; Baldauf et al., 2011). To this end, MeteoSwiss ran ICON-CH1-EPS and ICON-CH2-EPS control

forecasts on a regular schedule (00 and 12 UTC runs) starting in summer 2021, transitioning to full ensemble runs in summer360

2023. For the first period the model was run on CPU, and from November 2022 on it was run on GPU.

Figure 5 presents an extended verification of ICON-CH1-EPS against the then-operational COSMO-1E system. Since sum-

mer 2023, when ICON ensemble data became available, the median of ICON-CH1-EPS consistently outperforms COSMO-1E

in terms of the equitable threat score (ETS) for 12-hourly precipitation exceeding 0.1 mm, indicating greater skill in capturing

the occurrence of precipitation. Moreover, the mean absolute error (MAE) for 2-m temperature and 10-m wind speed is slightly365

lower since summer 2023, suggesting an improved overall forecast accuracy for these surface parameters. The only exception

is total cloud cover, where the ETS for the 2.5 octa threshold shows slightly lower performance for ICON-CH1-EPS in recent

seasons.

Given the slightly improved performance of ICON-CH1-EPS (and ICON-CH2-EPS; not shown) in many of the important

parameters (see some of them in Fig. 5), the quality criteria for operational introduction were met and ICON replaced COSMO370

as the operational NWP system at MeteoSwiss on 28 May 2024. Nevertheless, several known model deficiencies remain,

including a warm bias in Alpine valleys, an overestimation of convective precipitation maxima, and an excessive ensemble

spread in precipitation forecasts. These deficiencies are the focus of ongoing development with the goal to further enhance the

quality of the weather forecasts.

6 Optimization and performance results375

6.1 Benchmark configuration

The benchmarking experiments presented in this section are based on the operational ICON-CH1-EPS configuration (see

Sect. 5), using a single ensemble member for a one-hour forecast. This choice is representative of a forecast simulation, par-

ticularly considering that diagnostic and output components are typically called at hourly intervals, while most other model

components are invoked at sub-hourly frequencies. The exact configuration namelist can be found in the open source ICON380

release (https://www.icon-model.org/, release icon-2024.10) under the test name mch_icon-ch1. Each benchmark measure-

ment was repeated ten times, and the mean elapsed time and its standard deviation were recorded. The ICON version used for

the benchmarking is based on the release-2024.10, on top of which some of the optimization discussed below have been added.

Most of the optimizations are part of the official public release-2025.4 of ICON (Icon-model, 2025).

All experiments are run on the Balfrin hybrid system (see the specification in Sect. 5.1). Unless stated otherwise, benchmarks385

are executed on two GPU nodes, e.g. using a total of 8 NVIDIA A100 96 GB GPUs. The optimization parameter controlling

the block size for the horizontal grid nblocks_c is set to 1, and the radiation block parameter nproma_sub is set to 6054.

The code was compiled using the NVIDIA HPC SDK version 23.3 with CUDA version 11.8.0.
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Figure 5. Extended verification of COSMO-1E and ICON-CH1-EPS forecasts for the lead-time range of 13–24 h, evaluated against obser-

vations from 159 surface stations across Switzerland. Shown are key meteorological verification scores: (a) ETS for 12-hourly precipitation

> 0.1 mm, (b) ETS for total cloud cover > 2.5 octa, (c) MAE of 2-m temperature, and (d) MAE of 10-m wind speed. Each panel presents

individual seasonal score values (points) and a moving yearly average (lines), computed from the current and the three preceding seasons, for

COSMO-1E (blue) and ICON-CH1-EPS (orange). Scores are based on the ensemble median, except for ICON-CH1-EPS prior to JJA 2023,

where ensemble data were not yet available. The model was run on GPU from November 2022 on, the results in the previous periods have

been obtained on CPU.
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6.2 GPU optimization

After porting and validating the ICON code on GPUs, a range of optimizations have been introduced to improve performance.390

These optimizations are described below, and the resulting performance of the combined optimization is shown in Table 1.

