Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2025-1194
https://doi.org/10.5194/egusphere-2025-1194
11 Apr 2025
 | 11 Apr 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Mechanistic insights into nitric acid-enhanced iodic acid particle nucleation in the upper troposphere and lower stratosphere

Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang

Abstract. In the upper troposphere and lower stratosphere (UTLS), new particles frequently form to seed cloud condensation nuclei (CCN), thereby affecting radiative forcing and global climate. Iodic acid (IA) particles have been widely detected in the UTLS; however, how they form is still largely unknown. Given the abundance of nitric acid (NA) and ammonia (NH3) in the UTLS and their nucleation potential, we explore the influence of NA and NH3 on IA nucleation by quantum chemical calculations and cluster dynamics simulations. The structural analysis indicates that NA and NH3 can cluster with IA via hydrogen bonds, halogen bonds, and electrostatic attractions between ions. The small-sized IA–NA–NH3 clusters have lower free energies than typical sulfuric acid (SA)–NA–NH3 clusters in the upper troposphere, exhibiting greater stability and higher nucleation efficiency. Moreover, the NA-enhanced effect on the established efficient IA–NH3 nucleation is more evident at lower temperatures, especially with richer NA and NH3. In the extremely low-temperature UTLS, the proposed IA–NA–NH3 ternary pathway dominates nucleation, while in the mid troposphere with higher temperatures, the role of NA is minor due to its rapid evaporation. These findings underscore the important role of NA in iodine particle formation in the UTLS, offering mechanistic insights into the missing secondary particle sources.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower...
Share