Preprints
https://doi.org/10.5194/egusphere-2025-3423
https://doi.org/10.5194/egusphere-2025-3423
15 Sep 2025
 | 15 Sep 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Exceptional high AOD over Svalbard in Summer 2019: A multi-instrumental approach

Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski

Abstract. In the summer of 2019, the Arctic region registered exceptionally high aerosol optical depth (AOD) values over Svalbard, linked to intense biomass burning and volcanic activity across the Northern Hemisphere. This study presents a comprehensive, multi-instrumental analysis of the aerosol conditions in and around Ny-Ålesund (Spitsbergen, Norway), combining data from ground-based sun-photometry, in-situ observations, active remote sensing (ground-based and on satellite), and atmospheric dispersion modeling. Despite high AOD was observed during all the period, three different aerosol events are identified in the atmospheric column (6–10 July, 25–28 July, and 6–17 August). In contrast, in-situ surface stations only recorded significant aerosol load during 5–9 July, 30 August, and 12 September, suggesting that most of the aerosol particles remained above the boundary layer. Lidar and photometric observations revealed the presence of spherical, weakly absorbing Accumulation-mode particles (0.1–0.2 µm) in both the troposphere and stratosphere, with persistent layers extending above 10 km. Simulations carried out with FLEXPART correlate well with the measurements, attributing the observed aerosol events to multiple sources, including Siberian and North American wildfires, the Raikoke (Russia) volcanic eruption, and anthropogenic pollution. Overall, the aerosol radiative impact during this long-lasting event was substantial, with a mean reduction in direct solar radiation of approximately -74 W / m2 during July and August. This work shows how the use of dispersion modelling together with multiple observation sources allows to achieve a more complete description of the atmospheric aerosol events and contributes to a better understanding of the overall picture.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski

Status: open (until 27 Oct 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski
Metrics will be available soon.
Latest update: 15 Sep 2025
Download
Short summary
In summer 2019, unusually high aerosol levels were measured in the Arctic, linked to wildfires, volcanic eruptions, and anthropogenic pollution. Using various instruments and models, we traced their origins and found good agreement between methods. The particles were mostly non-absorbing, but still we found a reduction of the solar radiation reaching the surface. This study shows that combining different measurements improves our understanding of how distant events affect the Arctic climate.
Share