6.2.1 Baseline

The GPU timings are compared to a CPU reference. Since some of the optimizations also improve the CPU runtime, we use the

best-performing optimized version as the CPU reference, including mixed precision and radiation in single precision. The CPU

reference is compiled with the following optimization flags -O -Mrecursive -Mallocatable=03 -Mbackslash395

and is run using 8 AMD 7713 64 cores EPYC Milan CPUs, using MPI parallelization over all cores. The parameters for the

horizontal blocking are set to nproma= 8 and nproma_sub= 8 which are optimal values on CPU for this configuration.

The total time for this 1h-benchmark is 536.5s. Note that due to an issue with the nvhpc compiler available on the system,

the hybrid OpenMP - MPI parallelization did not work on the CPU for this configuration and is not reported in the table 1.

The base GPU code is compiled with -O -Mrecursive -Mallocatable=03 -Mbackslash -acc=verystrict400

-Minfo=accel,inline -gpu=cc80. Comparing the CPU reference on 8 CPU sockets with the GPU code running on 8

A100 GPUs, we observe a total runtime of 125.6s and a speed-up factor of about 4.3. Note that we favor this socket-to-socket

comparison as opposed to a node-to-node comparison since the GPU nodes have more GPUs than CPUs which would be too

favorable for the GPUs. Since the weather model ICON is mostly memory bandwidth limited (Adamidis et al., 2025), it is

instructive to compare the speedup observed with the hardware specification. The NVIDIA A100 96 GB and the AMD 7713405

EPYC CPU have a maximum theoretical bandwidth of, respectively, 1560 GB/s and 204.8 GB/s, which gives a ratio of 7.8.

This is consistent with the observed speedup of a factor of 4.3, which suggests that the initial port is performing reasonably

well and that no significant computations have been left on the CPU. But it also indicates that there is potential room for

improvement.

6.2.2 Compiler optimizations level and flags, comp-opt410

First, various optimization flags at the compiler level have been investigated and compared. Aggressive optimization flags such

as -03 or -fasthmath have not been considered for accuracy and validation reasons. Using -O2 and -Mstack_arrays

noticeably reduces the total runtime by about 6.8% to 117.0s Most of the gain comes from the flag -Mstack_arrays which

places all temporary Fortran automatic arrays on the stack. Although this change only affects memory allocation on the CPU,

it also impacts GPU runtime when using OpenACC, because these automatic arrays are still allocated, even if never used on415

the CPU. The effect is, in fact, larger for the GPU run, because of the very large nproma used (see Sec. 3.2), which leads to

large temporary arrays.
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6.2.3 Asynchronous execution between CPU and GPU

By default, OpenACC synchronizes CPU and GPU execution, such that the CPU needs to wait for the GPU kernels to complete

before being able to proceed. This can be adapted by using the OpenACC ASYNC(INT) constructs in parallel regions, allowing420

the CPU to continue execution after launching the kernel. Asynchronous computation needs a careful analysis of the code to

ensure that no data computed on the GPU are used at a later stage on the CPU, while computation is still ongoing on the GPU.

In such a case, the construct ACC WAIT(INT_LIST) is used to wait for completion of the GPU execution before proceeding.

The OpenACC ASYNC construct further allows the specification of the queue – corresponding to the cuda-stream on NVIDIA

devices – where the asynchronous execution is done. In most of the ICON code, the asynchronous queue is explicitly set to425

1, except for specific parts where multiple code paths are executed in parallel queues. This is, for example, the case for the

different tiles of the soil as described in Sect. 6.2.5. With asynchronous execution, the CPU can proceed and launch multiple

kernels, significantly reducing or even eliminating kernel launch overhead. As shown in table 1 this brings down the total

runtime to 115.3s, i.e., about 1.5% additional performance improvement.

6.2.4 Inlining430

Inlining is a general optimization technique that replaces the call to a function by the actual code of the function. This can

reduce function call overhead and allows for additional compile-time optimizations. It is particularly beneficial for functions

which are called from the innermost-loop. In Fortran there is no language construct, as in C for example, to control inlining.

