Review article: Using spaceborne lidar for snow depth retrievals: Recent findings and utility for global hydrologic applications
Abstract. Lidar is an effective tool to measure snow depth over key watersheds across the United States. Lidar-derived snow depth observations from airborne platforms have demonstrated centimeter-level accuracy at high spatial resolution. However, ground-based and airborne lidar surveys are costly and limited in space and time. In recent years, there has been an emerging interest in using spaceborne lidar to estimate snow depth. Preliminary results from spaceborne lidar altimeters such as the NASA Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) ca provide routine snow depth retrievals over watersheds, though further research on accuracy, coverage, and operational potential is needed. In this review, we outline the current status of research using spaceborne lidar to derive snow depth. We focus on the currently operational ICESat-2 mission, with a summary of snow observations gathered from recent studies. We also outline best practices for spaceborne lidar snow depth retrieval, based on findings from recent studies. We conclude with a discussion of ongoing challenges for spaceborne lidar, with suggestions for future studies and requirements for future mission concepts.