Preprints
https://doi.org/10.5194/egusphere-2025-159
https://doi.org/10.5194/egusphere-2025-159
05 Feb 2025
 | 05 Feb 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Global CH4 Fluxes Derived from JAXA/GOSAT Lower Tropospheric Partial Column Data and the CTE-CH4 Atmospheric Inverse Model

Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto

Abstract. Satellite-driven inversions provide valuable information about methane (CH4) fluxes, but the assimilation of total column-averaged dry-air mole fractions of CH4 (XCH4) has been challenging. This study explores, for the first time, the potential of the new lower tropospheric partial column (pXCH4_LT) GOSAT data, retrieved by the Japan Aerospace Exploration Agency (JAXA), to constrain global and regional CH4 fluxes. Using the CarbonTracker Europe-CH4 atmospheric inverse model, we estimated CH4 fluxes between 2016–2019 by assimilating the JAXA/GOSAT pXCH4_LT and XCH4 data and surface CH4 observations, independently of each other. The Northern Hemisphere CH4 fluxes derived from the JAXA/GOSAT pXCH4_LT data were similar to the estimates derived from the surface observations, but was underestimated by about 35 Tg CH4 year-1 (∼6 % of the global total) using the JAXA/GOSAT XCH4 data. For the Southern Hemisphere, the estimates from the both GOSAT inversions were about 15–30 Tg CH4 year-1 higher than that derived from surface data. The evaluations against independent data from the Atmospheric Tomography Mission aircraft campaign showed good agreement in the lower tropospheric CH4 from the inversions using the JAXA/GOSAT pXCH4_LT and surface data. However, the modelled North-South gradients showed significant overestimation in the upper troposphere and stratosphere, possibly due to relatively uniform inter-hemispheric OH distributions that control CH4 sinks. Overall, we found that the use of the JAXA/GOSAT pXCH4_LT data shows considerable potential in constraining global and regional CH4 fluxes, advancing our understanding of the CH4 budget.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto

Status: open (until 26 Mar 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto

Viewed

Total article views: 144 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
106 32 6 144 4 5
  • HTML: 106
  • PDF: 32
  • XML: 6
  • Total: 144
  • BibTeX: 4
  • EndNote: 5
Views and downloads (calculated since 05 Feb 2025)
Cumulative views and downloads (calculated since 05 Feb 2025)

Viewed (geographical distribution)

Total article views: 190 (including HTML, PDF, and XML) Thereof 190 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 16 Mar 2025
Download
Short summary
Satellite data bring invaluable information about greenhouse gas emissions globally. We found that a new type of data from the Greenhouse Gas Observing Satellite (GOSAT), which contains information about methane in the lowest layer of Earth's atmosphere, could provide reliable estimates of recent methane emissions when combined with atmospheric modelling. Therefore, the use of such data is encouraged to improve emission quantification methods and advance our understanding of methane cycles.
Share