However, most compiler vendors provide solutions to inline functions. With the nvhpc (NVIDIA) compiler there is a pre-

compilation step added where the user gives a list of functions that should be inlined, such that these functions are extracted as435

code into an inline library. This inline library is then used for the compilation of the full code. Inlining is not always beneficial

and significantly increases the compilation time. For this reason, inlining is restricted to functions resulting in a significant

performance improvement. In ICON, these are primarily in the physics scheme. The total runtime reduces to 113.2s, which

corresponds to a relative improvement of 1.8%.

6.2.5 CUDA Graphs440

CUDA Graphs are an NVIDIA-specific GPU optimization feature that allow GPU workloads to be expressed as a directed

acyclic graph (DAG) of operations, rather than launching individual kernels sequentially. This enables the GPU runtime to

schedule and execute kernels with significantly reduced launch overhead and memory allocation costs. In ICON, CUDA Graphs

are employed within selected physical parameterizations, most notably in the turbulence and soil components of the NWP

configuration. In addition to the turbulence transfer and the soil model, the CUDA graph is used in association with multiple445

asynchronous queues to run all the independent soil type tiles concurrently in different GPU queues.

At runtime, all GPU kernels, memory allocations, and de-allocations with their respective dependencies between the Ope-

nACC extension APIs accx_begin_capture_async and accx_end_capture_async are recorded as a graph. After
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that, the recorded graph can be executed on the GPU via the accx_graph_launch API multiple times, which is called a

graph replay.450

Although the required code changes are minimal, their use introduces certain limitations, which may require further adapta-

tions to the code. The most critical aspect is that, during graph replay, no CPU work should be carried out; only prerecorded

GPU kernels should be launched. In addition, all OpenACC statements within the capture region must be asynchronous. More-

over, kernel parameters are captured by value during the recording and cannot be changed later in the execution. This means

that all array shapes and pointers cannot change from one graph replay to another. In ICON some fields have two time levels,455

so that the pointers associated with such fields are different for odd and even time steps. Therefore, for the part of the code that

uses fields with two time levels, two graphs need to be recorded, one for odd and one for even time steps.

The application of CUDA Graphs to the soil and turbulence routines yields significant local speedups (3× and 3.5×, respec-

tively). While these routines constitute a relatively small portion of the total runtime, the aggregate benefit of CUDA Graphs

translates to a 5% overall runtime reduction, bringing the benchmark execution time down to 107.4 s.460

6.2.6 opt-rank-distribution

When running the model on multi-GPU nodes, there is one MPI task associated to each GPU. In addition, some of the remaining

CPU cores on the node are used for I/O related tasks, namely asynchronous I/O MPI tasks and a pre-fetch MPI task. Pure CPU

MPI tasks should be evenly distributed over all nodes. Since I/O related tasks are at the end of the MPI communicator, they can

be distinguished from compute tasks in a straightforward way by using the slurm SBATCH -cyclic command. However,465

this has the drawback that close MPI ranks are on different nodes, which could mean close domains are on different nodes,

leading to more inter-node communication. An optimization of the rank distribution (opt-rank-distribution) can be achieved

using SBATCH -distribution=plane=4. With this change, the total time improved by 1% to 106.3 s.

6.2.7 Compile-time nproma

The parameter nproma is usually set during runtime via a namelist switch. The nproma is chosen for the best performance470

dependent on the computing architecture. In many architectures, this is fixed to accommodate for the cache size or vector

length. For GPU, the nproma is chosen to be as large as possible and dependent on the number of grid points. Setting the

value at compile time provides a performance increase. Although this optimization is available, it is currently not used for

the operation at MeteoSwiss since the two configurations ICON-CH1-EPS and ICON-CH2-EPS have different numbers of

points and therefore would require two different executables with different nproma. With this optimization, a gain of 0.7% is475

obtained corresponding to a total runtime of 106.3 s.

