Deep crustal structure of the southern Baltic Sea in the light of seismic and potential field data
Abstract. The southern Baltic Sea lies within a critical transitional zone between two major geological provinces of Europe: the Precambrian East European Platform and the Palaeozoic Platform of Western Europe. While the shallow expression of this boundary is generally marked by the Caledonian deformation front, the deeper crustal configuration remains contentious due to thick Phanerozoic cover. This study integrates seismic interpretation with 2-D gravity and magnetic modelling to investigate the deep crustal architecture beneath the southern Baltic Sea. Four new seismic profiles (BGR16-256, BGR16-202, BGR16-257, BGR16-259), acquired during the BalTec (MSM52) expedition, were analysed alongside borehole and legacy seismic data. Seismic imaging reveals that the upper crust was primarily shaped by Permian–Mesozoic extension and Late Cretaceous inversion. Extensional basins such as the Mid-Polish Trough and Rønne Graben accumulated up to 4 km of sediments, later uplifted and folded during inversion, which caused displacements of 1.5–2 km and produced asymmetrical marginal troughs with NE-directed compressional vergence. The gravity and magnetic models, constrained by seismic horizons, enable imaging of deeper crustal levels including the top of the lower crust and the Moho, which lies between 38 and 42 km depth. These data reveal that thick Baltica-type crust extends south-westward beyond the Teisseyre-Tornquist Zone, contradicting interpretations that propose a sharp lithospheric boundary along this zone. A key finding is the identification of a NE–SW-trending crustal lineament, likely inherited from Precambrian lithospheric fabric. Furthermore, evidence of pre-Triassic tilting and erosion of Silurian strata suggests a significant tectonic event, possibly related to early Carboniferous uplift. The combined data provide new insights into the complex tectonic evolution of the region, supporting a model of Baltica crustal affinity beneath the southern Baltic Sea and emphasising the interplay of inherited Precambrian structures, Permian-Mesozoic extension, and Late Cretaceous inversion.
Competing interests: At least one of the (co-)authors is a member of the editorial board of Solid Earth.
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.