Preprints
https://doi.org/10.5194/egusphere-2025-2740
https://doi.org/10.5194/egusphere-2025-2740
19 Jun 2025
 | 19 Jun 2025

Reviews and syntheses: Carbon vs. cation based MRV of Enhanced Rock Weathering and the issue of soil organic carbon

Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow

Abstract. We discuss the “monitoring, reporting & verification” (MRV) strategy of Enhanced Weathering (EW) based on carbon accounting and argue that in open systems such as arable land, this approach is ill-suited to close the balance of all carbon fluxes. We argue for total alkalinity (TA) as the central parameter for the carbon based MRV of EW. However, we also stress that tracking alkalinity fluxes using a systems-level approach is best done by focusing on charge balance maintenance through time. We start by explaining the concept and history of alkalinity conceptualization for the oceans. The same analytical method first proposed for the oceans – titration with a strong acid – is now commonly used for porewaters in agricultural soils. We explain why this is an accurate analysis for ocean water and why it is unsuitable to record TA for porewaters in agricultural soils. We then introduce an alternative MRV based on cation accounting. This requires translation of "carbon currency" into "cation currency" based on the concept of the "explicit conservative expression of total alkalinity" (Wolf-Gladrow et al., 2007). We finally discuss the fate of cations released from the weathering of basalt, soil cation dynamics and close by suggesting open research questions.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Biogeosciences. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

05 Jan 2026
Reviews and syntheses: Carbon vs. cation based MRV of Enhanced Rock Weathering and the issue of soil organic carbon
Jelle Bijma, Mathilde Hagens, Jens S. Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim J. Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter Wolf-Gladrow
Biogeosciences, 23, 53–75, https://doi.org/10.5194/bg-23-53-2026,https://doi.org/10.5194/bg-23-53-2026, 2026
Short summary
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-2740', Isabel Montañez, 09 Sep 2025
    • AC1: 'Reply on RC1', Jelle Bijma, 14 Nov 2025
  • RC2: 'Comment on egusphere-2025-2740', Anonymous Referee #2, 10 Oct 2025
    • AC2: 'Reply on RC2', Jelle Bijma, 14 Nov 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-2740', Isabel Montañez, 09 Sep 2025
    • AC1: 'Reply on RC1', Jelle Bijma, 14 Nov 2025
  • RC2: 'Comment on egusphere-2025-2740', Anonymous Referee #2, 10 Oct 2025
    • AC2: 'Reply on RC2', Jelle Bijma, 14 Nov 2025

Peer review completion

AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
ED: Publish subject to minor revisions (review by editor) (17 Nov 2025) by Bertrand Guenet
AR by Jelle Bijma on behalf of the Authors (18 Nov 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (27 Nov 2025) by Bertrand Guenet
AR by Jelle Bijma on behalf of the Authors (05 Dec 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

05 Jan 2026
Reviews and syntheses: Carbon vs. cation based MRV of Enhanced Rock Weathering and the issue of soil organic carbon
Jelle Bijma, Mathilde Hagens, Jens S. Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim J. Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter Wolf-Gladrow
Biogeosciences, 23, 53–75, https://doi.org/10.5194/bg-23-53-2026,https://doi.org/10.5194/bg-23-53-2026, 2026
Short summary
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow

Viewed

Total article views: 3,464 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,928 500 36 3,464 50 65
  • HTML: 2,928
  • PDF: 500
  • XML: 36
  • Total: 3,464
  • BibTeX: 50
  • EndNote: 65
Views and downloads (calculated since 19 Jun 2025)
Cumulative views and downloads (calculated since 19 Jun 2025)

Viewed (geographical distribution)

Total article views: 3,406 (including HTML, PDF, and XML) Thereof 3,406 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 05 Jan 2026
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Share