6.2.8 Dycore mixed-precision

Using single precision can give multiple advantages over double precision. On the one hand, more floating point operations

can be done in the same time as double precision operations. On the other hand, it decreases memory pressure, which is useful,
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especially considering the limited amount of memory available on the GPU. The drawback of using single precision is that the480

errors of using floating point numbers increase, and the effect on the numerical integration need to be carefully analyzed. For

this reason a mixed-precision approach has been implemented in ICON’s dycore. Scientific expertise determines which fields

and operations can be put in single precision. The mixed-precision model was validated against a double-precision version by

comparing to observations over a long period of time, which showed no impact on the meteorological scores. The performance

is improved by 8% to 96.65 s.485

6.2.9 ecRad single-precision

Similar considerations as for the dycore have been made for the radiation parameterization ecRad regarding the floating-point

precision. We also note that ecRad is already used in single-precision for operations at the ECMWF in combination with the

weather model IFS which provides additional validation to this approach. With this change, the total runtime is improved

by 0.9% to 95.80 s. The ecRad parameterization is a memory-intensive component such that using single-precision has a490

significant impact on the total memory consumption. This could be beneficial for the overall performance since it allows to

increase nproma_sub to use more parallelism and reduce launching overhead.

Looking at the overall improvement, the benchmark runtime was optimized by 23% from 125.6 s to 95.80 s. Comparing to

the CPU reference at 536.5 s this gives a final socket-to-socket speedup of 5.6x on the GPU. This speedup factor is consistent

with previous results for climate configuration setup (Giorgetta et al., 2022). The speed up factor also means that compared495

to a CPU only a GPU system for operation is more compact, 5.6x time more CPUs would be needed for the required time to

solution. Although we did not perform energy measurement in this work, a previous study (Cumming et al., 2014) considering

a similar model, shows that the better performance also translates in a more energy efficient system.

6.3 Strong scaling

To assess strong scaling behavior, the ICON-CH1 benchmark is run using an increasing number of GPUs. The reference time500

is given for 4 GPUs, which is the smallest number on which the problem fits in terms of memory. The most optimized version

from the previous Sect. 6.2, which is the ecRad-single-precision version, is used for this test. In Figure 6, it can be seen that

the problem scales well up to 12 GPUs.

Beyond 12 GPUs, there is a noticeable degradation in performance in the physics component, while the dynamical core (dycore)

continues to scale well. Considering that the ICON-CH1-EPS grid has 1147980 grid points, with 12 GPUs the number of505

grid points per GPU is below 100000. At this point, the per-GPU workload becomes too small to fully utilize the compute

and memory throughput capabilities of the NVIDIA A100 GPUs. In particular, the ability to overlap memory access with

computation is reduced, leading to under-utilization. In particular, we note that there is little communication in the physics as

compared to the dycore, which further supports that the non-optimal scaling results from non-optimal use of the GPUs rather

than communication overhead.510
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Name
Dycore Physics Total

Mean [s] Std [s] Speedup Mean [s] Std [s] Speedup Mean [s] Std [s] Speedup

CPU ref 421.8 5.168 1. 135.7 1.754 1. 536.5 1.535 1.

base GPU 64.53 0.2718 6.537 40.41 0.2821 3.359 125.6 0.5964 4.271

comp-opt 63.19 0.09597 6.675 36.05 0.1576 3.765 117.0 0.1766 4.584

async 62.01 0.09919 6.802 35.67 0.07311 3.805 115.3 0.1222 4.652

inlining 62.03 0.01604 6.800 33.28 0.02778 4.078 113.2 0.03935 4.740

cuda-graphs 62.06 0.09837 6.796 27.68 0.1052 4.904 107.4 0.06748 4.995

opt-rank-node 61.29 0.05912 6.883 27.70 0.2921 4.899 106.3 0.09753 5.048

compile-time nproma 61.00 0.08110 6.915 27.54 0.07775 4.928 105.6 0.07021 5.079

mixed-precision 52.68 0.1008 8.007 27.55 0.2176 4.927 96.65 0.2031 5.551

ecRad-single-precision 52.76 0.1240 7.996 26.73 0.5259 5.078 95.80 0.2762 5.600

Table 1. Performance metrics for different parts of the model with various optimizations. For the speedup reference the CPU version is used,

which includes all the optimizations that also affects the CPU performance like CPU optimization flags, in-lining, opt-rank-node, mixed-

precision and ecRad in single precision.
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Figure 6. Strong scaling of the regional ICON-CH1-EPS 1h benchmark on A100 NVIDIA GPUs. For this configuration the model stops

scaling at about 12 GPUs which corresponds to about 100 000 Grid points per GPUs and is not enough work to optimally use the hardware.
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6.4 Timing for the operational configuration

For the operational ICON-CH1-EPS configuration at MeteoSwiss, each 33-hour ensemble forecast must be completed within

50 minutes (3,000 seconds) to meet the stringent timing requirements for delivering downstream critical products to clients.

When ICON was first deployed operationally in May 2024, not all GPU optimizations were yet in place. At that time, the

runtime on two nodes (8 NVIDIA A100 GPUs) was approximately 3,200 seconds, exceeding the operational time limit. As515

a result, each ensemble member had to be executed on three nodes (12 GPUs) to stay within the required timeframe. After

applying the full set of optimizations, the runtime for a 33-hour forecast on two nodes was reduced to 2,642 seconds, well

within the operational constraint, enabling more efficient and cost-effective use of computational resources.

7 Conclusions

We have successfully ported all essential components of the ICON model required for operational numerical weather prediction520

(NWP) to GPUs using OpenACC compiler directives. This includes the dynamical core, all physical parameterizations, and

the data assimilation system (KENDA). The porting and optimization strategy has enabled a single ensemble member of the

operational ICON-CH1-EPS configuration to run within the required time-to-solution on 8 NVIDIA A100 GPUs.

When comparing the same number of CPU and GPU sockets, the speedup on the GPU hardware is 5.6x. This potentially

allows for a much more compact and energy-efficient system than a CPU-only system. The OpenACC approach enabled525

the implementation of changes in a step-by-step manner in the code while maintaining performance on other architectures.

Besides the MeteoSwiss configuration, several other configurations are also supported and tested including one configuration

from Germany’s National Meteorological Service, the Deutscher Wetterdienst (DWD).

All changes have been merged into the main ICON code and OpenACC training in ICON was provided to the community to

promote a seamless adoption of the port and would allow other NWP centers or users to run ICON on GPU. The code changes530

are included in the ICON open-source distribution, with the exception of the data assimilation part, making it available for many

use cases to the broader NWP community. The ICON model was thoroughly verified over multiple seasons against observations

and the previous operational model COSMO achieving the required quality level for the MeteoSwiss configurations. The port

allowed MeteoSwiss to be the first weather service to use the ICON model on the GPU in production for operational NWP

prediction. Thanks to the computing efficiency of GPUs, MeteoSwiss can run, in particular, the ICON-CH1-EPS configuration535

at up to 1 km resolution, which remains one of the highest-resolution ensemble systems to date.

Beyond immediate operational gains, the GPU-capable ICON model is well positioned to benefit from the growing conver-

gence of physics-based and machine learning (ML) approaches in weather and climate modeling. Shared GPU infrastructure

can now support both traditional simulations and ML-based training and inference workflows, enabling hybrid strategies central

to next-generation forecasting systems.540

Nonetheless, the OpenACC approach comes with limitations in terms of maintainability, optimization and portability. Cur-

rently, the OpenACC standard is only fully supported by the nvhpc compiler on NVIDIA hardware. Running ICON with AMD

GPUs is, for example, currently only possible on a Hewlett Packard Enterprise (HPE) system using the Cray compiler for
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climate configuration, while there are some unresolved issues with some NWP components on such system. Finally, there are

no solutions for running OpenACC code on Intel GPUs. To improve portability and performance on GPU hardware, the ICON545

community is investigating several other approaches, including a rewrite using the Python domain-specific language GT4Py

(Paredes et al., 2023).

Code and data availability. The full ICON version needed for all production configurations at MeteoSwiss, including the closed source Data

Assimilation components for the KENDA cycle, used in the paper is archived on the Zenodo server (https://zenodo.org/records/15674269)

under DOI (ICON, 2024.10_withDA). This code version is available under restricted access for review and for research purpose. For the icon-550

ch1-eps benchmark used for the performance results reported in the paper, the data assimilation component is not needed, the benchmark

results can be reproduced using the official open-source release source code, configurations and scripts available under BSD-3 License

archived on the World Data Center for Climate server from DKRZ (https://www.wdc-climate.de/ui/entry?acronym=IconRelease2024.10)
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